String-net methods for CFT correlators

Christoph Schweigert

Mathematics Department Hamburg University

Based on work with Jürgen Fuchs and Yang Yang

March 18, 2023

Overview

- Introduction
 - Modular functors and chiral 2-dimensional CFT
 - Consistent systems of CFT correlators and full CFT
- ② Graphical calculus for pivotal bicategories
 - Bicategories
 - ullet Graphical calculus for a pivotal bicategory ${\cal B}$
 - Frobenius monoidal functors
 - Covariance of the graphical calculus
- 3 String-net models for pivotal bicategories
 - String-net models as colimits
 - Cylinder categories
 - Modular functors
- Correlators and universal correlators
 - Correlators
 - Universal correlators, quantum world sheets
 - Summary and outlook

Chapter 1

Introduction: two-dimensional conformal field theory

Two-dimensional conformal field theories

- ullet Infinite-dimensional algebra of local symmetries: vertex algebra ${\mathcal V}$
- Representation category
- Chiral conformal field theory: conformal blocks:
 - Defined on complex curves
 - Solutions of chiral Ward identities
 - Multivalued functions of position of field insertions and complex structure: monodromies
 - Factorization

Two-dimensional conformal field theories

- ullet Infinite-dimensional algebra of local symmetries: vertex algebra ${\cal V}$
- Representation category
- Chiral conformal field theory: conformal blocks:
 - Defined on complex curves
 - Solutions of chiral Ward identities
 - Multivalued functions of position of field insertions and complex structure: monodromies
 - Factorization
- Full local conformal field theory: consistent systems of correlators
 - Defined for conformal surfaces with boundaries and line defects
 - Specify field content
 - Find correlators: specific conformal blocks that are single valued and obey sewing constraints

Chiral CFT:

Introduction 00000

> $\mathcal{C} := \operatorname{Rep}(\mathcal{V})$ Vertex algebra ${\mathcal V}$

00000

Chiral CFT:

Introduction

Vertex algebra $\mathcal{V} \longrightarrow$ $\mathcal{C} := \operatorname{Rep}(\mathcal{V})$

Rational CFT:

 \mathcal{C} is a modular fusion category:

- k-linear semisimple abelian category
- monoidal category
- rigid duals
- braiding, non-degenerate

Chiral CFT:

$$\mathsf{Vertex} \ \mathsf{algebra} \ \mathcal{V} \qquad \longrightarrow \qquad \mathcal{C} := \mathrm{Rep}(\mathcal{V})$$

Rational CFT:

 ${\mathcal C}$ is a modular fusion category:

Encode monodromies of conformal blocks:

Open closed modular functor (examples will be constructed in this talk)

Chiral CFT:

 $\mathsf{Vertex} \; \mathsf{algebra} \; \mathcal{V} \qquad \longrightarrow \qquad \mathcal{C} := \mathrm{Rep}(\mathcal{V})$

Rational CFT:

C is a modular fusion category:

Encode monodromies of conformal blocks:

Open closed modular functor (examples will be constructed in this talk)

$$Bl_e(Z): Bl_e(I) \times Bl_e(I) \longrightarrow Bl_e(S')$$

Full CFT: worldsheet ${\cal S}$ with topological defects

Introduction

Example: world sheet with one sewing interval and two sewing circles:

Fix modular tensor category $\mathcal{C}.$ Decoration data:

- Special symmetric Frobenius algebras in C (here two phases, indicated in blue and green)
- Line defects: bimodules
- Point defects: bimodule morphisms

Full CFT: field objects and correlators

A world sheet S with one sewing interval and two sewing circles:

Expected field objects

Interval:

$$\mathrm{Bl}_{\mathcal{C}}(I) = \mathcal{C}$$

Boundary field: $\mathbb{F}(b_1) := \underline{\operatorname{Hom}}(M_2, X_1 \otimes_A M_1)$

• Circle:

$$\mathrm{Bl}_{\mathcal{C}}(S^1) = \mathcal{Z}(\mathcal{C})$$

Bulk field for lower circle: $\mathbb{F}(b_3) := \underline{\operatorname{Nat}}(G^{X_2}, G^{X_3})$ with $G^X := X \otimes_A -$.

Full CFT: field objects and correlators

A world sheet ${\cal S}$ with one sewing interval and two sewing circles:

Correlator for S:

$$\operatorname{Cor}(\mathcal{S}) \in \operatorname{Bl}_{\mathcal{C}}(\mathcal{S}) := \operatorname{Bl}_{\mathcal{C}}(\Sigma_{\mathcal{S}}; \mathbb{F}(b_1), \mathbb{F}(b_2) \times \mathbb{F}(b_3))$$

with $\Sigma_{\mathcal{S}}$ the underlying surface

Conditions on these elements:

- Compatible with sewing
- Invariant under action of mapping class group

$$\mathrm{MCG}(\mathcal{S}) \subset \mathrm{MCG}(\Sigma_{\mathcal{S}})$$

Chapter 2

Graphical calculus for pivotal bicategories

Input for construction of modular functor:

"String net modular functor is a globalized version of graphical calculus"

Definition

A bicategory \mathcal{B} is a category weakly enriched in Cat:

- $a, b, c \in Ob(\mathcal{B})$
- for all pairs a, b a hom-category $\mathcal{B}(a, b) = \operatorname{Hom}_{\mathcal{B}}(a, b)$.
 - ullet Objects: 1-morphisms, morphisms: 2-morphisms of ${\cal B}$
 - k-linear in this talk.
 - horizontal composition, units

Bicategory

Definition

A bicategory \mathcal{B} is a category weakly enriched in Cat:

- $a, b, c \in \mathrm{Ob}(\mathcal{B})$
- for all pairs a, b a hom-category $\mathcal{B}(a, b) = \operatorname{Hom}_{\mathcal{B}}(a, b)$.
 - ullet Objects: 1-morphisms, morphisms: 2-morphisms of ${\cal B}$
 - k-linear in this talk.
 - horizontal composition, units

String diagram

Pasting diagram

Adjoints in bicategories, pivotal bicategories

Two 1-morphisms $f \in \mathcal{B}(a,b)$ and $g \in \mathcal{B}(b,a)$, together with counit and unit

Adjoints in bicategories, pivotal bicategories

Two 1-morphisms $f \in \mathcal{B}(a,b)$ and $g \in \mathcal{B}(b,a)$, together with counit and unit

$$\eta: 1_a \to g \cdot f \quad \text{ and } \quad \epsilon: g \cdot f \to 1_b$$

$$\epsilon: \mathbf{g} \cdot \mathbf{f} \to 1$$

satisfying zig-zag relations:

are said to be adjoints:

$$f \dashv g \Leftrightarrow f = {}^{\lor}g \Leftrightarrow g = f^{\lor}$$

and

Adjoints in bicategories, pivotal bicategories

Two 1-morphisms $f \in \mathcal{B}(a,b)$ and $g \in \mathcal{B}(b,a)$, together with counit and unit

Definition

- **3** A pivotal structure on a bicategory \mathcal{B} with fixed left and right duals is an identity component pseudonatural transformation $\mathrm{id}_{\mathcal{B}} \to (-)^{\vee\vee}$.
- **3** A strictly pivotal bicategory is a pivotal bicategory for which the double dual is the identity, $id_{\mathcal{B}} = (-)^{\vee\vee}$.

Consequence:

Examples, graphical calculus

Examples

A pivotal tensor category $\mathcal C$ leads to two pivotal bicategories:

- **1** Delooping BC: single object * with $\operatorname{End}_{BC}(*) = C$.
- \circ $\mathcal{F}r_{\mathcal{C}}$: objects are simple special symmetric Frobenius algebras A, B, C, \ldots Morphism categories $\mathcal{F}r_{\mathcal{C}}(A,B) = A$ -mod-B (bimodules)

Examples, graphical calculus

Examples

A pivotal tensor category ${\mathcal C}$ leads to two pivotal bicategories:

- **①** Delooping BC: single object * with $\operatorname{End}_{BC}(*) = C$.
- **②** $\mathcal{F}r_{\mathcal{C}}$: objects are simple special symmetric Frobenius algebras A, B, C, \ldots Morphism categories $\mathcal{F}r_{\mathcal{C}}(A, B) = A$ -mod-B (bimodules)

Remark

Graphical calculus

bicategory

2-framed, progressive

pivotal bicategory

drop progressive, drop 2-framed

Examples, graphical calculus

Examples

A pivotal tensor category $\mathcal C$ leads to two pivotal bicategories:

- **①** Delooping BC: single object * with $\operatorname{End}_{BC}(*) = C$.
- **②** $\mathcal{F}r_{\mathcal{C}}$: objects are simple special symmetric Frobenius algebras A, B, C, \ldots Morphism categories $\mathcal{F}r_{\mathcal{C}}(A, B) = A$ -mod-B (bimodules)

Remark

Graphical calculus

bicategory

2-framed, progressive

pivotal bicategory

oriented

Formalization of graphical calculus for a pivotal bicategory

Formulate graphical calculus as a symmetric monoidal functor

 $\operatorname{GCal}_{\mathcal{B}}: \operatorname{Corollas}_{\mathcal{B}}^{\sqcup} \longrightarrow \operatorname{vect}_{k}^{\otimes}$

Formalization of graphical calculus for a pivotal bicategory

Formulate graphical calculus as a symmetric monoidal functor

$$\operatorname{GCal}_{\mathcal{B}} : \operatorname{Corollas}_{\mathcal{B}}^{\sqcup} \longrightarrow \operatorname{vect}_{k}^{\otimes}$$

Monoidal category Corollas[⊥] of corollas:

• Objects:
$$\emptyset$$
, $K = \bigcup_{b=0}^{J} \bigcup_{c=0}^{J} \bigcup_{c=0}^$

Composition

Generation of corollas

Proposition Any non-trivial morphism in Corollas $_{\mathcal{B}}^{\sqcup}$ can be decomposed into a finite disjoint union of partial compositions of morphisms of the following types: (a) (b) (b) (c) (d) (d) (d) (d) (e) (f) (horizontal product (e) (f) (f) (f) (f) (horizontal product

Call $\operatorname{Corollas}_{\mathcal{B}}^{\operatorname{conn}}$ the subcategory of $\operatorname{Corollas}_{\mathcal{B}}$ with the same objects, but morphisms only generated by (a) and (b).

Set up the symmetric monoidal functor expressing graphical calculus:

$$\operatorname{GCal}_{\mathcal{B}} : \operatorname{Corollas}_{\mathcal{B}}^{\sqcup} \longrightarrow \operatorname{vect}_{k}^{\otimes}$$

Graphical calculus on objects

To the corolla $K = \begin{bmatrix} a & b \\ v & a \end{bmatrix}$

we associate a vector space H_{ν} as follows:

Any polarization

yields a space of morphisms

Pivotal structure allows to relate morphisms for different polarizations by unique isomorphism

Example:

Vector space H_{ν} assigned to corolla = the limit over this diagram of vector spaces.

Graphical calculus on morphisms

0000000000

To find the linear map for the morphism of corollas

pick polarizations and consider the morphism given by the evaluation of progressive diagram

Lax functor $F: \mathcal{B} \to \mathcal{B}'$ between bicategories $\mathcal{B}, \mathcal{B}'$:

- On objects $F: a \mapsto Fa$
- On Hom-categories $\mathcal{B}(a,b) \mapsto \mathcal{B}'(Fa,Fb)$ with natural transformations

$$1 \xrightarrow{\operatorname{id}_a} \mathcal{B}(a, a)$$

$$\downarrow_{F^{(0)}} \downarrow_{F}$$

$$\operatorname{id}_{Fa} \longrightarrow \mathcal{B}'(Fa, Fa)$$

Lax functor $F: \mathcal{B} \to \mathcal{B}'$ between bicategories $\mathcal{B}, \mathcal{B}'$:

- On objects $F: a \mapsto Fa$
- On Hom-categories $\mathcal{B}(a,b)\mapsto \mathcal{B}'(Fa,Fb)$ with natural transformations

Lax functor $F: \mathcal{B} \to \mathcal{B}'$ between bicategories $\mathcal{B}, \mathcal{B}'$:

- On objects $F: a \mapsto Fa$
- ullet On Hom-categories $\mathcal{B}(a,b)\mapsto \mathcal{B}'(Fa,Fb)$ with natural transformations

Lax functor $F: \mathcal{B} \to \mathcal{B}'$ between bicategories $\mathcal{B}, \mathcal{B}'$:

- On objects $F: a \mapsto Fa$
- On Hom-categories $\mathcal{B}(a,b)\mapsto \mathcal{B}'(Fa,Fb)$ with natural transformations

Similarly, oplax structure. For a natural transformation

$$\alpha: f_1 \star \ldots \star f_m \Rightarrow g_1 \star \ldots \star g_n$$

define F-conjugate:

$$\alpha^{F}: \quad Ff_{1}\star\cdots\star Ff_{m} \xrightarrow{F_{f_{1},\ldots,f_{m}}^{(m)}} F(f_{1}\star\cdots\star f_{m}) \xrightarrow{F\alpha} F(g_{1}\star\cdots\star g_{n}) \xrightarrow{F(n)} g_{1},\ldots,g_{n} Fg_{1}\star\cdots\star Fg_{n}$$

$$F(g_{1}\cdots g_{n})$$

$$F(g_{1}\cdots g_{n})$$

$$F(g_{1}\cdots g_{n})$$

in the sense that F-conjugation induces a monoidal natural transformation

which is given on a corolla K by

$$(-)_K^F: \quad \mathsf{GCal}_{\mathcal{B}}^{\mathrm{conn}}(K) \xrightarrow{-p_v^k} \widehat{h_v^{\mathcal{B}}}(k) \xrightarrow{(-)^F} \widehat{h_{v'}^{\mathcal{B}'}}(k) \xrightarrow{(p_{v'}^k)^{-1}} \mathsf{GCal}_{\mathcal{B}}^{\mathrm{conn}}(F_*K)$$

Optimal case:

• F is rigid, i.e. $F(f^{\vee}) = F(f)^{\vee}$ and F preserves the counits of duals:

$$\begin{array}{ccc}
& & & & & \\
F & & & f \\
F(f^{\vee}f) & & & & & \\
F(f^{\vee}) & Ff & & & & Ff & Ff
\end{array}$$

• And F is a pseudofunctor: $F^{(2)} = F_{(2)}^{-1}$ and $F^{(0)} = F_{(0)}^{-1}$.

Theorem

A rigid pseudofunctor preserves the graphical calculus.

Subptimal case:

- F is rigid
- F is Frobenius

$$F(fg) Fh$$

$$F(fgh)$$

• F is separable

$$Ff \bigoplus_{F(fq)} F(fg) = \bigcap_{F(fq)} F(fg)$$

Theorem

A rigid Frobenius functor preserves the connected graphical calculus:

operadic composition and partial trace preserved, but not whiskering and horizontal product.

Example of a rigid separable Frobenius functor

 ${\mathcal C}$ a pivotal tensor category: using separable special symmetric Frobenius algebras:

$$\mathcal{U}:\ \mathcal{F}r_{\mathcal{C}} \to B\mathcal{C}$$

$$\begin{array}{ccc}
A & & * \\
x \left(\xrightarrow{\alpha} \right) Y & & \stackrel{u}{\longmapsto} & x \left(\xrightarrow{\dot{\alpha}} \right) \dot{Y} \\
B & & *
\end{array}$$

Example of a rigid separable Frobenius functor

 ${\mathcal C}$ a pivotal tensor category: using separable special symmetric Frobenius algebras:

$$\mathcal{U}: \mathcal{F}r_{\mathcal{C}} \to \mathcal{BC}$$

Lax monoidal and opmonoidal constraint

$$\mathcal{U}_{X,Y}^{(2)}: X \otimes Y \longrightarrow X \otimes_B Y$$
 and $\mathcal{U}_{(2)X,Y}: X \otimes_B Y \longrightarrow X \otimes Y$

defined by splitting of the idempotent

$$Ff \bigoplus_{F(fg)}^{F(fg)} Fg = \bigvee_{F(fg)}^{F(fg)} F(fg)$$

$$\mathcal{U}_{(2)X,Y} \circ \mathcal{U}_{X,Y}^{(2)} = X \otimes_B Y = X \otimes_B Y$$

String-net models for pivotal bicategories

Will be applied to two different pivotal bicategories:

- $\mathcal{B} = B\mathcal{C}$, provides modular functor for conformal blocks
 - $\mathcal{B} = \mathcal{F}r_{\mathcal{C}}$ describes world sheets with defects

String-net models for pivotal bicategories

Σ oriented surface

boundary value b, e.g.

String-net models for pivotal bicategories

Σ oriented surface

boundary value b, e.g.

$$SN_{\mathcal{B}}^{\circ}(\Sigma, \mathsf{b}) := kG(\Sigma, \mathsf{b})/N(\Sigma, \mathsf{b}),$$

with $\mathbb{K}\mathrm{G}(\Sigma, b)$ the vector space freely generated by labelled surfaces with boundary condition b, e.g.

and $N(\Sigma, b)$ the subspace generated by local relations given by graphical calculus:

Set up evaluation functor

$$\mathcal{E}_{\mathcal{B}}^{\Sigma,b}: \quad \mathcal{G}\mathrm{raphs}_{\mathcal{B}}(\Sigma,b) \longrightarrow \mathrm{Vect}_{\Bbbk}$$

String-net spaces as colimits

Set up evaluation functor

$$\mathcal{E}_{\mathcal{B}}^{\Sigma,\mathsf{b}}: \quad \mathcal{G}\mathrm{raphs}_{\mathcal{B}}(\Sigma,\mathsf{b}) \longrightarrow \mathrm{Vect}_{\Bbbk}$$

- Objects of $\mathcal{G}raphs(\Sigma, b)$: partially colored surfaces:
 - patches \rightarrow objects of ${\cal B}$
 - ullet edges ightarrow 1-morphisms of ${\cal B}$
 - vertices are not colored
- Morphisms of $Graphs(\Sigma, b)$ are freely generated by e.g.

String-net spaces as colimits

Set up evaluation functor

Theorem

- The string net space is a colimit: $SN^{\circ}_{\mathcal{B}}(\Sigma, b) = colim \mathcal{E}^{\Sigma, b}_{\mathcal{B}}$
- **②** The mapping class group $MCG(\Sigma)$ acts on the string net space.
- 3 Sewing holds: we have a modular functor.

Remark:

Generalization to modular functors with values in $\mathrm{Ch}_\mathbb{K}$ via homotopy limits.

For any closed oriented 1-manifold ℓ , define a category $\operatorname{Cyl}^{\circ}(\mathcal{B},\ell)$.

For any closed oriented 1-manifold ℓ , define a category $\operatorname{Cyl}^{\circ}(\mathcal{B},\ell)$.

The bicategories BC and Fr_C are pointed:

Distinguished object $*_{\mathcal{B}} \in \mathcal{B}$: for $\mathcal{F}r_{\mathcal{C}}$ this is the Frobenius algebra $1 \in \mathcal{C}$.

For any closed oriented 1-manifold ℓ , define a category $\operatorname{Cyl}^{\circ}(\mathcal{B}, \ell)$.

The bicategories BC and Fr_C are pointed:

Distinguished object $*_{\mathcal{B}} \in \mathcal{B}$: for $\mathcal{F}r_{\mathcal{C}}$ this is the Frobenius algebra $1 \in \mathcal{C}$.

E.g. $\ell = I$: label 1-cells adjacent to boundary point by $*_{\mathcal{B}}$:

$$b = \stackrel{f}{\longrightarrow} \stackrel{g}{\longrightarrow} \stackrel{h}{\longleftarrow}$$

For any closed oriented 1-manifold ℓ , define a category $\operatorname{Cyl}^{\circ}(\mathcal{B}, \ell)$.

The bicategories BC and Fr_C are pointed:

Distinguished object $*_{\mathcal{B}} \in \mathcal{B}$: for $\mathcal{F}r_{\mathcal{C}}$ this is the Frobenius algebra $1 \in \mathcal{C}$.

E.g. $\ell = I$: label 1-cells adjacent to boundary point by $*_{\mathcal{B}}$:

$$b = \stackrel{f}{\longrightarrow} \stackrel{g}{\longrightarrow} \stackrel{h}{\longleftarrow}$$

Remark

 Functoriality under embedding of 1-manifolds: symmetric monoidal functor

$$\operatorname{Cyl}^{\circ}(\mathcal{B}, *_{\mathcal{B}}, -) : \operatorname{Emb}_{1}^{\operatorname{or}} \longrightarrow \operatorname{Cat}_{k}.$$

Induces on $\operatorname{Cyl}^{\circ}(\mathcal{B}, a, I)$ the monoidal structure of $\mathcal{B}(a, a)$.

 \mathcal{C} a pivotal fusion category. Karoubify:

$$\mathrm{Cyl}(\mathcal{C},I)\cong\mathcal{C}$$
 and $\mathrm{Cyl}(\mathcal{C},S^1)\cong\mathcal{Z}(\mathcal{C})$

Cylinder categories for pivotal fusion categories

 $\ensuremath{\mathcal{C}}$ a pivotal fusion category. Karoubify:

$$\mathrm{Cyl}(\mathcal{C},I)\cong\mathcal{C}$$
 and $\mathrm{Cyl}(\mathcal{C},S^1)\cong\mathcal{Z}(\mathcal{C})$

Geometric embedding induces left adjoint L of $U: \mathcal{Z}(\mathcal{C}) \to \mathcal{C}$:

$$\begin{array}{ccc} \operatorname{Cyl}(\mathcal{C},I) & \xrightarrow{I \hookrightarrow S^1} & \operatorname{Cyl}(\mathcal{C},S^1) \\ \cong & & & \downarrow \cong \\ \mathcal{C} & \xrightarrow{L} & \mathcal{Z}(\mathcal{C}) \end{array}$$

 \mathcal{C} a pivotal fusion category. Karoubify:

$$\mathrm{Cyl}(\mathcal{C},I)\cong\mathcal{C}$$
 and $\mathrm{Cyl}(\mathcal{C},S^1)\cong\mathcal{Z}(\mathcal{C})$

Geometric embedding induces left adjoint L of $U: \mathcal{Z}(\mathcal{C}) \to \mathcal{C}$:

$$\begin{array}{ccc} \operatorname{Cyl}(\mathcal{C},I) & \xrightarrow{I \hookrightarrow S^1} & \operatorname{Cyl}(\mathcal{C},S^1) \\ \cong & & & & & \cong \\ & & & & & & \cong \\ & \mathcal{C} & \xrightarrow{L} & & \mathcal{Z}(\mathcal{C}) \end{array}$$

String net space for surface Σ with karoubified boundary data: for idempotent $B: b \to b$ in $\mathrm{Cyl}(\mathcal{B}, *_{\mathcal{B}}, \Sigma)$, consider subspace

$$SN_{\mathcal{B}}(\Sigma, B) \subset SN^{0}(\Sigma, b)$$

invariant under glueing with B

Cylinder categories for pivotal fusion categories

 \mathcal{C} a pivotal fusion category. Karoubify:

$$\mathrm{Cyl}(\mathcal{C},I)\cong\mathcal{C}$$
 and $\mathrm{Cyl}(\mathcal{C},S^1)\cong\mathcal{Z}(\mathcal{C})$

Geometric embedding induces left adjoint L of $U: \mathcal{Z}(\mathcal{C}) \to \mathcal{C}$:

$$\begin{array}{ccc} \operatorname{Cyl}(\mathcal{C},I) & \xrightarrow{I \hookrightarrow S^1} & \operatorname{Cyl}(\mathcal{C},S^1) \\ \cong & & & & & \cong \\ & & & & & & \cong \\ & \mathcal{C} & \xrightarrow{L} & & \mathcal{Z}(\mathcal{C}) \end{array}$$

String net space for surface Σ with karoubified boundary data: for idempotent $B:b\to b$ in $\mathrm{Cyl}(\mathcal{B},*_{\mathcal{B}},\Sigma)$, consider subspace

$$SN_{\mathcal{B}}(\Sigma, B) \subset SN^{0}(\Sigma, b)$$

invariant under glueing with *B*This can be extended to a 3-2-1 TFT equivalent to the Turaev-Viro construction

Modular functor

One can prove factorization:

Theorem 3.23. Let $\Sigma: \alpha \sqcup \beta \to \beta \sqcup \gamma$ be a bordism, with $\alpha, \beta, \gamma \in \mathcal{B}ord_{2,o/c}^{or}$. Then the family

$$\left\{s^{\varSigma}_{-,\mathsf{b}_0,\sim}\colon \mathcal{S}\mathrm{N}^{\circ}_{\mathcal{B}}(\varSigma;-,\mathsf{b}_0,\mathsf{b}_0,\sim) \Longrightarrow \mathcal{S}\mathrm{N}^{\circ}_{\mathcal{B}}(\cup_{\beta}\varSigma;-,\sim)\right\}_{\mathsf{b}_0\in\mathrm{Cyl}^{\circ}(\mathcal{B},\star_{\mathcal{B}},\beta)} \tag{3.45}$$

of natural transformations whose members are given by the sewing of string nets, is dinatural and exhibits the functor $SN_B^{\circ}(\cup_{\beta}\Sigma;-,\sim)$ as the coend

$$\int^{\mathsf{b} \in \operatorname{Cyl}^{\circ}(\mathcal{B}, *_{\mathcal{B}}, \beta)} \mathcal{S} \operatorname{N}_{\mathcal{B}}^{\circ}(\Sigma; -, \mathsf{b}, \mathsf{b}, \sim) : \quad \operatorname{Cyl}^{\circ}(\mathcal{B}, *_{\mathcal{B}}, \alpha) \to \operatorname{Cyl}^{\circ}(\mathcal{B}, *_{\mathcal{B}}, \gamma) \,. \tag{3.46}$$

40

Modular functor

and obtains a modular functor with values in profunctors:

Theorem 3.27. Let $(\mathcal{B}, *_{\mathcal{B}})$ be a pointed strictly pivotal bicategory. Then the assignments

$$\alpha \mapsto \operatorname{Cyl}^{\circ}(\mathcal{B}, *_{\mathcal{B}}, \alpha) \quad and \quad \Sigma \mapsto \mathcal{S}N_{\mathcal{B}}^{\circ}(\Sigma; -, \sim)$$
 (3.67)

extend to an open-closed modular functor, i.e. a symmetric monoidal pseudofunctor

$$SN_B^{\circ}: \mathcal{B}ord_{2,o/c}^{or} \longrightarrow \mathcal{P}rof_k$$
 (3.68)

from the symmetric monoidal bicategory of open-closed bordisms to the symmetric monoidal bicategory of k-linear profunctors. Similarly, the Karoubified cylinder categories and string-net spaces give rise to another open-closed modular functor

$$SN_{\mathcal{B}}: \mathcal{B}ord_{2,o/c}^{or} \longrightarrow \mathcal{P}rof_{\mathbb{R}}.$$
 (3.69)

Chapter 4

Applications to RCFTs with defects: universal correlators

world sheet ${\cal S}$ with defects, decoration data in ${\cal F} r_{\cal C}$

worldsheet

Correlators, finally

worldsheet

complemented worldsheet

Correlators, finally

worldsheet

complemented worldsheet

 $\in \mathrm{SN}_{\mathcal{C}}(\Sigma_{\mathcal{S}}, \mathbb{F} b)$

Field content

General scheme:

$$\mathrm{Cyl}^{\circ}(\mathcal{F}r_{\mathcal{C}},\cdot) \xrightarrow{\ \mathbb{F} \ } \mathrm{Cyl}(\mathcal{C},\cdot) \xrightarrow{\ \cong \ } \mathcal{C} \text{ or } \mathcal{Z}(\mathcal{C})$$

Field content

General scheme:

$$\operatorname{Cyl}^{\circ}(\mathcal{F}r_{\mathcal{C}},\cdot) \xrightarrow{\mathbb{F}} \operatorname{Cyl}(\mathcal{C},\cdot) \xrightarrow{\cong} \mathcal{C} \text{ or } \mathcal{Z}(\mathcal{C})$$

(Generalized) boundary fields:

Field content

General scheme:

$$\operatorname{Cyl}^{\circ}(\mathcal{F}r_{\mathcal{C}},\cdot) \xrightarrow{\mathbb{F}} \operatorname{Cyl}(\mathcal{C},\cdot) \xrightarrow{\cong} \mathcal{C} \text{ or } \mathcal{Z}(\mathcal{C})$$

(Generalized) boundary fields:

$$\stackrel{\mathsf{F}}{\bigcirc} \qquad \stackrel{\mathsf{F}}{\longmapsto} \qquad \stackrel{\mathsf{F}}{\longmapsto} \qquad \stackrel{\mathsf{\Phi}_{\mathsf{S}^1}}{\longmapsto} \qquad \stackrel{\mathsf{D}^{\mathsf{x},\mathsf{Y}}}{\longmapsto} \qquad \stackrel{\mathsf{Nat}}{\longmapsto} \qquad \stackrel{\mathsf{G}^{\mathsf{x}}}{\bowtie} \qquad \stackrel{$$

For
$$A = B$$
 and $X = Y = A$, get $\mathbb{D}^{A,A} = \underline{\mathrm{Nat}}(\mathrm{id}_{\mathsf{mod}-A},\mathrm{id}_{\mathsf{mod}-A}) = Z(A)$

Quantum world sheet

worldsheet

Quantum world sheet

worldsheet

 $\in \ \operatorname{SN}^0_{\mathcal{F}r_{\mathcal{C}}}(\Sigma_{\mathcal{S}}, \mathbb{F}, b_{\mathcal{S}})$

quantum world sheet

worldsheet

$$\in \ \operatorname{SN}^0_{\mathcal{F}r_\mathcal{C}}(\Sigma_\mathcal{S},\mathbb{F},b_\mathcal{S})$$

quantum world sheet

$$\in \mathrm{SN}_\mathcal{C}(\Sigma_\mathcal{S}, \mathbb{F} b_\mathcal{S})$$

Universal correlators

Correlators factor through vector space of quantum world sheets:

$$\mathbb{C} \xrightarrow{\delta_{\mathcal{S}}} \mathrm{SN}_{\mathcal{F}rob(\mathcal{C})}(\Sigma)$$

$$\downarrow^{\mathrm{Cor}_{\mathcal{S}}}$$

$$\mathrm{SN}_{\mathcal{C}}(\Sigma)$$

Correlators can be obtained as pullback of universal correlator:

$$(\delta_{\mathcal{S}})^* \mathrm{UCor}_{\Sigma} = \mathrm{Cor}_{\mathcal{S}}$$

Universal correlators

Correlators factor through vector space of quantum world sheets:

$$\mathbb{C} \xrightarrow{\delta_{\mathcal{S}}} \operatorname{SN}_{\mathcal{F}rob(\mathcal{C})}(\Sigma)$$

$$\stackrel{\operatorname{Cor}_{\mathcal{S}}}{\bigvee} \bigvee_{\mathcal{L}} \operatorname{UCor}_{\Sigma}$$

$$\operatorname{SN}_{\mathcal{C}}(\Sigma)$$

Correlators can be obtained as pullback of universal correlator:

$$(\delta_{\mathcal{S}})^* \mathrm{UCor}_{\Sigma} = \mathrm{Cor}_{\mathcal{S}}$$

Remarks

- **1** Uses that $\mathcal{U}: \mathcal{F}r_{\mathcal{C}} \to \mathcal{BC}$ is a rigid separable Frobenius functor
- ② Frobenius networks in Cor_S compensate for the failure of preservation of horizontal products and whiskering under \mathcal{U} -conjugation.

Universal correlators

Correlators factor through vector space of quantum world sheets:

$$\mathbb{C} \xrightarrow{\delta_{\mathcal{S}}} \operatorname{SN}_{\mathcal{F}rob(\mathcal{C})}(\Sigma)$$

$$\downarrow^{\operatorname{Cor}_{\Sigma}}$$

$$\operatorname{SN}_{\mathcal{C}}(\Sigma)$$

Correlators can be obtained as pullback of universal correlator:

$$(\delta_{\mathcal{S}})^* \mathrm{UCor}_{\Sigma} = \mathrm{Cor}_{\mathcal{S}}$$

Remarks

- **①** Uses that $\mathcal{U}: \mathcal{F}r_{\mathcal{C}} \to \mathcal{BC}$ is a rigid separable Frobenius functor
- ② Frobenius networks in $\mathrm{Cor}_{\mathcal{S}}$ compensate for the failure of preservation of horizontal products and whiskering under \mathcal{U} -conjugation.

The conformal field theory cannot detect the complete world sheet geometry, only the image in the space of quantum world sheets. The latter is determined by defect data.

Mapping class groups of quantum world sheets

X is an invertible topological defect. Then the two worldsheets

have the same correlators and cannot be distinguished by the CFT. Is the Dehn twist in the mapping class group or not?

Mapping class groups of quantum world sheets

X is an invertible topological defect. Then the two worldsheets

have the same correlators and cannot be distinguished by the CFT.

Is the Dehn twist in the mapping class group or not?

 $\operatorname{Map}(\Sigma)$ acts on $\operatorname{SN}_{\mathcal{F}rob(\mathcal{C})}(\Sigma)$ and the appropriate mapping class group for the worldsheet \mathcal{S} with quantum world sheet $[\tilde{\mathcal{S}}] \in \operatorname{SN}_{\mathcal{F}r_{\mathcal{C}}}(\Sigma)$ is the stabilizer:

$$\widehat{\operatorname{Map}}(\mathcal{S}) := \operatorname{Stab}_{\operatorname{Map}(\Sigma)}([\tilde{\mathcal{S}}])$$

Mapping class groups of quantum world sheets

X is an invertible topological defect. Then the two worldsheets

have the same correlators and cannot be distinguished by the CFT.

Is the Dehn twist in the mapping class group or not?

 $\operatorname{Map}(\Sigma)$ acts on $\operatorname{SN}_{\mathcal{F}rob(\mathcal{C})}(\Sigma)$ and the appropriate mapping class group for the worldsheet \mathcal{S} with quantum world sheet $[\tilde{\mathcal{S}}] \in \operatorname{SN}_{\mathcal{F}r_{\mathcal{C}}}(\Sigma)$ is the stabilizer:

$$\widehat{\operatorname{Map}}(\mathcal{S}) := \operatorname{Stab}_{\operatorname{Map}(\Sigma)}([\tilde{\mathcal{S}}])$$

 $\widehat{\mathrm{Map}}(\mathcal{S}_1)$ contains Dehn twists while $\mathrm{Map}(\mathcal{S})$ does not. $\mathrm{Cor}_{\mathcal{S}_1} = \mathrm{Cor}_{\mathcal{S}_2}$ is invariant under $\widehat{\mathrm{Map}}(\mathcal{S}_1)$!

Schematic overview

Schematic overview

Remark

Upgrade to

- Symmetric monoidal double categories
- Symmetric monoidal double functors
- Monoidal vertical transformations

Summary and outlook

Summary

- String net constructions are a natural conceptual home for the construction of correlators
- Bicategorical string net construction capture symmetries of CFTs and the observable aspect of the world sheet.

Outlook

- Beyond semisimplicity
- Beyond rigidity (percolation)
- Construction is set up to go to homotopical versions (3dSYM/VOA correspondence)
- Higher dimensions?