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TQFTs in dimensions 1, 2, 3+.

Topological Quantum Field Theories (TQFTs) play a fundamental role in modern
mathematics and mathematical physics.

Fancy TQFTs appear in dimensions 3 and higher:

Witten–Reshetikhin–Turaev 3D TQFT.

Heegaard–Floer homology of 3-manifolds and its extension to 4-cobordisms and
its many incarnations deliver an example or a 4-dimensional TQFT.

Several link homology theories are 4-dimensional TQFTs restricted to links in R3
and link cobordisms in R3 × [0, 1] (bigraded Khovanov and Khovanov–Rozansky
theories).

TQFTs in dimension 2 are described by commutative Frobenius algebras (B, ε). Here
B is a commutative algebra and ε : B −→ k a nondegenerate trace, with k the ground
field.
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Cobordisms.

Let Cob(1) be the category of one-dimensional oriented cobordisms between
0-manifolds:

Objects: closed oriented 0-manifolds, represented by finite sequences of signs +,−.
For instance, M = (+,−,+,+). The empty sequence ∅0 is the identity object.
Morphisms: Hom(M,N) ≃ {B : ∂B ≃ M ⊔ N}/ diffeom, where M is M with
opposite orientation.

Two cobordisms are the same in Cob(d) if they are diffeomorphic relative to their
boundary. Composition is given by concatenating the cobordisms along boundaries.
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The definition of a one-dimensional TQFT.

Definition

TQFT of dimension 1 is a symmetric, monoidal functor

Z : Cob(1) −→ C−vect.

In particular, it preserves tensor products ⊗.

The ⊗ in Cob(1) is given by disjoint union of manifolds while ⊗ in C−vect is given by
the tensor product of vector spaces:

Z (M ⊔ N) ≃ Z (M)⊗ Z (N), Z (∅) ≃ C,

where C is a unit with respect to the tensor product on C-vector spaces.
For flexibility, skip Atiyah’s unitarity condition (compatibility of orientation reversal
with hermitian structure on state spaces), not requiring Z (M) = Z (M).
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A TQFT for C = Cob(1).

Denote category Cob(1) also by C.

Objects are 0-dimensional manifolds with orientation:
+•, −•.

Z
(

+•
)
= X a finite dimensional C-vector space, where +• has positive orientation.

Z
( −• ) = Y a finite dimensional C-vector space, where −• has negative orientation.
These spaces are related by maps induced by cobordisms A,B below on the left, with
the isotopy relations on them shown on the right:

− +

B

+ −

A

+

+

=

+

+ −

−

=

−

−
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Cobordisms A,B induce maps Z (A),Z (B), and the isotopy relations imply that X ,Y
are vector space duals of each other, Y ≃ X∨.

Given this isomorphism, maps Z (A),Z (B) can be written as evaluation and
coevaluation maps on these dual vector spaces:

− +

Z (B)

Y ⊗ X

C

∑
i

v i ⊗ vi

1 + −

C

X ⊗ Y

Z (A)

g(v)

v ⊗ g

Lines can intersect (virtual intersections), corresponding to transposition morphisms
X ⊗ X −→ X ⊗ X (or for X ⊗ Y , etc.). The TQFT functor is symmetric monoidal.
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Classification.

Conclusion: A 1-dimensional TQFT Z : C −→ C−vect is determined by its value on a
point, i.e., by a single finite-dimensional vector space X . Isomorphic vector spaces
produce isomorphic TQFTs.

Our cobordisms consist of circles and arcs connecting pairs of boundary points.

A circle, which is the only closed connected 1-manifold, evaluates to dim(X ) ∈ N ⊂ C.

Let us enhance this simple setup by adding:

inner boundary points and 0-dimensional defects (dots) with labels.
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I. Inner boundary points.

I. Allow a cobordism to have components that may end in the middle, with floating
boundary points. We separate boundary points into outer, that is, at the top or bottom
boundary 0-manifold of the cobordism, and inner or floating.

An interval component in a cobordism may have 0, 1, or 2 floating boundary points.

+ − − −

+ −

Get a category Cin of such cobordisms with inner endpoints and consider TQFT
functors Cin −→ C−vect.
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Half-intervals.
Half-interval has one outer and one floating endpoint. Depending on whether it points
in or out of the outer endpoint, it defines a vector or a covector in X .
+

X

C
v ∈ X vector

+

C
f

X

f : X → C linear map

A TQFT for Cin assigns a vector space X to the + endpoint and a vector v to a
half-interval that enters a + point. To a half-interval that exits from a + point, we
assign a covector f .
Half-intervals that enter or exit − endpoints are obtained from those for + via duality:

f

∈

X∨
−

=

−

+

∑
i

f (vi )v
i = f ∈ X∨∑

i

vi ⊗ v i

1

7→
7→

because∑
i

f (vi )v
i (vj)

=
∑
i

δij f (vi ) = f (vj)
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Floating intervals.
Floating interval has two inner endpoints and can be obtained as the composition of
two half-intervals. It evaluates to f (v).

floating interval

C

C
f (v) ∈ C

Thus, to our TQFT, there are now assigned two numbers: dim(X ) ∈ N and
λ = f (v) ∈ C (or in the ground field). These are the invariants of a circle and of a
floating interval (two possible connected floating components, up to diffeomorphism).

Such TQFTs are still easy to classify:

If λ ̸= 0, then up to isomorphism such a TQFT is unique, with v = (1, 0, . . . , 0)T and
f = (λ, 0, . . . , 0).
If λ = 0, there are four isomorphism classes:
(1) v = 0, f = 0, (2) v = 0, f ̸= 0, (3) v ̸= 0, f = 0, (4) v ̸= 0, f ̸= 0.
For case (4), need dim(X ) ­ 2 and can take v = (1, 0, . . . , 0)T , f = (0, 1, 0, . . . , 0).
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II. Adding defects.
To add more parameters, we introduce 0-dimensional defects.

II. Place dots (0-dimensional defects) on a cobordism and label them by elements of a
set Σ = {a, b, . . . } of letters. Dots can slide along a cobordism but cannot change
order (on an interval) or cyclic order (on a circle).

Get a symmetric monoidal category CΣ of Σ-decorated oriented one-cobordisms with
inner endpoints. A TQFT functor CΣ −→ C−vect associates a linear operator
X

a−→ X to a vertical upward line with a defect labelled a. Concatenation of defects
corresponds to composition of linear operators. A circle with a dot (or a product of
dots) is taken as the trace of the corresponding operator(s) by the TQFT functor.

a

X

X

+

+

a

+

+

a

b

X

X

a, b : X → X linear operators
(no relations)

a tr(a)
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Combine inner boundary points and defects.

C

C

a

b
= tr(ab) a

X

C

= av ∈ X
ab

C

C

= f (abv)

Left: circle with a sequence of defects computes the trace of the corresponding product
of operators.

Center: a defect near the floating endpoint applies the operator to the vector
associated to the endpoint for “in” oriented endpoints.

Right: for “out” endpoint, the operator acts on a functional f .
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Summary.

We’ve added two refinements to 1-cobordisms resulting in a chain of categories and
(inclusion) functors

Cob(1) = C ⊂ Cin ⊂ CΣ.

A TQFT for the category CΣ is described by a f.d. vector space X together with a
vector v ∈ X , a covector f ∈ X∨, and linear operators a : X −→ X for each a ∈ Σ.
Classification problem for such TQFTs then reduces to classifying such data on Cn up
to conjugation by GL(n), a wild problem (no classification available) once |Σ| ­ 2.

Studying 1D TQFTs with defects is essentially linear algebra: we get operators (for
labelled dots), vectors and covectors (for inner endpoints).

Another possible extension: Labeling intervals between dots by different colors allows
to introduce multiple vector spaces Xi , one for each color i , and linear maps Xi −→ Xj

for dots separating these intervals.
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Extending from C to a commutative ring R .
One can, more generally, replace C by a commutative ring R and look for TQFTs
Z : Cob(1) −→ R−mod, that is, valued in the tensor category of R-modules.
A vector space X assigned to + is then replaced by a finite rank projective R-module
V := Z (+). These conditions on the module V are needed to have duality maps for
cap and cup cobordisms (note that Z (−) ∼= V ∗ = HomR(V ,R))

V ∗ ⊗R V −→ R, R −→ V ⊗R V ∗

that satisfy the isotopy relations on slide 5. As before, we enrich this setup by adding
inner endpoints and Σ-valued labels to cobordism for the category CΣ.
A tensor functor Z : CΣ −→ R−mod is then determined by a vector v ∈ V , a covector
f : V −→ R, f ∈ V ∗, and endomorphisms a : V −→ V for each letter a ∈ Σ.

Ring R must be commutative. Decorated floating intervals and circles evaluate to
elements of R and they can freely float past each other. Hence, their evaluations in R
must commute, and a restriction to a commutative ring R is natural.
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Replacing R by the Boolean semiring B.

One can go further and replace commutative ring R by a commutative semiring. A
semiring has multiplication and addition but no subtraction, in general.

It turns out that replacing C by a commutative semiring (for example, Boolean
semiring B) adds a twist and a different kind of complexity to the theory. As we’ll see
now, this replacement relates 1D TQFTs with defects and inner endpoints to regular
languages and automata. Here,

B = {0, 1 : 1+ 1 = 1} is the Boolean semiring, replacing the ground field C of a
TQFT.

We now consider this nonlinear case and its connection to formal languages and
automata.
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Finite State Automata (FSA).

Finite State Automata (FSA) are a basic structure in computer science. They are
memoryless machines on finitely many states that, given a word ω, decide whether ω
belongs to a particular regular language L, that is, a language recognized by a regular
expression.

Setup. A finite set Σ is called an alphabet (consists of a finite set of letters).

Σ∗ is the free monoid on the letters in Σ. Empty word ∅ is the unit element.
Example: a two-letter alphabet Σ = {a, b}. Words aaa, ababbb, bbaaab, etc. are in Σ∗.
Example of a regular language: L = (a+ b)∗b(a+ b). Here a+ b means either a or b.
Star means any number of times (perhaps none). This regular language L consists of
words where 2nd from the last letter is b.
Another example: L = b2(aa∗ + b2)∗. Language of words that start with b and even
number of b’s appears in each batch between a’s. For example b2a3b4ab2a2b6a ∈ L.
Last example: Language L = {anbn}n­0 is not regular (need to remember n when
half-way across the word).
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Finite State Automata (FSA).

FSA (Finite State Automaton): words in Σ are inputs; consists of finitely many states
Q and transitions between the states given by a function δ : Σ× Q → Q according to
the letters read. Has initial (starting) state qin and terminating (accepting) states Qt .
Example:

y + z

yx z

y + z

a

b

b
a

a

b

a
b

Language L = (a+ b)∗b(a+ b) from earlier.
Second from last letter is b. Four states.
Initial state given by the empty word qin = x .
Accepting states Qt = {z , y + z}.
The states z and y + z are reached by
words (a+ b)∗ba and (a+ b)∗bb, respectively.
Notation y + z comes from relation to B-modules.

Mee Seong Im (USNA) NYU Abu Dhabi 17 / 55



Nondeterministic finite state automata.

Regular language (equivalent definition): one recognized by an FSA.

The above are called deterministic FSA since for each letter a ∈ Σ and each state
q ∈ Q there is at most one arrow labelled a out of q. So from each state, there is at
most one path ω for each word ω = a1 · · · an.
A nondeterministic FSA Q̃ has a transition function Σ× Q −→ P(Q). To state q and
letter a, there is associated a subset of Q – all states to which one can go from q if the
letter a is next in the word ω.

For convenience, we also allow more than one initial state in an NFA (nondeterministic
FA). A word ω is in the language L associated to automaton Q̃ if there exists a path ω
in the automaton that starts in some initial state and ends in some accepting state.

Nondeterministic FA are more efficient than deterministic FA but describe the same set
of regular languages. In a NFA you need to make an effort to decide whether ω ∈ L, in
contrast with a DFA where the initial state is unique and a path ω is unique (or does
not exist).
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Nondeterministic FA examples.

Examples of minimal nondeterministic automata on 3 states that accept our language
L = (a+ b)∗b(a+ b), with the difference in transition functions shown in red.

x y z

a

b

b

a, b

a

b

yx z

a, b

b a, b

b

a

b b

Minimal DFA for a regular language L is unique. Minimal NFA for L are not unique, in
general. In the above examples, Qin consists of a single state, but multiple initial states
are allowed in NFA.
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Let us interpret automata and regular languages via Boolean-valued TQFTs in
one-dimension with inner endpoints and defects:

(A) A word can be viewed as an interval with dots (defects) labelled by letters in Σ.
Reading a sequence of defect labels along an oriented interval gives a word.

a1 a2 a3 · · · an

ω = a1a2 · · · an

Fix a nondeterministic FA Q̃. It recognizes a regular language L.

We want to evaluate a word ω (an interval with a word ω written on it) to 1 if it is in
the regular language L and to 0 if it is not in L. Here 0, 1 ∈ B, the Boolean semiring.
B = {0, 1|1+ 1 = 1}. No subtraction available.
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Take an automaton Q̃ and form BQ, the free Boolean semimodule with a basis Q of
states. Elements of BQ are Boolean linear combinations, that is, finite subsets of Q.
Sum q1 + . . .+ qm corresponds to the subset {q1, . . . , qm} ⊂ Q. Note that Q is a
finite set.

To a letter a ∈ Σ assign a map of semimodules BQ a−→ BQ taking q to the sum of
states to which there is a-arrow from q:

a

+

+

a(q) =
∑

q
a−→q′

q′.

This is the map we assign to

an upward-oriented vertical interval

with a defect labelled a ∈ Σ.
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Example.

For one of our minimal NFA for L = (a+ b)∗b(a+ b), Boolean-valued matrices of a, b
in the basis {x , y , z} of states are

x y z

a

b

b

a, b

a

b

a =

1 0 10 0 0
0 1 0


x y z

x

y
z

x y z
x

y
z

b =

0 0 01 1 1
0 1 0

.
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Cup and cap maps in the TQFT for Q̃.

To a − endpoint, associate the dual free B-module BQ∗. There is a perfect pairing

BQ∗ × BQ −→ B, q∗1(q2) = δq1,q2

and the coevaluation map

B −→ BQ ⊗ BQ∗, 1 7−→
∑
q∈Q

q ⊗ q∗.

These maps are represented by the cup and cap diagrams in our Boolean TQFT for the
automaton Q̃. Isotopy relations hold.

− +

+ −
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Dotted down arrows and half-intervals.
To a downward arrow labelled a ∈ Σ associate the dual map BQ∗ a∗−→ BQ∗ given by
the transposed matrix of a. Isotopy relations on dots hold.

a

−

−

BQ∗

BQ∗
a∗

+ −

a =

+ −

a

To half-intervals, assign elements qin =
∑
q∈Qin

q ∈ BQ and q∗t =
∑
q∈Qt

q∗ ∈ BQ∗, the sum

of initial states and the sum of delta functions over accepting states.

+

1

7→

qin =
∑
q∈Qin

q ∈ BQ

+

B

BQ q

7→

q∗t (q)
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Summary.

An automaton Q̃ gives a Boolean-valued TQFT that to a + point assigns the free
B-module BQ. A floating interval I (ω) with a word ω on it evaluates to 1 iff ω ∈ L,
the language recognized by the automaton. Otherwise it evaluates to 0.

a1 a2 · · · an

ω = a1a2 · · · an

1 if ω ∈ L
b3

b2

b1

· · ·

...

bm

trBQ(ω)

A circle with a circular word ω = b1b2 · · · bm on it evaluates to 1 iff for some state q
there is a path ω that starts and ends at q. This can be written as trBQ(ω) = 1.

Get a circular language L◦ = {ω|trBQ(ω) = 1}. A language L is circular iff
ω1ω2 ∈ L⇔ ω2ω1 ∈ L. Necessarily, L◦ associated to Q̃ is regular.
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Theorem (P.Gustafson, M.S.Im, R.Kaldawy, M.Khovanov, Z.Lihn, arXiv:2301.00700)

A nondeterministic automaton Q̃ on alphabet Σ defines a Boolean one-dimensional
TQFT

F
Q̃

: CΣ −→ B−mod

with Σ-defects and inner endpoints. Regular language L recognized by Q̃ corresponds
to floating intervals I (ω) that evaluate to 1. Circular language L◦ (the trace language
of Q̃) describes words placed on circles that F

Q̃
evaluates to 1.

In particular, to Q̃ there is assigned a pair of languages (L, L◦), with the 2nd language
circular.

Furthermore, there is a bijection between nondeterministic automata Q̃ as above and
Boolean one-dimensional TQFTs F for CΣ such that F(+) is a free B-module. States
of an automaton are elements of the unique basis of F(+).
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Boolean TQFTs: prospects.

TQFTs over a field have seen a phenomenal development over the past several
decades, since the pioneering work of Witten, Atiyah, Donaldson, Floer, Jones,
Reshetikhin–Turaev, Turaev–Viro and many others in late 80s and early 90s.
Mathematical structure of these TQFTs is remarkably rich in dimensions 3, 4 and
higher, with TQFTs in dimension two described by commutative Frobenius algebras.

Boolean TQFTs are a novelty. Our joint paper [1] shows that already in the toy
dimension one and allowing defects on one-manifolds Boolean TQFTs interpret
canonical structures in computer science: regular languages and nondeterministic finite
state automata.

Nothing is known about Boolean TQFTs in dimensions two and higher. They are worth
investigating for possible connections to higher-dimensional and cellular automata,
polycategory theory and topoi (boolean semimodules and semilattices relate to topoi).

[1] Paul Gustafson, Mee Seong Im, Remy Kaldawy, Mikhail Khovanov, Zachary Lihn,
Automata and one-dimensional TQFTs with defects, arXiv:2301.00700.
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Evaluations on floating 1-manifolds.

A pair of regular languages (LI , L◦), with the second language circular, does not always
come from a Boolean TQFT. However, it does come from a Boolean topological
theory, which is a weak (lax) form of a TQFT.

Assume that a Boolean-valued evaluation α is given, determined by the pair of
languages (LI, L◦) as above. The evaluation α is defined on floating (closed) diagrams,
which are floating intervals and circles with defects.

A floating interval with defects a1 · · · an evaluates to αI(a1 · · · an) ∈ B. Evaluation αI is
determined by the language LI, with ω ∈ LI ⇔ αI(ω) = 1.
A circle with defects b1 · · · bm evaluates to α◦(b1 · · · bm) ∈ B. Evaluation α◦ is
determined by the language L◦, with ω ∈ L◦ ⇔ α◦(ω) = 1.
⇒ αI, α◦ are functions from words (resp. circular words) to B.
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Evaluations on floating 1-manifolds.

Σ∗ is the monoid of all words in the alphabet Σ. Then

αI : Σ
∗ −→ B, α◦ : Σ∗/∼ −→ B

are the two functions above, where ∼ is the equivalence relation on words:
ω1ω2 ∼ ω2ω1 for words ω1, ω2. They are determined by languages LI and L◦,
respectively, and tell us how to evaluate decorated intervals and circles to elements of
B (defects labelled by letters in Σ).

a1 a2 a3 · · · an

ω = a1a2 · · · an

bn

b1
b2

· · ·

...

b3
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Universal construction over C vs over Boolean semiring B.

Given such a pair α = (αI, α◦), we will build a generalized 1D topological theory (this
is weaker than a TQFT).

First, extend evaluation α to unions of decorated circles and floating intervals via
multiplicativity condition.

In a universal construction of topological theories, one starts with a multiplicative
evaluation of closed objects (such as closed d-manifolds) and builds a vector space for
each (d − 1)-manifold N via a linear combination of d-manifolds M with boundary N,
∂M ∼= N. A linear combination

∑
i

λiMi = 0 with each ∂Mi
∼= N if for any M with

∂M ∼= N, the evaluation ∑
i

λiα(M ∪N Mi ) = 0.

Add defects to manifolds ⇒ one-dimensional (d = 1) case becomes nontrivial.
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Our Boolean case:

α : closed 1-dimensional manifolds −→ B which satisfies

α(M1 ⊔M2) = α(M1)α(M2),

α(∅1) = 1 since m is multiplicative,

α(M1) = α(M2) if M1 ∼= M2.

View interval as a “closed” 1-manifold. α = (αI, α◦) is determined by its values αI(ω)
on decorated floating intervals and values α◦(ω) on decorated circles:

αI(ω) = 1⇔ ω ∈ LI and α◦(ω) = 1⇔ ω ∈ L◦.

Universal construction starts with a (multiplicative) evaluation of closed n-dimensional
objects and produces state spaces for (n − 1)-dimensional objects and maps for
n-cobordisms between these objects.

For us, n = 1. We now use universal construction to define state spaces of oriented
0-dimensional manifolds (sign sequences ε = (−−−+), for example).
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Sign sequence: ε = (−−−+). Sign sequences are objects of our category CΣ of 1-dim
cobordisms with 0-dim defects in Σ.

From α, one can define state spaces A(ε) for 0-dimensional objects ε, by starting with
a free B-semimodule Fr(ε) with a basis {[M]}∂M∼=ε given by formal symbols [M] of all
1-dimensional objects M which have ε as outer boundary (with a fixed diffeomorphism
∂M ∼= ε).

A state in the state space A(ε):

outer boundary

inner
boundary

− − − +

a

b

a

b
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On Fr(ε), introduce a bilinear pairing ( , )ε given on basis elements [M1], [M2] with
∂M1 ∼= ε ∼= ∂M2 by coupling M1,M2 along the boundary and evaluating the resulting
closed object M1 ∪ε M2 via α:

([M1], [M2])ε := α(M1 ∪ε M2).

− − − +

a

b

a
b ,

− − − +
a

a

ε

= α

a

b

a
b

a

a

Note that A(+) ∼= A(−)∗ = Hom(A(−),B) via ω 7→ (ω′ 7→ α(ω′ω)) ∈ B.
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Now define the state space A(ε) as the quotient of Fr(ε) by an equivalence relation,

A(ε) := Fr(ε)/ ∼,

where
∑
i

[Mi ] ∼
∑
j

[M ′j ] if for any M with ∂M = ε,

∑
i

α(Mi ∪ε M) =
∑
j

α(M ′j ∪ε M) ∈ B = {0, 1 : 1+ 1 = 1}.

State space A(ε) is spanned by B-linear combinations of 1-manifolds M with ∂M ∼= ε,
modulo relations: two linear combinations are equal if for any way to close them up
and evaluate using α, the result is the same.

One of the relations for the language LI = (a+ b)∗b(a+ b):

[
−

] ∼
−

[ an] ⇔ α
ω′

= α
ω′

an
for any ω′ ∈ Σ∗.
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If ω′ = ba, then

α

a
b

= α

a
b

an
= 1

If ω′ = ab, then

α

b
a

= α

b
a

an
= 0

State spaces A(−),A(+) depend only on the interval language LI, not on the circular
language L◦ (spaces A(+−), etc. depend on both).
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An evaluation table of the language L = (a+ b)∗b(a+ b) to compute the bilinear form
on our spanning sets for A(+) and A(−) with values in B. The matrix is not symmetric.

a b a
a

a
b

b
a

b
b

a

b

a
a

a
b

b
a

b
b

spanning
elmt

spanning
elmt

0 0 0 1 0 1x ′

1 0 0 1 1y ′

0 0 1 1y ′

0 0 00

0 00

1 1z ′

z ′

0

0

0

0

0

1

1

x

0

0

0

0

0

1

1

x

1

0

0

1

1

y

0

0

1

1

x

0

1

1

z

1

y

1

y + z
Defining relations:

x + y = y

x + z = z

A(−) = Bx ⊕ By ⊕ Bz
⟨x + y = y , x + z = z⟩

Consists of 5 elements:
{0, x , y , z , y + z},
with x , y , z irreducible.
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State space of A(+−) is spanned by:

+ − ,
ω

.+ −
ω1 ω2

A 1-manifold M with ∂M = ε′ ⊔ −ε induces a map A(ε) −→ A(ε′) by concatenation.

Get a functor from category of Σ-decorated oriented 1-dim cobordisms to
B-semimodules. No subtraction in B-semimodules; can add only.

A B-semimodule V is a commutative idempotented monoid under addition:
x + x = x for x ∈ V since 1+ 1 = 1. Also 0+ x = x ,

x + y = y + x , (x + y) + z = x + (y + z).
Such V correspond to sup-semilattices, with join (least upper bound) x ∨ y := x + y ,
and x ¬ y iff x + y = y .

0 is the minimal element, i.e., 0 ¬ x for any x .

Any finite sup-semilattice is a finite lattice, with meet x ∧ y :=
∑

z¬x ,y
z and 1 =

∑
z∈V

z .
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We mostly use B-semimodule structure (join, not meet).

B-semimodules ⇔ comm. idemp. monoids ⇔ sup-semilattices (with 0)

finite (sup)-semilattices ⇔ finite lattices

B-semimodules constitute a category; morphisms are semimodule homomorphisms
f : V −→W , f (0) = 0, f (x + y) = f (x) + f (y).

Hom(V ,W ) is a B-semimodule (category B−mod has internal homs). But B−mod is
not a rigid category (cannot “bend” objects and morphisms).

Subcategory of finite projective B-semimodules (finite distributive (semi)lattices) is
rigid.

Categories of cobordisms in the universal construction that we build from evaluations
are rigid.
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Any cobordism C between ε, ε′ induces a semimodule homomorphism A(ε)→ A(ε′) of
concatenation with C :

− − + + − + +

− − + − + +

a
c

b

c
a

a
a

b

c

a

b

c

b

a

A cobordism from (−−+−++) to (−−++−++).
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A cobordism from ε to ε′ can be viewed as an element in the state space A(ε′ ⊔ −ε),
i.e., a cobordism C : ε = (+−)→ ε′ = (+−+) corresponds to a state in the state
space A(+−++−):

+ − +

a

b

b

c

+ −

⇔

+ − + + −

a b
b c
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Recall the language L = (a+ b)∗b(a+ b). The module A(−) is spanned by x , y , z , and
has relations x + y = y and x + z = z . This module is not free. We’ll encounter its
free cover later in the construction of minimal NFA (nondeterministic FA) for L.

The semimodule consists of 5 elements: {0, x , y , z , y + z}. The lattice corresponding to
this language is:

x

0

y z

y + z

The finite topological space associated to this example:

xy z

Lattices that come from finite topological spaces are distributive.
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If a lattice contains either as a sublattice,

xi ∩ xj = xi ∩ xk = xj ∩ xk

xi xj xk

xi + xj = xi + xk = xj + xk

xi ∩ xj + xj = xj

xi ∩ xj < xi , xj , xk

xk

xj

xi

xi + xj = xi + xk for j < k

xj + xk = xj for j < k

xi ∩ xk < xi , xk

xi , xj < xi + xj

then the lattice is not distributive.

In such a case, there is no finite topological space associated to the language.

Mee Seong Im (USNA) NYU Abu Dhabi 42 / 55



Example: for the language LI = {a, a2}, lattices A(−),A(+) are not distributive.

3 = 0

− −
1

−
2

1 0 0

1 1 0

0 1 1

+ +
1

+
2

x0

x1

x2

−
−
1

−
2

x1 + x2 = x1

x0 + x1 = x0 + x2

0

x2

x0

x1

x0 + x1 = x0 + x2

N5
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For the language LI = {a, a2}, how should we draw the finite topological space
associated to LI?

x2

x1
x0

But x0 ̸= x0 + x1. So the open set containing x0 cannot be the entire space.

x2

x1

x0

But since x0 ̸= x0 + x2, this finite topological space does not correspond to LI as well.
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Theorem. Languages LI, L◦ are regular ⇔ the state space A(ε) is a finite
B-semimodule for all sequences ε.

Get a B-valued topological theory with finite hom spaces for any such pair of
languages.

To recover minimal automaton for LI, consider the state space A(−). It consists of
B-linear combinations of diagrams below on the left, modulo equivalence relations
coming from the pairing

A(−)× A(+) −→ B.

⟨ω| :=

−

ω |ω′⟨ :=

+

ω′ (⟨ω|, |ω′⟨) = α ω ω′

= α
ωω′

= αI(ωω
′)
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How do we build the minimal deterministic FSA and nondeterministic FSA for LI from
A(−)?

Free monoid Σ∗ generated by Σ (monoid of words) acts on A(−), by composing with
dots at the end of the strand.

State space A(−) contains the subset Q− = {⟨ω|} of pure states. Q− is then the set
of states of the minimal deterministic FSA for LI. Action of Σ comes from restriction
of its action on A(−) (action by concatenation with dots at the top).

Initial state qin = ⟨∅|. A state ⟨ω| is accepting iff αI(ω) = 1. Nondeterministic FSA for
LI come from coverings of A(−) by free B-modules with lifted action of Σ and unit,
trace α maps.
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m̃a BJ free semimodule cover; minimal NFA for LI, where
J = irr(A(−)) (irreducible if x ̸= y + z , where y ̸= x , z ̸= x)

A(−)ma state space of 0-manifold −

Q−ma minimal DFA for LI

−

ω

Every word gives a diagram in A(−).

Start with a state

−
ω and take images of all ω ∈ A(−) under the action by Σ∗, i.e.,

−
ω = ω = ⟨ω| ∈ A(−) 7→

ω

a
= ωa ∈ A(−) 7→

{
1 if ωa ∈ LI,

0 if ωa ̸∈ LI.

qin =

−
= ⟨∅| a17→ ⟨a1|

a27→ ⟨a1a2| 7→ . . .
an7→ ⟨a1a2 · · · an| =

−
an...a1
7→
{
1 if a1 · · · an ∈ LI,

0 if a1 · · · an ̸∈ LI.
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In general, there could be more than 1 minimal NFA.

Two minimal nondeterministic automata on 3 states that accept the language
L = (a+ b)∗b(a+ b).

The second automaton has an additional b arrow from y to x and an additional b loop
at x .

x y z

a

b

b

a, b

a

b

yx z

a, b

b a, b

b

a

b b

Multiple minimal NFA for L appear due to several ways of lifting action of Σ∗ from
A(−) to BJ .
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Some regular languages allow decomposition of identity

α
ω

υ
=

m∑
i=1

α
ω

ui
α

vi

υ

for some set of pairs of words (ui , vi ), 1 ¬ i ¬ m.

That is, for any ω, υ ∈ Σ∗,

αI (ωυ) =
m∑
i=1

αI (ωui ) αI (viυ).
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Returning to our example L = (a+ b)∗b(a+ b),

+ −

=

+ −
a
b +

+ −

b b +

+ −
b
a

So

+ −
ω υ

=

ω υ
+ −

a
b

+

ω υ
+ −

b b
+

ω υ
+ −

b
a

αI(ωυ) = αI(ω) αI(baυ) + αI(ωb) αI(bυ) + αI(ωba) αI(υ).
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For LI with a decomposition of the identity, there is a unique associated circular
language such that the decomposition still holds:

+ −

id
:=

m∑
i=1

ui vi ,

+ −

α◦ ω := αI
id

ω

=
m∑
i=1

αI
ui

ω

vi
=

m∑
i=1
αI(viωui ).
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This gives a B-valued TQFT: A(ε) is the tensor product of A(+),A(−) for the
sequence of signs in ε.

For example, A(+ +−) ∼= A(+)⊗ A(+)⊗ A(−).

This is a TQFT for oriented 1-manifolds with 0-dimensional Σ-labelled defects, valued
in the Boolean semiring B.

Proposition. A regular language L has a decomposition of the identity if and only if
A(−) is a projective B-semimodule (equivalently, a distributive lattice).

A finite semimodule P is projective if it is a retract of a free semimodule:

P
ι−→ Bn p−→ P, pι = idP .

Note that ι ◦ p is an idempotent.

Such semimodules correspond to finite topological spaces X , with elements of the
semimodule given by open subsets U ⊂ X and U + V := U ∪ V .
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Summary.

A pair α = (αI, α◦) gives rise to a Boolean topological theory (state spaces are finite)
iff αI, α◦ are regular languages.

Such a theory is a weakly (=lax) monoidal functor from the category of oriented 1D
cobordisms with Σ-defects to the category of finite (semi-)modules over B.

State spaces A(−), A(+) ∼= A(−)∗ are determined by the interval language αI only.

If A(−) is a projective B-semimodule (comes from a finite topological space X ), there
is a unique circular language α◦ making the pair of languages (αI, α◦) into a Boolean
1D TQFT with defects (maps A(ε)⊗ A(ε′) −→ A(εε′) are isomorphisms of state
spaces). Language α◦ is given by traces of action of ω ∈ Σ∗ on A(−).
1D Σ-defect TQFTs are more general than automata. Boolean combinations of states
are replaced by open sets in X , and a letter a ∈ Σ takes open sets to open sets
respecting unions of sets.
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Work in progress.

1. Distributivity of A(−) is a subtle property of a regular language αI, even for
Σ = {a} (single letter). Study distributivity of regular languages (joint with
R. Kaldawy, M. Khovanov, Z. Lihn).

2. Allow defects to accumulate towards inner endpoints. Evaluation of infinite
words. Resulting topological theories relate to sofic systems and symbolic
dynamics (joint with M. Khovanov, P. Gustafson).

3. Automata with boundary. Boolean evaluations beyond automata.

4. Interpretation of pseudocharacters (character-like functions on groups, useful in
number theory) via 1D topological theories with defects (joint with M.Khovanov,
V. Ostrik; on the arXiv:2303.02696).

5. Boolean two-dimensional topological theories and TQFTs. Ultimately hope to
study these topological theories in dimension three as well.
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Thank you!
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