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Motivation

This work was largely motivated by two questions:

1. Can we describe Renormalization Group flows in an information theoretic way?

2. Can we use ideas in theoretical physics to better understand machine learning?

Plan

I We will introduce the basics of ERG and then less familiarly the idea of dynamical
Bayesian Inference which is the basis of statistical inference.

I Then we will give the construction of an explicit map between renormalization and
statistical learning.

I At the end of the presentation I will discuss a few ways that this correspondence can
be used to bring new understandings from data science into physics and visa-versa.
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Wilsonian RG

The Wilsonian picture of RG describes an action functional which is changing as a
function of the scale Λ:

SΛ[Φ | λ] =
∑
i

∫
M

VolM(x) λiΛLi [Φ] (1)

Here {Li [Φ]} are the set of terms that are allowed in the action by symmetry. λi are
the coupling constants which govern the strength of the contribution of each term to
the overall action.

I We can regard λi as coordinates in the space of possible actions, S .

I A Wilsonian RG flow is then generated by a vector field, β ∈ TS such that:

− d

d ln Λ
λiΛ = βi (λΛ) (2)

I This generates a one parameter family of actions at each scale, Λ.
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A Probabilistic Interpretation and ERG

From the perspective of Euclidean QFT, we can interpret SΛ as the log of an
unnormalized probability distribution:

P̂Λ[Φ] = e−SΛ[Φ|λ] (3)

λi coordinatize an exponential family of probability distributions.

I An ERG flow is a one parameter family of probability distributions, PΛ, governed by
a functional differential equation:

− d

d ln Λ
PΛ = F [PΛ] (4)

I In this presentation, we shall regard an ERG as a diffusive flow on the space of
probability distributions.
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Bayesian Inference

Bayesian inference is an approach to deducing the data generating distribution for a
random variable Y .
I To begin, we postulate a parametric form of the distribution of Y depending upon

a set of parameters, U. For example, an exponential family with parameters ui :

pY |U(y | u) = eu
iqi (y)−ψ(u) (5)

I We can then complete a joint probability distribution for (Y ,U) by specifying a
prior probability distribution, π0(u), for the parameters U:
pY ,U(y , u) = π0(u)pY |U(y | u).

I By observing the data {Yt}Tt=1, the distribution over parameters can be inferred
through the implementation of Bayes’ theorem:

πT (u) ∝ π0(u)
T∏
t=1

pY |U(yt | u) (6)
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Dynamical Bayesian Inference

In cond-mat.dis-nn/2204.12939 we considered performing Bayesian inference
continuously, and tracking how the posterior distribution changes with respect to the
inflow of new data. The main result of that paper may be written:

∂

∂T
πT (u) = −

(
D(pY |U)− EπT (D(pY |U))

)
πT (u) (7)

Here D(p) = DKL(p∗Y ‖ p) is the KL-Divergence between a probability distribution p for
the random variable Y , and the data generating distribution p∗Y .

I Thus, much like ERG, Dynamical Bayesian Inference results in a one parameter
family of posterior predictive distributions for the random variable Y :

pT (y) =

∫
SY

VolU(u)πT (u)pY |U(y | u) (8)

I Unlike an RG flow, however, this flow gains information over time.
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So, what’s the idea?

I Renormalization describes how we can arrive at an effective description of a
physical system by starting with a more complete model and systematically
eliminating the information which is beyond our ability to observe experimentally.

I In renormalization, we throw information away by acknowledging our ignorance.

I Statistical Inference describes how, beginning from a state of ignorance about a
system, we can arrive at a more complete model by observing the system at
increasing levels of accuracy.

I In statistical inference, we learn new information and thereby dissolve our ignorance.

I The upshot is that Bayesian statistical inference can be regarded as an inverse
process to an ERG flow.
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ERG in the Wegner-Morris Form

Let us briefly review ERG in the Wegner-Morris formulation Wegner 1973, Morris
1994, Cotler, Rezchikov 2022:

− d

d ln Λ
PΛ[φ] =

∫
VolM(x)

δ

δφ
(ΨΛ[φ, x ]PΛ[φ]) (9)

I At each scale the field degree of freedom is merely reparameterized:

φ 7→ φ′ = φ+ (δ ln Λ) ΨΛ[φ, x ] (10)

I The necessary ingredients in defining the “Wegner-Morris Scheme” are:
1. A regulated two-point function ĊΛ(x , y)
2. A functional ΣΛ[φ] = SΛ[φ]− 2ŜΛ[φ]

through which the reparameterization kernel is defined:

ΨΛ[φ, x ] = −1

2

∫
M

VolM(y) ĊΛ(x , y)
δΣΛ[φ]

δφ(y)
(11)
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The Space of Probability Distributions

I Let (S , g) be a Riemannian manifold endowed with a reference measure VolS . We
shall refer to S as the sample space.

I Let M denote the space of probability distributions on S . That is, p ∈M is a map
p : S → R which is normalized∫

S
?p =

∫
S

VolS(x) p(x) = 1 (12)

I The space tangent to M, TM, consists of deformations to probability distributions
leaving the normalization unchanged. In other words, η ∈ TM is a map η : S → R

which integrates to zero ∫
S
?η = 0 (13)

10 / 39



One Parameter Flows on M

I The “exterior derivative” on M can be identified with functional differentiation.
Given a metric G : TM× TM→ R, we define the gradient of a map F :M→ R

in the direction of the vector field η through the equation:

δF (η) = G (gradGF , η) (14)

I Example: The Dirichlet energy functional is defined by E [p] = 1
2

∫
S dp ∧ ?dp. The

`2 metric on M is given by G`2(η1, η2) =
∫
S η1 ∧ ?η2. Then, we can compute:

δE = G`2(−∆p, δp) (15)

from which we recognize the gradient of E with respect to the `2 metric on M as
the Laplacian of p viewed as a function on S .

I This suggests the following form for the heat equation:

∂

∂t
pt = −grad`2E [pt ] (16)
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One Parameter Flow on M continued

We can reconcile the heat equation as a gradient flow on M with respect to a wide
array of different functions by choosing an appropriate metric.

I a good choice of metric is the Wasserstein two metric, inspired by Optimal
Transport theory [Villani2009]:

GW2(η1, η2) =

∫
S
p d η̂1 ∧ ?d η̂2 = −

∫
S
η1 ∧ ?η̂2 = −

∫
S
η̂1 ∧ ?η2 (17)

I Given η ∈ TM, we define η̂ by the equation

η = ?dip(d η̂)]VolS ; η = div(p gradη̂) (18)

I With respect to the Wasserstein metric, the gradient of the differential entropy,
S [p] = −

∫
S p ∧ ? ln(p), is equal to the Laplacian of p:

gradW2
S [p] = ∆p (19)
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One Parameter Flows on M completed

With respect to a generic functional F :M→ R, one can compute:

gradW2
F [p] = ?dipd( δF

δp
|p)VolS (20)

I A very general set of functionals sourcing convection diffusion flows can be written
in the form:

F [p] = S [p] + V[p] = −
∫
S
p ∧ ? ln(p) +

∫
S
p ∧ ?V (21)

where V : S → R is a potential function that is independent of p.

I The gradient of such a functional gives rise to a pair of terms, and its associated
one parameter flow equation is equivalent to the Fokker-Planck equation:

∂

∂t
pt = gradW2

F [pt ] = ∆pt + div(pt gradV ) (22)
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Fokker-Planck and Optimal Transport

Provided the normalization Z =
∫
S ?e

−V is finite, q = 1
Z e
−V defines a probability

distribution on S , which is a stationary state of the Fokker-Planck equation with
potential V .

I In this case, the gradient flow with respect to F can moreover be understood as
the gradient flow with respect to the KL-Divergence between p and q:

DKL(p ‖ q) = F [p] + ln(Z ) (23)

Hence, δF
δp = δDKL(p‖q)

δp .

I The Fokker-Planck equation can therefore be understood as the gradient flow:

∂

∂t
pt = gradW2

DKL(pt ‖ q) (24)
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Wegner-Morris and Fokker-Planck

We can now realize the Wegner-Morris equation governing ERG as a gradient flow of a
relative entropy.

I Let p = e−Sp(x)

Zp
. Similarly, we can define the fixed point distribution q = e−Sq (x)

Zq
.

I Specifying q along with the metric g on S is equivalent to the data of ΣΛ and ĊΛ

in the functional case. In particular we take Σ = Sq − Sp, and thus define the
reparameterization kernel:

Ψ[φ, x ] ∝
∫
M

VolM(y)ĊΛ(x , y)
δΣ[φ]

δφ(y)
→ Ψ = gradgΣ = g ij ∂

∂x i
Σ (25)

I It is then a straightforward task to compute:

∂

∂t
pt = −gradW2

DKL(pt ‖ qt) = − ? d(?ptdΣ) = − ∂

∂x i
(
Ψi

tpt
)

(26)

which we recognize as the finite dimensional Wegner-Morris equation.
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ERG = Convection-Diffusion

The upshot of this first section is that an exact renormalization group flow can be
understood as a Convection-Diffusion equation.

I The two pieces of data that quantify the ERG scheme now have a clear
interpretation.

I The regulated two point function ĊΛ plays the role of an inverse metric on the
space of field configurations. Its purpose is to define a notion of the changing width
of the distribution as a function of time.

I The functional Σ tracks the difference between the scale dependent action and a
fixed point action. Its purpose is to describe the mean tendency of the probability
distribution as it flows in the space of models.

I In the next sections we will observe that these pieces of data respectively define the
drift and diffusion aspects of a stochastic differential equation.
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Stochastic Processes and Stochastic Differential Equations

A stochastic process is a one parameter family of random variables, {Xt}t≥0. We will be
interested in stochastic processes governed by stochastic differential equations of the Ito
form [ito1944109]:

dX i
t = mi (Xt , t)dt + σij (Xt , t)dW i

t (27)

I This equation can be compared to the Langevin Equation, dX i

dt = mi (X , t) + ηit ,

which describes a variable whose mean path is determined by the law dX
dt = m, but

is also subject to random fluctuations around the mean path.

I A stochastic process is called a Martingale if it satisfies the equation

E(Xt | {Xs}s≤τ ) = Xτ ; ∀ τ ≤ t (28)

I It isn’t hard to show that a stochastic process governed by an Ito SDE is a
Martigale if it has vanishing drift.

18 / 39



From Stochastic Differential Equations to Partial Differential Equations

Given a map f (x , t), we can define a stochastic process: {f (Xt , t)}t≥0. Its governed
SDE can be realized by implementing the principal of quadratic variation:

df (Xt , t) =

(
∂f

∂t
+ mi ∂f

∂x i
+

1

2
δklσikσ

j
l

∂2f

∂x i∂x j

)
dt +

∂f

∂x i
dW i

t (29)

I The stochastic process {f (Xt , t)}t≥0 will be a martingale if and only if f satisfies
the partial differential equation:

∂f

∂t
+ mi ∂f

∂x i
+

1

2
δklσikσ

j
l

∂2f

∂x i∂x j
= 0 (30)

I In the case where the drift of Xt is governed by the gradient of a potential function,

dXt = −(gradgV )idt +
√

2δijdW
j
t (31)

this partial differential equation can be directly related to the Fokker-Planck
equation.
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From Partial Differential Equations to Stochastic Differential Equations

We can also go the other way around. Let A denote a differential operator associated
with a convection-diffusion equation:

(
∂

∂t
+A)pt = 0 (32)

I The above equation is solved by introducing the Heat Kernel, e−tA. Given initial
data p0, the formal solution is then given by e−tA(p0):

∂

∂t
◦ e−tA(p0) = −A ◦ e−tA(p0) (33)

I Under suitable conditions, one can interpret e−tA as the transition operator of a
Markov process. For example, working in the “positional basis” we can write

U(x , y ; t) ≡ 〈x | e−tA |y〉 (34)

which is the probability density of translations from sample point y to sample point
x in an interval t. 20 / 39



From Partial Differential Equations to Stochastic Differential Equations

In this language, it is natural to identify the operator A as a “Hamiltonian Operator,”
with Pt = e−tA its associated “time evolution operator”.
I Given a marginal probability distribution f : S → R the action Pt is given by

Pt(f )(x , t) =

∫
S

VolS(y)U(x , y ; t)f (y) (35)

I If the action of Pt is known, we can also derive a functional form for A by using
the fact that Pt is the exponentiation of A:

A(f ) = lim
t→0

Pt(f )− f

t
(36)

I If A is of the form A = mi ∂
∂x i

+ 1
2δ

klσikσ
j
l

∂2

∂x i∂x j
, we can associate solutions to the

PDE with martingales adapted to the stochastic process

dX i
t = mi (Xt , t)dt + σijdW

j
t (37)
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The Bayesian Inversion Problem

I Let SY , and SU denote the sample spaces of random variables Y and U,
respectively.

I We assume that there exists a process by which the signal U is mapped into the
observable output Y , G : SU → SY :

Y = G (U) + N; (
dX

dt
= m + η) (38)

Here U ∈ SU is called the signal and N ∈ SY is noise.

I We are interested in the inversion problem of determining the signal, u, that
predicated a measured output, y . However, it is often intractable or even
analytically impossible to fully invert the process. Thus, it is more prudent to seek
a probability distribution over the possible inputs. This leads to the idea of
Bayesian Inversion [dashti2017bayesian].
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The Bayesian Inversion Problem continued

I To this end, we postulate for U a prior measure π0 ∈MU .
I We also treat N as a random variable independent from Y governed by a

distribution p0 ∈MSY .
I This allows us to define a conditional random variable:

Y | U = G (U) + N (39)

and moreover, realize a channel φ : SY → SY from observed output to noise given
by

n = φ(y) = y − G (u) (40)

I Thus, we can define a conditional measure for Y | U by pulling back p0 by the map
φ. The resulting distribution, pY |U provides us with the conditional probability
distribution for the realized output given the signal.

pY |U(y | u) = p0(y − G (u)) (41)
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Dynamical Bayes

I Suppose {Yt}Tt=1 is a set of T IID random variables drawn from the data
generating distribution p∗Y . Then, we have shown that the posterior distribution πT
satisfies an integro-differential equation:

∂

∂T
πT (u) = −

(
D(pY |U)− EπT (D(pY |U))

)
πT (u) (42)

I We shall assume that the data generating distribution can be realized in the form of
the conditional density at a specific value of the underlying signal:
p∗Y (y) = pY |U(y | u∗).

I One of the most significant insights of this approach is that for sufficiently large T
the 2n-point functions of the T -posterior distribution are given by

EπT

 2n∏
j=1

(U − u∗)ij

 =
1

T n

∑
p∈P2

2n

∏
(r ,s)∈p

I ir is
∣∣∣∣
u∗

(43)

Here I ij is the inverse of the Fisher metric for the family of probability distributions
pY |U .
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Bayesian Inversion for Normal Data

Consider the following Bayesian Inversion problem:

y = µ+ n (44)

where n is noise distributed according to N (0, σ2). The process G is simply the identity,
and hence the inference problem is on the value of the mean parameter, µ.
I In this case, the Dynamical Bayesian Inference equation can be solved exactly:

πT (µ) =
1√

2π(σ2/T )
e
− 1

2(σ2/T )
(µ−µ∗)2

(45)

where µ∗ is the data generating signal.
I If we define the “inverse” time parameter τ = 1

T , this solution takes the suggestive
form

πτ =
1√

2πσ2τ
e−

(µ−µ∗)2

2σ2τ (46)
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Bayesian Diffusion

The posterior distribution in the inverse time parameter τ is of the form of the standard
solution to the diffusion equation with diffusivity σ2.

I This suggest a very interesting interpretation of what we call Bayesian Diffusion: As
one moves backwards in a Bayesian inference by throwing away data instead of
observing new data, one realizes a diffusion process in the prediction of the signal.

I It is important to notice that the “inverse” time parameter is given by 1
T . This is

consistent with the interpretation of decreasing the amount of observed data.

I It is also important to recognize the role played by σ2 in setting a scale for the
resulting diffusion process.

I Although the posterior distribution diffuses in the backwards inference time, it is
always centered around the data generating signal µ∗. This seems to suggest that
there is no drift.
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Bayesian Drift and Scheme Independence

I The trajectory of the maximum a posteriori estimate should be regarded as a
scheme dependent quantity.

28 / 39



A Simple Argument

Let E = {Yt}Nt=1 denote a fixed set of IID random variables. Moreover, let
π ∈ Perm(N) denote a permutation of N elements. Then, π(E ) = {Yπ(t)}Nt=1 is also a
set of N IID random variables. In fact, it consists of precisely the same random variables
as E , only in a different order.
I Define

µ(E ; n) =
1

n

n∑
i=1

Yi (47)

I Then, it is clear that for any n < N

µ(E ; n) 6= µ(π(E ); n) (48)

I However, if we include all of the observations it will be the case that

µ(E ;N) = µ(π(E );N), ∀ π ∈ Perm(N) (49)

I More generally, after a sufficiently large number of observations are made, any
sequence of IID observations will tend towards the same data generating
distribution. 29 / 39



Bayesian Drift

Thus, we see that the trajectory of the maximum a posteriori estimate is determined
entirely by the sequence in which data is observed. The terminal distribution, however,
is invariant under permutations of the order in which data is incorporated into the
posterior model. This should be compared to scheme independence an ERG.

I We can incorporate the effect of different sequences of observation by specifying
the trajectory of the maximum a posteriori estimate.

I Let γ : R→ SU denote such a trajectory. It can be generated as the integral flow of
a vector field γ̇.

I In particular, we will consider the case in which the maximum a posteriori estimate
follows a gradient descent with respect to the log-likelihood function
Φ(u; y) = ln(p0(y − G (u))):

γ̇ = −graduΦ(u; y)

∣∣∣∣
γ

(50)
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A Partial Differential Equation for Bayesian Inference

We are now prepared to derive a partial differential equation governing the backwards
drift-diffusion of the posterior predictive distribution.
I Given the τ posterior, πτ (u), and the conditional density pY |U , we can define the τ

dependent posterior predictive distribution:

pτ (y) =

∫
SU

VolU(u)πτ (u)p0(y − G (u)) (51)

I It is natural to interpret πτ as the transitionary probability density. It can be
associated with a Markov operator

Pτ (p0)(y) = Eπτ (p0(y − G (U))) (52)

I We can now derive the differential operator exponentiating to Pτ by computing

A(p0) = lim
τ→0

Pτ (p0)− p0

τ
(53)
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A Partial Differential Equation for Bayesian Inference

Taylor expanding around u = 0 we can write:

Pτ (p0)(y) = Eπτ

(
p0(y)− ∂p0

∂y i
∂G i

∂uj
γ̇jτ +

1

2

∂2p0

∂y i∂y j
∂G i

∂uk
∂G j

∂ul
δukδul +O(δu3)

)
(54)

I Using the previously stated formula for the 2n-point functions, and assuming that
the maximum a posteriori estimate follows a gradient descent with respect to the
log-likelihood in the geometry defined by the Fisher Metric, we can compute
explicitly

Pτ (p0)(y) = p0(y)−mi ∂p0

∂y i
+ K ij(γ)

∂2p0

∂y i∂y j
+O(τ2) (55)

where

K ij(γ) =
∂G i

∂uk
∂G j

∂ul
Ikl(γ); mi = −K ij(γ)

∂Φ

∂y j
(56)
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A Partial Differential Equation for Bayesian Inference

Thus, we can easily compute:

∂p0

∂τ
= A(p0) = −mi ∂p0

∂y i
+ K ij(γ)

∂2p0

∂y i∂y j
(57)

Which we can interpret as the differential equation satisfied by a function adapted to the
stochastic process

dYτ = −gradΦdτ + dWτ (58)

in a geometry with metric K .

I We regard this equation as defining an ERG flow in the sense of a drift-diffusion
process.
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The ERG/Dynamical Bayesian Inference Correspondence

ERG Bayesian Diffusion

1. Time parameter: t Inverse Observation Time: τ = 1
T

2. The inverse metric g ij The inverse Fisher metric I ij(γτ )

3. The potential function V The Log Likelihood function Φ(γτ ; y)

4. The scheme function Σ = Sq − Sp The Log Likelihood ratio Σ = Φ(u; y)−
Φ(γτ ; y)

I This dictionary allows one to translate between an ERG flow, and the diffusion
process associated with the backwards trajectory of a dynamical Bayesian inference.

I Given a complete Dynamical Bayesian Inference trajectory, one can therefore move
from the UV to the IR and visa versa, defining an meaningful notion of inverting an
ERG flow.
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Renormalizability and Scale

Recall, in the field theory context the role of the inverse metric was played by the
regulated two point function ĊΛ which defines a running momentum scale for operators
in the theory.
I In the Backwards Diffusion Process, the Fisher Metric I plays an analogous role as

a generalized two point function.
I In this sense, we view the Fisher metric as defining a notion of an emergent scale.
I In Wilsonian RG, the question of renormalizability corresponds to whether or not

higher order Feynman diagrams can be regulated by introducing a finite number of
operator sourced counterterms.

I In the language of statistical inference, the operator content of a theory
corresponds to the problem of model selection.

I In view of this fact, there seems to be a natural notion of renormalizability in terms
of whether a probability distribution can be specified with only a finite number of
connected moments, or, conversely, if one requires an infinite number of such
moments.
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Quantum Error Correction

The correspondence introduced in this paper can be regarded as a classical instantiation
of the correspondence between renormalization and quantum error correction
[cotler2019entanglement; furuya2020real].

I Let A denote an operator algebra whose elements we regard as the observables of a
theory. The set of states associated with A can be identified with its predual A∗
which consists of linear functionals that, when paired with an observable, return a
complex number corresponding to an expectation value.

I An RG flow can be formally understood as a quantum channel, which is a
completely positive, trace preserving, linear map between states E : A∗ → B∗.

I Such a map is a natural mathematical encoding of an RG flow due to the Data
Processing Inequality [ohya2004quantum]

DKL(ρ ‖ ρ′) ≤ DKL(E(ρ) ‖ E(ρ′)) (59)
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Quantum Error Correction Continued

The task of Quantum Error Correction is to recover the information contained in a state
ρ after it has been noised by the channel E .

I Studying Quantum Error Correction therefore provides several important lessons
about how the information contained in a theory is corrupted under an RG flow,
and under what circumstances that information can be exactly, or approximately
recovered [junge2018universal].

I When the operator algebra, A, is commutative, the space of states, A∗, can be
identified with the set of classical probability distributions assigning expectation
values to random variables a ∈ A.

I In this context, it can be shown the the universal recovery map, the Petz Map,
exactly reproduces Bayes’ Law.

37 / 39



Diffusion Learning

Diffusion learning [sohl2015deep] provides an actionable response to the following
question: Given an intractable distribution p0, how can we effectively sample data?

I The implementation of the diffusion learning scheme bears a very strong
resemblance to the ERG/Dynamical Bayesian inference correspondence.

I The initial data, p0, is first run through a forward diffusion process generated by
the operator F . This process destroys some fine grained information contained in
p0, but results in an analytically tractable distribution pF which is a fixed point
distribution of F .

I The distribution pF is then run through a backwards diffusion process generated by
an operator B . The operator B is chosen such that the relative entropy between the
terminal distribution of the backwards process, and the initial data p0 is minimized.

I There may be a utility to using non-diffusive recovery channels. The improved
accuracy of the reconstructed distribution must be balanced against the decreased
efficiency of the recovery process.
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Discussion

Some takeaways:

I The proposed correspondence between ERG and Dynamical Bayesian Inference
provides a clean quantification of the information content in an effective theory at
every scale. → Applications in diagnosing the information lost during an RG flow,
understanding RG monotonicity theorems.

I The notion of Bayesian inference as an inverse process to renormalization is
reminicient of the error-correcting interpretation of ERG. → Applications in
Bulk-Reconstruction, Holographic Renormalization, the AdS/CFT correspondence,
and general information theoretic approaches to Quantum Gravity

I Viewing ERG abstractly as a one parameter family of probability distributions for a
generic sample space allows the logic of RG to be carried over into contexts that
are not immediately physical. → Applications in Machine Learning as a device for
interpreting and constructing Artifical Intelligences.
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