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Abstract

The promising idea that strongly coupled quantum systems such as (confined QCD or) topologically ordered quantum
materials are usefully modeled as worldvolume dynamics on intersecting branes in string theory has been suffering from
the latter’s lack of non-perturbative formulation (M-theory), necessary in the realistic regime of small numbers of individual
branes (i.e. beyond the usual holographic large-N approximation). In this talk I will briefly review our “Hypothesis H” that
brane charge in M-theory is quantized in a twisted equivariant non-abelian generalized cohomology theory called Cohomo-
topy, where M-brane quantum states are identified inside the twisted equivariant cohomology of the Cohomotopy moduli
stack. Then I explain our recent derivation, from this assumption, of anyonic topological order in ground states of M5-brane
intersections; and I close with an outlook on how this describes topological quantum logic gates via braiding of defect branes.
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The open question of fundamental quantum physics. The main embarrassment of contemporary fundamental quantum
physics is not so much the lack of coherent quantum gravity theory as such, but the general lack of non-perturbative theory in
general, due to which mundane phenomena such as room-temperature matter (hadron bound states in confined QCD) or heav-
ily sought-after quantum materials – such as topologically ordered solid states needed for topological quantum computation
– remain theoretically ill-understood.

The role of string theory. While string theory is, after some twists and turns, the result of understanding such strongly
coupled quantum systems (notably QCD) as localized on branes in higher-dimensional bulk spacetimes, its currently available
formulation is just as perturbative as available quantum field theory, which has restricted the analysis of physics on brane
configurations to their classical “holographic” limit (the large-N limit).

But the crucial difference of perturbative string theory over perturbative quantum field theory is that string theory provides
a tight web of hints towards its non-perturbative completion, enough so that non-perturbative string theory famously has a
working title already (since 1995): “M-theory”.

M-Theory and Algebraic Topology. After initial excitement, progress on actually formulating M-theory had stagnated and
efforts had been largely abandoned, arguably due to a lack of appropriate mathematical tools. It was the vision of Hisham Sati
to bring in the full force of modern algebraic/geometric topology, looking for homotopy-theoretic patterns in the available
information on M-brane physics, deducing clues as to their fundamental mathematical nature.

This analysis eventually culminated in a formulation of a hypothesis – Hypothesis H – of what M-theory really is about
[HpH0][HpH1][HpH2]:

1 Hypothesis-H on M-theory
What is a quantum brane configuration, really? We survey discussion and results laid out in the monograph [Chr].

To the classical asymptotic observer (like Faraday): A brane configuration is a tuple of flux densities (“sourced” by the
brane configuration), given by differential r-forms1 on a spacetime manifold X :

( flux densitie
s

F (a)
ra ∈ Ω

ra
dR(X)

)
1≤a≤amax

(1)

and satisfying filtered polynomial differential relations:

de Rham diff.

dF (a)
ra =

polynomial

Pra

({
F (b)

rb

}
b≤a

)
higher “Bianchi identities”

(2)

which constitute that sector of the equations of motion of the corresponding fields that is independent of dynamical gravity.

Modernizing this statement, we observe that the consistency condition d2 = 0 implies conditions on the Pra which equiv-
alently characterize them as the structure constants of a nilpotent L∞-algebra a, such that the above flux data is equivalently
that of a flat a-valued differential form:

... ⇔
(

F(a)
ra

)
1≤a≤amax

∈

flat L∞-algebra
valued diff. forms

ΩdR
(
X ; a

)
flat . (3)

To the semi-classical observer (like Dirac): A brane configuration is such flux densities but equipped with flux quantization,
reflecting a minimum unit brane charge.

Modernizing this statement, we observe that for every nilpotent L∞-algebra a we may choose a nilpotent classifying space
A for a non-abelian cohomology theory A(−)

non-abelian
cohomology

A(X) := π0 Map(X , A) =


X A

F
cocycle (map)

F ′
cocycle

coboundary
(homotopy)

/
∼

(4)

1We assume that r ≥ 1.
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such that a is the Whitehead bracket L∞-algebra of A:

a =

Whitehead bracket
L∞-algebra
lA ,

hence so that the flux densities give classes in the lA-valued non-abelian de Rham cohomology of X :

[(
F(a)

rA

)
1≤a≤dim[π•(A),R]

]
∈

lA-valued
non-abelian

de Rham cohomology

HdR
(
X ; lA

)
:=


Ω•

dR(X) CE(lA)

(
F(a)

ra

)cocycle (dga-hom)

(
F(a)

ra

)′
cocycle

coboundary
(concordance)

/
∼

.

Now the non-abelian character map chA approximates A-
cohomology classes by lA-valued de Rham classes; and
flux quantization in A-cohomology means to lift through
this character map. Such flux quantization gives the non-
perturbative information in brane confiurations.
It seems unlikely to formulate a non-perturbative theory of
branes without first clarifying their flux quantization law.

non-abelian
cohomology

A(X)

non-abelian
de Rham cohomology

HdR
(
X ; lA

)
[
F

]
class of

A-quantized flux

7!
[(

F (a)
ra

)
1≤a≤dim[π•(A),R]

class of
underlying flux densities

]
.

chA

non-abelian character

(5)

Given such choice of flux quantization law A, the corresponding
moduli stack Â of potentials or gauge fields is the homotopy
pullback of the sheaf of flux densities along the character map.

This classifies (non-abelian generalized) differential cohomol-
ogy, in a way that takes care of all “Dirac strings” of gauge fields
and of higher gauge fields (“conts. higher form symmetries”).

moduli stack of higher gauge fields

with A-quantized flux densities

Â ΩdR(−; lA)flat

flux quant. law A S
(

ΩdR(−; lA)flat

)
≃ AR .

flux densities

charges

chA

character map =
rationalization over the reals

poten
tia

ls

(pb)
(6)

Therefore the mapping stack into Â is the integrated BRST complex of Â-valued fields with their (higher order) gauge
transformations:

integrated
BRST complex

Map
(
X , Â

)
=


X Â

gauge field (map)

F̂

F̂ ′

gauge field

gauge transfo.
(homotopy)

/
∼

. (7)

Notice that this integrated BRST complex is on-shell for that sector (2) of the field equations which are independent of
dynamical gravity. Therefore we say [Qnt1][Qnt2] that:

To a quantum observer, the quantum states of Â-fields sourced by brane configurations are the motive of the integrated
BRST complex (7), namely that aspect seen by its abelian twisted differential E-cohomology, for a “prequantum line bundle”
τ of spectra E:

twisted abelian E-cohomology
of non-abelian Â-moduli stack

Êτ

(
Map

(
X , Â

))
E-quantum states of A-charged branes

,

twisted abelian E-homology
of non-abelian Â-moduli stack

Êτ

(
Map

(
X , Â

))
E-quantum observables of A-charged branes

(8)

This is an immensely rich object. In the following we will inspect but some of its shadows, e.g. by disregarding the differ-
ential enhancement of E, and considering only the first few choices of E (namely ordinary cohomology and K-cohomology).
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Intersecting brane configurations. More generally, there may be a couple of different brane species which interact according
to brane intersection laws, allowing a brane species with flux densities

(
H(i)

ri

)
1≤ i≤ imax

as above to intersect or “end on” another

brane species with fluxes
(
F(a)

ra

)
1≤a≤amax

.

In this case the Bianchi identities for the latter fluxes include polynomial “twists” by the former

de Rham diff.

dF (a)
ra =

polynomial

Pra

({
F (b)

rb

}
b≤a,

{ twisti
ng fluxes

H(i)
ri

}
1≤ i≤ imax

)
,

twisted higher “Bianchi identities”

and the previous classifying spaces (4) generalize to classifying fibrations

intersected
branes A A�G brane

intersections

BG intersecting
branes

classifying spaces for...

classifying

fibrations

which classify twisted non-abelian cohomology theories:

twisted
non-abelian
cohomology

Aτ(X) :=

vertical homotopy classes
of slice maps

π0 Map
(
(X ,τ), A�G

)
BG

=


X A�G

BG

twisting cocycle

τ

twisted cocycle
Fτ

F ′
τ

/
∼

on which the twisted non-abelian character map

twisted
non-abelian
cohomology

Aτ(X)

twisted
non-abelian

de Rham cohomology

HτdR
dR

(
X ; lA

)
[
FH

]
H -twisted class of
A-quantized flux

7!
[(

F (a)
ra

)
1≤a≤dim[π•(A),R]

class of
underlying flux densities

]chA

twisted non-abelian character

(9)

computes the classes of underlying flux densities satisfying twisted Bianchi identities:

[(
F(a)

rA

)
1≤a≤dim[π•(A),R]

]
∈

τdR-twisted
lA-valued

non-abelian
de Rham cohomology

HτdR
dR

(
X ; lA

)
:=



Ω•
dR(X) CE

(
l(A�G )

)

CE(lBG )

(
F(a)

ra

)twisted cocycle (dga-hom)

(
F(a)

ra

)′
coboundary

(concordance)

τdR
twisting cocycle

/
∼

.

The key examples for our purpose are the Bianchi identities expected in type II string theory and in M-theory:
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Hypothesis K — D/NS-brane flux quantization in K-CoHomology. For example, consider a classifying space for complex
K-theory such as that of Fredholm operators KU0 ≃ FredC, and write KU0�BU(1) for its homotopy quotient by BU(1) ≃
PU(H). Then the corresponding character map exhibits the flux densities and their Bianchi identities of D/NS-branes in type
IIA string theory:

KU0 KU0�BU(1)

B2U(1)

ΩdR

(
X , l

(
KU0�BU(1)

))
=

 F2k ∈ Ω2k
dR(X) ,

H3 ∈ Ω3
dR(X)

∣∣∣∣∣∣ dF2k+2 = F2k ∧H3 ,

dH3 = 0


ΩdR

(
X , lBU(1)

)
=

{
H3 ∈ Ω3

dR(X)
∣∣ dH3 = 0

}
.

(10)

This is the central motivation for the traditional “Hypothesis K” that flux of D/NS-brane configurations is quantized in twisted
K-theory: twisted

complex topological
K-cohomology
KUH3(X) = π0 Map

(
(X ,H3), KU0�BU(1)

)
B2U(1)

. (11)

The other original motivation for Hypothesis K is the observation that the K-cohomology
group KU(X) for a compact space X may equivalently be described as the equivalence
classes of pairs of vector bundles and “anti-bundles” subject to a relation which annihilates
equal but opposite vector bundles just as expected for brane/anti-brane annihiliation.

Various further consistency checks for Hypothesis K have been claimed, but unresolved
issues remain, pointing to a need for a more refined description.

V W W ⇌ V
pair

creation

pair
annihilation

D-branes anti-
D-brane

Now the evident underlying idea of Hypothesis H is that – with the non-abelian enhancement (9) of the twisted character
map in hand – a directly analogous argument applies to M-branes (this is due to [HpH0, §2.5][HpH1]):

Hypothesis H — M-brane flux quantization in CoHomotopy. The simplest and yet richest candidates for classifying
spaces are the n-spheres. In a few exceptional dimensions these arise as coset spaces, such as S4 ≃ Sp(2)/

(
Sp(1)×Sp(1)

)
,

which canonically form fibrations such as this one:

S4 S4�Sp(2)

BSp(2)

universal 4-spherical fibration over
classifying space of Sp(2) ≃ Spin(5)

and its induced
Bianchi identities

ΩdR

(
X , l

(
S4�Sp(2)

))
=



G4 ∈ Ω4
dR(X)

G7 ∈ Ω7
dR(X)

p1(∇) ∈ Ω4
dR(X)

I8(∇) ∈ Ω4
dR(X)

)

∣∣∣∣∣∣∣∣∣∣∣∣

dG7 = − 1
2 G̃4 ∧ (G̃4 − 1

4 p1)−12 · I8

dG4 = 0

d p1(∇) = 0

d I8(∇) = 0

 (12)

Remarkably. these non-linear Bianchi identities dG4 = 0 , dG7 = − 1
2 G4 ∧G4 are those of M2/M5-brane fluxes in 11-

dimensional supergravity, suggesting ([HpH0, §2.5][HpH1][HpH2]):

Hypothesis H: M-brane flux is quantized in tangentially twisted CoHomotopy. ,

namely in the tangentially twisted (cf. [Orb3, Def. 5.13]) non-abelian cohomology theory represented by the spherical
fibration (12):

tangentially twisted
4-CoHomotopy

π
τ(X) :=


X S4�Sp(2)

BO(10,1) BSpin(8)

cocycle

⊢
Fr τ

Spin(8)-structure

/
∼

chτ

S4
−−−! HτdR

dR

(
X ; lS4)underlying flux densities according to (12)

↪−! HdR
(
X ; l(S4�Sp(2))

)
(13)

We checked that this quantization law reproduces effects expected in M-theory (e.g. [HpH1][M5a][M5b][M5c][Orb1][GS1][GS2]).
Notably, the flux quantization of G4 in the resulting tangentially twisted 4-CoHomotopy theory enforces the notorious

shifted integral flux quantization of the 4-flux density ([HpH1, §3.4]):
shifted 4-flux density[

G̃4
]

:=
[
G4 +

1
4 p1

]
∈

integral cohomology

H4(X ; Z)−! H4(X ; R) . (14)

Last not least, if we forget the non-linear effects of non-abelian Cohomotopy by passing to its shadow in stable Cohomo-
topy (25), then the same plausibility check regarding brane/anti-brane annihiliation holds, in that stable CoHomotopy is also
a form of K-theory, namely the algebraic K-theory of the absolute base “field” F1 (the BPQ-theorem, cf. [Orb2, p. 4]).

Therefore Hypothesis H is at least as compelling as Hypothesis K. Both may be wrong, but neither can be wrong by much.
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2 Resulting M5-brane model
We survey how Hypothesis H implies a globally consistent sigma-model for the topological sector of the M5-brane — at face
value for a single M5, but de facto for two coincident but orientifolded M5s with a nonabelian Sp(1)≃ SU(2) gauge field on
their worldvolume — this result is from [HpH1, §3.7][M5a][M5b].2

To warm up, we start by recalling, in modernized form, the corresponding issue for the 0-brane:

Topological 0-brane sigma-model. Dirac’s original argument — initiating what led us to the above considerations of flux
quantization — was the requirement on an electromagnetic background flux density F2 ∈ Ω2

dR(X) (the Faraday tensor) to
induce a consistent coupling to a quantum electron (a “0-brane”) via an action functional that is locally the integral of a vector

potential 1-form A1 over the electron’s worldline Σ0+1 φ
−! X .

In modernized paraphrase, Dirac’s conclusion was that F2 must come from a cocycle in the differential refinement (6) of
ordinary integral cohomology, via a dashed factorization in the following diagram:

Ω2
dR(−)flat

X B̂2Z B2R

B2Z

F2

background flux density

background magnetic charge

Â1

“vector potential”
gauge field

ch

(pb)
(15)

because then the required global action functional in question is given by the holonomy (for ordinary U(1)-connections):

Map(Σ0+1, X) U(1)(
Σ0+1 φ

−! X
)

7! exp
(

2πi
∫

Σ0+1

φ ∗Â1

)
,

1-form holonomy

(16)

where the integral expression on the right is shorthand for the piecewise holonomy integrals of any Čech cocycle representative
— the dependency on whose choices drops out under the exponentiation.

The expression (16) is the “topological” part of the action functional in the 0-brane sigma-model. We next consider the
analogous topological sectors of the sigma-models for the M2-brane and the M5-brane.

Topological M2-brane sigma-model. The shifted integrality condition (14) implies in particular that we have choices of
globally well-defined 3-form gauge fields C3 (“2-gerbe connections”) – the supergravity C-field –

Ω4
dR(−)flat

X B̂4Z B4R

B4Z

G4−
1
4 p1(∇)

background flux density

background M5-brane charge

Ĉ3

supergravity C-field

ch

(pb)
(17)

with well-defined higher holonomy over closed wordvolumes Σ2+1 X
−! of 2-branes

Map(Σ2+1, X) U(1)(
Σ2+1 φ

−! X
)

7! exp
(

2πi
∫

Σ2+1

φ ∗Ĉ3

)
,

3-form holonomy

(18)

This is the (globally corrected) “topological” factor in the action functional for the M2-brane sigma-model on X in a back-
ground with integral M5-brane charge.

2Hypothesis H also implies information about the dynamical (i.e. geometric, non-topological) sector of the Sp(1)-gauged M5-brane sigma-model: this is
discussed in [M5d][M5e]. The combination of the results [M5a][M5b][M5c]+[M5d][M5e] should serve to produce the full topological+geometric M5-brane
model for two coincident super 5-branes with Sp(1) worldvolume gauge field — but we have not worked that out yet.
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Topological M5-brane sigma-model. To obtain the analogous topological term of the sigma-model for M5-branes, we need
an integral 7-flux density which measures the background charge of M2-branes, also known as the Page charge.

Postnikov theory shows that the 7-flux density of M2-branes under Hypothesis H is extracted from a cocycle in twisted
4-Cohomotopy by lifting it — over the M5-brane’s worldvolume Σ5,1, or rather over a codimension=1 extension Σ6,1 —
through the Sp(2)-equivariantized quaternionic Hopf fibration — in the following ignore the hat on “Ŝp(2)” until (22) –:

fiber quaternionic
Hopf fibration

twisted by
M5-brane structure

twisted by
bulk structure

S3 S7 S7�Ŝp(2) S7�Sp(2)

∗ S4 S4�Ŝp(2) S4�Sp(2)

(pb) hH (pb) hH�Ŝp(2) (pb) hH�Sp(2)

(19)

to a cocycle in tangentially twisted 7-Cohomotopy:

M5-brane
worldvolume

Σ5+1

MK6
worldvolume

Σ6+1 S7�Ŝp(2) B7Z

X S4�Ŝp(2)

BŜp(2)

worldvolume charges

hH�Sp(2) quaternionic
Hopf fibration

Page charge / Hopf WZ-term

H3∧G̃4+2G7

bulk charges
τ

H3

(20)

Such lifts turn out to correspond to choices of worldvolume H3-fields — as expected to appear on MK6/M5-brane worldvol-
umes — automatically charge-quantized in twisted 3-CoHomotopy (locally taking values in the S3-fiber of (19)) and as such
they appear in the “Hopf WZ term” of the M5-brane action functional:

Ω7
dR(−)flat

Σ6+1 B̂7Z B7R

B7Z

H3∧G̃4+2G7

background flux density

background M2-brane charge (Page charge)

Ĉ3

Hopf WZ-term in
M5’s action functional

ch

(pb)
(21)

Level quantization of the 5-brane’s Hopf WZ term. The Page charge or Hopf WZ-term appearing in (20) is not integral
(violates “level quantization”) without suitable assumptions – but if it is not then the would-be Hopf WZ-term (21) in the
5-brane sigma model is “anomalous”, an issue that — prior to the discussion in [M5a], see the historical review given there
— has received little attention.
But given Sp(2)-structure as imposed by tangentially twisted 4-
Cohomotopy (13), the obstruction to cancelling this anomaly
is [M5a, Thm. 4.8] precisely the Euler 8-class χ8, which for
Sp(2) ↪! Spin(8)-structure, is the following combination of Pon-
trjagin classes [HpH1, (98)]:

χSp(2)
8 = 1

2 p2 − 1
8 (p1)

2 ∈ H8(BSp(2); Z
)
.

Lifting this obstruction – and hence cancelling the Hopf-WZ
5-brane anomaly – means to lift the bulk Sp(2)-structure to
the homotopy fiber B̂Sp(2) of χ8 — an M-theoretic form of
Fivebrane structure along the lines originally considered in
[arXiv:0805.0564].

B
MFivebrane

6-group

Ŝp(2) ∗

X BSp(2) B8Z

BSpin(8) B8Z

τ
bulk structure

τ̂M5-brane structure

⊢Fr(X)

χSp(2)
8

(pb)

χ8

(22)
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Non-abelian twisted string-structure on the M5. A careful homotopy-theoretic analysis of all the implications of the
innocent-looking lift defining the H3-field in (20) reveals a wealth of further structure that has long been expected on world-
volumes of coincident M5-branes; in particular it reveals a non-abelian gauge field for which H3 serves a “non-abelian
gerbe”-field that exhibits a worldvolume Green-Schwarz mechanism.

All of this follows by rigorous homotopy-theoretic unwinding of the following homotopy-commutative diagram3, which
is carefully and incrementally explained in [M5b] (but need not further concern us here):

Hypothesis H for heterotic M-theory. In fact, such Sp(1)-gauged M5-
branes are those expected in “heterotic M-theory” (Hořava-Witten theory).
Hypothesis H turns out to generalize to heterotic M-theory, where CoHo-
motopy is enhanced to “twistorial CoHomotopy”, now represented by the
“twistor space” CP3 covering the 4-sphere through the Calabi-Penrose fi-
bration.
This is discussed in [GS1][GS2].

3This diagram became the logo of the meeting M-Theory and Mathematics 2023, that took place at NYU Abu Dhabi.

8

https://nyuad.nyu.edu/en/events/2023/january/m-theory-and-mathematics-conference-2023.html


3 Resulting M5-probe branes
The classical sigma-model discussion in §2 confirms that the charges seen by twisted 4-CoHomotopy really do correspond to
M5-branes of the kind expected in string/M-theory. We now survey how to pass from such classical sigma-model branes to
quantum brane probes — as discussed in [Qnt1][Qnt2].

Branes: Solitonic, probes and webs. Notice the following precise formalizations of some general notions of “kinds of
branes” that are ubiquitous in the informal string theory folklore. This follows [HpH2, §2.1].

A spacetime manifold may carry background brane charge in several ways:4

- Solitonic branes have spacetime singularities which are removed from spacetime: the field flux sourced by the singularity
is that through spheres in the normal bundle around these loci and would diverge at the singular brane locus.

bulk

Rd+1 \

singular
brane

Rp+1 ≃
homeomorphism

punctured
transverse space(
Rd−p \ {0}

)
×Rp+1 ≃

homotopy equivalence

encircling sphere

Sd−p−1 (23)

- Probe branes are witnessed by non-singular “local bumps” in the flux densities: Their flux vanishes at infinity which
means that it is measured on the 1-point compactification of spacetime.

probe
brane

Rp+1
+ ∧

transv.
space

Rd−p
cpt with pointat infinity

≃ Rd−p
cpt ≃

homeomorphism

transverse sphere

Sd−p

Rd−p
cpt ≃ Sd−p

Rd−p

∞

(24)

4We are focusing on the simple case of “flat” Cartesian spacetimes/worldvolumes just for ease of exposition.
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Probe branes seen in CoHomotopy are precisely cobordism classes of normally framed submanifolds:

This equivalence of CoHomotopy with un-
stable framed Cobordism reflects exactly
the expected brane/anti-brane reactions:

normal framing
in space

brane

opposite
normal framing

anti-brane

normal framing
in spacetime

spacetime

annihilation
↼−−−−−−−−−−⇁

pair creation

space

In fact, in linear approximation to the Bianchi identities, the resulting
stable CoHomotopy is equivalent to framed Cobordism Cohomology

non-abelian
Cohomotopy

π•

abelian
Cohomotopy

S•
framed

Cobordism
Mfr•

KF •
1

algebraic K-theory of
“field with one element”

linearize
(i.e.: stabilize)

Barratt-Priddy-Quillen

Pontrjagin-Thom

(25)

Linearized Hypothesis H:
M-brane flux is quantized in (tangentially twisted) framed Cobordism.

(Possibly, this relates Hypothesis H to Vafa’s cobordism conjecture
cf. [HpH2, §4]).

In conclusion: the Pontrjagin theorem and its variants give, under
Hypothesis H, a detailed description of worldvolumes of M-branes as
(cobordism classes of normally framed) sub-manifolds of spacetime.

E.g. this allows to study exotic defect branes in low codimension −!

10



Low co-dimension probe branes tend to not exist semi-classically but, under Hypothesis H, as quantum states (8), in that:

π
4(X) := π0 Map(X , S4) = 0 but Map(X , S4) ̸= ∗ .

For flat branes this is a consequence of the May-Segal theorem, which implies [Qnt1, Prop. 2.5] that (for d > p ≥ 1):

CoHomotopy moduli

Map
(
Rd−p

cpt ∧Rp
+, Sd) ≃

homotopy equivalence

configuration space of points

Conf
(
Rd−p, Rp

cpt
)

(26)

On the left of (26) we have maps out of Rd = Rd−p ×Rp required to vanish at infinity (only) along Rn−p:

Smash product of Visualization
pointed topological spaces with point at infinity as Penrose diagram

fluxes vanish at infinity
along these directions︷ ︸︸ ︷

Rd−p
cpt ∧ Rp

+︸︷︷︸
...but not necessarily

along these

Rp

∞

∞

Rd−p
∞

∞

Rd−p

Rp

On the right of (26) we have

the moduli space Conf
(
Rd−p, Rp

cpt
)

of:
- configurations of points in Rd = Rd−p ×Rp

- which are distinct as points in Rn−p

- and which may escape to infinity along Rp.
(27)

Here is an illustration of an element in Conf
(
R2−1, R1

cpt
)
:

R2×{0} R2×{∞}R2×{∞}

projection to R2

point
in R2×R1 point

disappeared
to infinity
along R1

(28)

In words, (26) says that:
Flat low co-dimension probe branes always may and will disappear by escaping to infinity, together with their charge;
but when several of them disappear jointly there are higher order topological charges in how they braid while doing so.

Next we see that intersecting such probe branes also prevents them from disappearing in the first place.
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4 Resulting M5⊥M5-moduli
We discuss the formalization of intersecting probe branes from [Qnt1, §2].

Above we have seen that the topological information encoding the potential presence of probe branes (or rather: their
charges) is encoded in passing to the 1-point compactifications of their transverse space. This suggests that to measure
the charges and hence the presence of intersecting branes we need to somehow amalgamate two different partial 1-point
compactifications of the envelope of their transverse spaces:

Smash product of Visualization
pointed topological spaces with point at infinity as Penrose diagram

transverse space
of p1-probe

fluxes vanish at infinity
along these directions︷ ︸︸ ︷
Rd−p1

cpt ∧ Rd−p2
+︸ ︷︷ ︸

...but not necessarily
along these

Rd−p2

∞

∞

Rd−p1
∞

∞

Rd−p1

Rd−p2

transverse space
of p2-probe Rd−p1

+︸ ︷︷ ︸
...but not necessarily

along these

∧

fluxes vanish at infinity
along these direction︷ ︸︸ ︷
Rd−p2

cpt

Rd−p1

∞

∞

∞ ∞

Rd−p2

∞

∞

Rd−p1

Rd−p2

A sensible amalgamation of these transverse spaces does not exist as a topological space.

The topos theory of intersecting probe brane spaces. But we may pass to the universal mathematical context where it does
exist: this is the presheaf topos over the category of “Penrose diagrams” of this form: In this topos, the amalgamation space
transverse to flat intersecting branes is the “pushout” or “cofiber coproduct” of the two separately compactified transverse
spaces over the uncompactified transverse space, hence their “gluing” according to the following diagram:


Rd−p1

cpt ∧Rd−p2
+ Rd−p1

cpt ∧Rd−p2
+

R2d−p1−p2
+

0 PiL

``

. � iR

>>


∞

∞

Rd−p1

Rd−p2

∞

∞

Rd−p1

Rd−[2

Rd−p1

Rd−p2

- M

iL

\\
1�

iR

BB
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Intersecting brane charges in CoHomotopy. Furthermore, we may understand the May-Segal theorem (26) as providing a
differential refinement of CoHomotopy theory on such spaces, in that the configuration space on the right of (26) canonically
carries the structure of a manifold, which represents the homotopy type of the CoHomotopy space.

This provides a formalization of what it means to detect intersecting probe brane charges in CoHomotopy theory. Assum-
ing this, the basic laws of topos theory imply that the (differential) CoHomotopy moduli space for intersecting probe branes
as above is the fiber product of the two configuration spaces (27) for each probe brane separately.

For our example (28), the fiber product is as on the left here:
3-CoHomotopy moduli

of codim=1 probe branes︷ ︸︸ ︷
Conf

(
R2, R1

cpt
)

×
Conf(R3)

3-CoHomotopy moduli
of codim=2 probe branes︷ ︸︸ ︷

Conf
(
R1, R2

cpt
)

︸ ︷︷ ︸
their intersection

≃
hmtp equvl

⊔
n∈N

Conf
{1, · · · ,n}

(
R2)︸ ︷︷ ︸

ordered configurations of
probe brane intersections

, (29)

where on the right we observe [Qnt1, Prop. 2.4. 2.11] that the configuration of the codimension=1 branes equips their
intersecting branes with an ordering, as illustrated here:

R2×{0}

induced ordering //{0}×R1

projection
to R1

projection to R2
Point

in R2×R1

co
nfi

gu
ra

tio
n

in
R

2

(30)

These ordered configuration spaces are

the moduli spaces Conf
{1, · · · ,n}

(
R2) of

- configurations of n points

- which are distinct

- and distinguishable

(31)

The homotopy type of such configuration spaces (31) is considerably richer than that of the configuration spaces (27)
where points may escape to ∞. With Hypothesis H this implies that: There is rich physics appearing on brane intersections.

Moduli of the M3 = M5 ⊥ M5. Concretely, ap-
plying this analysis to the 3-CoHomotopy fields
in 7d which in §2 we saw appear on the MK6 lo-
cus ambient to M5-branes, we find a moduli space
of 3-branes inside 5-branes, just as expected for
M5⊥M5-brane intersections [Dfc1, pp. 28]:

R!

"
C

MK6

x1

M5

z1
M51

M31

x2<

z2

x3<

z3

(32)
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5 Resulting M5⊥M5-states
In summary so far, Hypothesis H predicts that:

The quantum states (8) of M5⊥M5 intersections (32) are
the twisted cohomology of the configuration space (31)
of points in their transverse plane (23).

The spectral prequantum line bundle. These configuration spaces are non-simply connected: their fundamental group is
the pure5 braid group — being the group of motions of the M5⊥M5-intersections around each other in the ambient M5-
worldvolume:

π1

(
Conf
{1, · · · ,n}

(C2)
)

≃ PBr(n) =




(33)

Hence the corresponding twisted ordinary cohomology (aka: “local system cohomology”) is that whose cocycles are
sections of “Eilenberg-MacLane-spectrum line bundles” pulled back from the classifying space BCκ of a cyclic group:

twisted cohomology
of configuration space

H [ω1]
(

Conf
{1, · · · ,n}

(
C2))

quantum state space

=



local coefficient
bundle

BkC�Cκ

Conf
{1, · · · ,n}

(
C
)

phase space

BCκ

prequantum
line bundle

ω1

twiste
d cocyle

quntm state

/
hmtp

(34)

(Closer analysis reveals [Dfc1, §3] that κ equals the order of the Aκ−1-singularity at which dual D7/D3-branes are placed.)

In order to analyze these quantum states,
we may decompose the problem by:

(1.) holding fixed N of the branes,
(2) letting n mobile branes move around them.

n-configuration space
of N-punctured plane

Conf
{1, · · · ,n}

(
C\{z1, · · · ,zN}

) fibration of
configuration spaces

Conf
{1, · · · ,N +n}

(
C2

)

∗ Conf
{1, · · · ,N}

(
C2

)(pb) forget n points

(z1,··· ,zN)

pick N-configuration

(35)

In the simple case of a single mobile brane moving – along a dashed line in (37) – among N fixed branes, we have

Conf
{1, · · · ,1}

(
C\{z1, · · · ,zN}

)
= C\{z1, · · · ,zN} (36)

and the twist ω1 (34) is fixed by:

κ := k+2 “level”

wI ∈ {0, · · · ,k} “weights”

zI ∈ {z1, · · · ,zN} “punctures”

as ω1 := ∑I −wI
κ

dz
z−zI

transverse plane

ω1

defect brane

C

∞

zI

(37)

5Our figures show im-pure braids just for ease of illustration.
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Brane states identified with worldvolume correlators. Curiously, such sets of labels coincide with those of “conformal
blocks” – namely chiral correlation functions – in the ŝu2k-conformal quantum field theory on the punctured Riemann sphere

CP2 \
{

z1, · · · ,zN , ∞
}

≃ C2 \
{

z1, · · · ,zN
}
. (38)

And indeed, a well-but-not-widely known theorem called the hypergeometric integral construction identifies these conformal
blocks of “degree=1” inside the twisted cohomology (34) of the punctured plane (38)

su(2)-affine deg=1
conformal blocks

CnfBlck1
ŝl2

k (⃗w,⃗z)

natural
inclusion

↪−−−−−−!

1-twisted deg=1
de Rham cohomology

H1
(

Ω•
dR
(
C\ {⃗z}

)
, d+ω1 ∧

)
natural

inclusion
↪−−−−−−! KU1+ω1

((
C\ {⃗z}

)
×∗�Cκ ; C

)
inner local system-twisted deg=1

K-theory of Aκ−1-singularity

[Dfc1, Prop. 2.16]

(39)

and generally the conformal blocks of any degree n inside n-configuration space of points, if we set

ω1 := ∑
1≤i≤n

∑
I
−wI

κ

dz
z− zI

+ ∑
1≤i< j≤n

2
κ

dz
zi − z j on Conf

{1, · · · ,n}

(
C\ {⃗z}

)
. (40)

namely:

su(2)-affine deg=n
conformal blocks

CnfBlckn
ŝl2

k (⃗w,⃗z) ↪−!

1-twisted deg=n de Rham cohomology
of configuration space of n points

Hn
(

Ω•
dR

(
Conf
{1, · · · ,n}

(
C\ {⃗z}

))
, d+ω1 ∧

)
↪−! KUn+ω1

((
Conf
{1, · · · ,n}

(
C\ {⃗z}

))
×∗�Cκ ; C

)
inner local system-twisted deg=n K-theory

of configurations in Aκ−1-singularity

[Dfc1, Thm. 2.18]

(41)

Concretely, this inclusion is given by sending the canonical basis elements of conformal blocks to “Slater-determinant”-like
expressions, as follows:

CnfBlckn
ŝl2

k (⃗w,⃗z) Hn
(

Ω
•,0
dR

(
Conf
{1, · · · ,n}

(
C\ {⃗z}

))
|
∂=0, ∂ +ω1(⃗w,κ)∧

)
fI1 · · · fIn |v0

1 · · · ,v0
N⟩ 7−!

[
det

((wI j
κ

1
zi−zI j

)n

i, j=1

)
dz1 ∧·· ·∧dzn

]

e.g. fI fJ |v0
1 · · · ,v0

N⟩ =
[
· · · , ( f · v0

I
), · · · , ( f · v0

J
), · · ·

] generators

7−!
[

wI
κ

dz1

(z1−zI )
∧ wJ

κ

dz2

(z2−zJ )
+

wI
κ

dz2

(z2−zI )
∧ wJ

κ

dz1

(z1−zJ )

]
.

(42)

In summary, we have derived, from Hypothesis H, that:

quantum states of
brane configurations

inside an M-theoretic bulk

 are identified with

 quantum correlators of
a conformal field theory

on their worldvolume
(43)

This is just the form of “holographic duality” that is expected in string/M-theory, here specifically6 in “Theory-S ”-
compactifications of M5-branes on Riemann surfaces such as (38).

Strongly coupled holographic quantum materials. In [Dfc2] we give a detailed argument that the worldvolume CFT which
we see here is that of anyonic defects in topologically ordered ground states of crystalline quantum materials which are in a
topological phase of matter.

This being a strongly coupled QFT on a small number κ of branes, it is outside the realm of perturbative string theory and
would indeed be expected to require M-theory for its holographic description:

6As M. Ashwinkumar kindly reminded us during the talk, our prediction of ŝu2k-conformal blocks for M5s compactified on a Riemann surface matches
the conclusion in [Wi10, p. 22]
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Quantum
field theory

on coincident
N branes

Classical
(super-) gravity

Full
M-theory

Perturbative
string theory

traditional
AdS/CMT duality

large N, large λ

full
AdS/CMT duality

any N, any λ

stringy
AdS/CMT duality

large N, any λ

small ’t Hooft coupling λ :=gsN≪∞

⇔

large curvature, string scale effects

small N≪∞ ⇔ non-perturbative effects

6 Resulting M5⊥M5-braiding
We close by indicating how the “topopological dyanmics” of M5⊥M5 (their adiabatic movement in moduli space) acts on
their quantum states just as expected for quantum logic gates in topological quantum computers based on anyon braiding –
as they should by the duality (43). Detailed discussion may be found in [TQC1][TQC2].

Modular functor of M5⊥M5 Hilbert spaces. The
fibration of configuration spaces (35) induces on
its fiberwise twisted cohomology groups (41) a flat
connection — called a Gauss-Manin connection,
which on the spaces of conformal blocks restricts
to the Knizhnik-Zamolodchikov connection.
The parallel transport of this connection computes
the unitary transformations on the branes’ quantum
states induced by their adiabatic movement in mod-
uli space:

H1

topological brane state propagation

H2

path in transverse brane config space

H [ω1]
dR

(
Conf
{1, · · · ,n}

(
C\{−1, · · · ,−N}

))

Conf
{1, · · · ,N}

(C)

transverse plane

wI/κ

defect brane

time
braiding

C

kI

kI

some quantum state for
fixed brane positions

k1,k2, · · · at time t1

∣∣ψ(t1)
〉 Berry phase unitary transformation

= adiabatic quantum gate

∣∣ψ(t2)
〉

another quantum state for
fixed brane positions

k1,k2, · · · at time t2

Under the above holographic duality, such brane braiding translates to the braiding of anyonic defects in topologically
ordered quantum materials, which is thought to potentially serve as quantum logic gates for topological quantum computers.
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