Bright Hot Crystals

NYUAD researchers achieve solid state Thermochemiluminescence with crystals that emit light when heated

Press Release

Researchers from NYU Abu Dhabi’s Chemistry Program have developed macroscopic organic crystals that emit light when heated, a process referred to as thermochemiluminescence that was previously reported only in solution.

The findings demonstrate that this fundamental process of transduction of energy – heat, applied to a material, generates light – can be achieved in pure solid materials of millimeter or centimeter size.

In general, chemiluminescence reactions are only known to be possible in solution (a process that, for example, allows glow sticks to give off light) where typically two chemicals easily react, resulting in the emission of visible light. That, however, was not reported in bulk solids.

To explore whether this process would also work in the pure solid state, researchers prepared several organic peroxides and grew centimeter-size crystals – a challenging task, because these compounds are typically known to be very unstable. When heat was applied to the crystals, the molecules decomposed and generated light that ranged from red to blue to green, depending on the chemical composition.

“Our findings open up an unexplored direction in chemiluminescence research with possible applications in both materials research and life science,” said lead researcher Stefan Schramm, a post-doctoral associate in NYU Abu Dhabi’s Naumov research group. “We provide fundamentally new insights into this form of energy transduction, which has the potential to be used in developing new solar energy harvesting technologies or for monitoring of initiators in the polymer industry.”

 

This first observation of direct conversion of heat into light in a bulk material, a work that was conducted over more than two years, required building of a new, very sensitive microscope and other special instrumentation. Not only does it demonstrates the fundamental principles of energy transduction that are central to both chemistry and physics, but it also sets the basis for applications in optoelectronics and sensing technology.

NYUAD Associate Professor of Chemistry and the study’s supervisor Panče Naumov

About NYU Abu Dhabi

NYU Abu Dhabi is the first comprehensive liberal arts and research campus in the Middle East to be operated abroad by a major American research university. NYU Abu Dhabi has integrated a highly selective undergraduate curriculum across the disciplines with a world center for advanced research and scholarship. The university enables its students in the sciences, engineering, social sciences, humanities, and arts to succeed in an increasingly interdependent world and advance cooperation and progress on humanity’s shared challenges. NYU Abu Dhabi’s high-achieving students have come from over 115 countries and speak over 115 languages. Together, NYU's campuses in New York, Abu Dhabi, and Shanghai form the backbone of a unique global university, giving faculty and students opportunities to experience varied learning environments and immersion in other cultures at one or more of the numerous study-abroad sites NYU maintains on six continents.