The E_{k} Symmetry of Dimensional Reductions of M－Theory

Sasha Voronov ${ }^{1}$ on joint work with Hisham Sati ${ }^{2}$ arXiv：2111．14810，2212．13968，．．．

M－Theory and Mathematics
NYU Abu Dhabi，UAE
${ }^{1}$ University of Minnesota and ${ }^{2}$ NYU Abu Dhabi
January 15， 2023

Hisham Sati's "Hypothesis H" (2013)

Hypothesis H: The dynamics of M-theory is governed by the rational homotopy theory (RHT) of S^{4}. More precisely, the duality-symmetric equations of motion (EOMs) of supergravity in an 11d spacetime Y (background of M-theory)

$$
d G_{4}=0, \quad d G_{7}=-\frac{1}{2} G_{4} \wedge G_{4}
$$

define a map

$$
\varphi: Y \rightarrow S^{4}
$$

which induces a DGCA homomorphism

$$
\varphi^{*}: M\left(S^{4}\right) \rightarrow \Omega_{\mathrm{dR}}^{\circ}(Y)
$$

such that

$$
\varphi^{*}\left(g_{4}\right)=G_{4}, \quad \text { and } \quad \varphi^{*}\left(g_{7}\right)=G_{7} .
$$

Here $\quad M\left(S^{4}\right)=\left(\mathbb{R}\left[g_{4}, g_{7}\right] \mid d g_{4}=0, d g_{7}=-\frac{1}{2} g_{4}^{2}\right)$ is the Sullivan minimal model of S^{4} (the RHT of S^{4}).

More on Hypothesis H

In M-theory

$$
\begin{aligned}
& G_{4} \rightsquigarrow C_{3} \rightsquigarrow \mathrm{M} 2 \text {-brane } \\
& G_{7} \rightsquigarrow C_{6} \rightsquigarrow \mathrm{M} 5 \text {-brane }
\end{aligned}
$$

Via

$$
\varphi: Y \rightarrow S^{4}
$$

S^{4} becomes the universal target of M-theory and $\varphi^{*}\left(\right.$ RHT of $\left.S^{4}\right)=$ EOMs of M-theory in Y.

Generalized Hypothesis H

This pattern continues for reductions of M-theory to $d=11-k$ dimensions for all $k \geq 0$:

$$
\varphi_{k}: Y^{11} / T^{k}=\left(S^{1}\right)^{k} \rightarrow \mathcal{L}_{c}^{k} S^{4}
$$

with $\mathcal{L}_{c}^{k} S^{4}$ serving as a universal target space for (11 - k)-dim M-theory!!!

Here

$$
\begin{gathered}
\mathcal{L}_{c}^{k} Z:=\mathcal{L}_{c}\left(\mathcal{L}_{c}\left(\ldots\left(\mathcal{L}_{c} Z\right) \ldots\right)\right) \\
\mathcal{L}_{c} Z:=\mathcal{L} Z / / S^{1}:=\mathcal{L} Z \times_{S^{1}} E S^{1} \\
\mathcal{L} Z:=\operatorname{Map}\left(S^{1}, Z\right)
\end{gathered}
$$

is the iterated cyclic loop space (cyclification) $\mathcal{L}_{c}^{k} Z$ of Z.

Generalized Hypothesis H

with all the EOMs on $X^{11-k}=Y^{11} /\left(S^{1}\right)^{k}$ may be read off from the Sullivan minimal model $M\left(\mathcal{L}_{c}^{k} S^{4}\right)$ of $\mathcal{L}_{c}^{k} S^{4}$, which is well-known, see next slides.

Example: Type IIA string theory

(as per Fiorenza-Sati-Schreiber 2017)

$$
\begin{gathered}
X^{10}=Y^{11} / / S^{1} \xrightarrow{\varphi_{1}} \mathcal{L}_{C} S^{4} \\
M\left(\mathcal{L}_{c} S^{4}\right)=\left(\mathbb{R}\left[g_{4}, g_{7}, s g_{4}, s g_{7}, w\right], d\right) \\
|w|=2, \quad\left|s g_{4}\right|=3, \quad\left|s g_{7}\right|=6 \\
d g_{4}=\left(s g_{4}\right) \cdot w, \quad d g_{7}=-\frac{1}{2} g_{4}^{2}+\left(s g_{7}\right) \cdot w \\
d\left(s g_{4}\right)=0, \quad d\left(s g_{7}\right)=\left(s g_{4}\right) \cdot g_{4}, \quad d w=0
\end{gathered}
$$

In standard physics notation:

$$
F_{2}:=\varphi_{1}^{*}(w), \quad H_{3}:=\varphi_{1}^{*}\left(s g_{4}\right), \quad F_{4}:=\varphi_{1}^{*}\left(g_{4}\right), \quad H_{7}:=\varphi_{1}^{*}\left(g_{7}\right)
$$

Equations of motion (EOMs) of 10d type-IIA supergravity:

$$
\begin{gathered}
d F_{4}=H_{3} \wedge F_{2}, \quad d H_{7}=-\frac{1}{2} F_{4} \wedge F_{4}+F_{6} \wedge F_{2} \\
d H_{3}=0, \quad d F_{6}=H_{3} \wedge F_{4}, \quad d F_{2}=0
\end{gathered}
$$

Hypothesis $\mathrm{H} \Rightarrow$ Principle H :

Principle H

Any feature of or statement about the Sullivan minimal model $M\left(\mathcal{L}_{c}^{k} S^{4}\right)$ of an iterated cyclic loop space $\mathcal{L}_{c}^{k} S^{4}$ (or the rational homotopy type thereof) may be translated into a feature of or statement about the compactification of M-theory on the k-torus $T^{k}=\left(S^{1}\right)^{k}$.

The Unreasonable Effectiveness of Hypothesis H

Preparation: There are adjunctions
(1) In Topology:

$$
\operatorname{Map}(E(Y), Z) \xrightarrow{\sim} \operatorname{Map}_{/ B S^{1}}\left(Y, \mathcal{L}_{C} Z\right),
$$

where $E(Y)$ is the total space of the principal S^{1}-bundle over Y corresponding to $Y \rightarrow B S^{1}$, see Braunack-Mayer, Sati, and Schreiber (2018). This property determines $\mathcal{L}_{c} Z$, up to unique homeomorphism over $B S^{1}$.
(2) In Algebra:

$$
\operatorname{Hom}_{\mathbb{R}-\mathrm{DGCA}}(M, N /(w)) \xrightarrow{\sim} \operatorname{Hom}_{\mathbb{R}[w]-\mathrm{DGCA}}(\mathrm{VPB}(M), N),
$$

where $\operatorname{VPB}(M)$ is the "Vigué-Poirrier-Burgheleazation" of M, see Vigué-Poirrier and Burghelea (1985). This property determines $\operatorname{VPB}(M)$, up to unique isomorphism of dg- $\mathbb{R}[w]$-algebras.
Translation: $M=M(Z), N=M(Y), \mathbb{R}[w]=M\left(B S^{1}\right)$,
$N /(w)=M(E(Y)), \operatorname{VPB}(M)=M\left(\mathcal{L}_{c} Z\right)$.

The Unreasonable Effectiveness of Hypothesis H

$$
\begin{equation*}
\operatorname{Map}(E(Y), Z) \xrightarrow{\sim} \operatorname{Map}_{/ B S^{1}}\left(Y, \mathcal{L}_{C} Z\right) \tag{1}
\end{equation*}
$$

(2) $\quad \operatorname{Hom}_{\mathbb{R}-\mathrm{DGCA}}(M, N /(w)) \xrightarrow{\sim} \operatorname{Hom}_{\mathbb{R}[w]-\mathrm{DGCA}}(\operatorname{VPB}(M), N)$
(3) In M-Theory:
$\{$ M-theory of type M on $E(Y)\} \xrightarrow{\sim}\{$ M-theory of type $R(M)$ on $Y\}$,
where the type of M-theory is expected to be determined by the dimension of the spacetime and we are actually speaking about pre-M-theories or duality-symmetric supergravities, to be precise. What constitutes a dimensionally reduced M-theory is exactly the "Vigué-Poirrier-Burgheleazation" of M-theory before the reduction. This property determines what the reduction is, up to unique change of variables for fields.
Translation: A reduced M-theory of Type M on spacetime $Y=$ a DGCA homomorphism $M \rightarrow \Omega_{\mathrm{dR}}^{\bullet}(X Y$ for a certain DGCA M.
Consequence: An M-theory on $X^{11-k}=$ a DGCA homomorphism $M\left(\mathcal{L}_{c}^{k} S^{4}\right) \rightarrow \Omega_{\mathrm{dR}}^{\bullet}(X)$.

Recipe for EOMs of Dimensional Reduction

Vigué-Poirrier-Burgheleazation of Supergravity

If supergravity on a spacetime X is given by form fields G_{1}, G_{2},
...., with EOMs

$$
d G_{1}=p_{1}\left(G_{1}, G_{2}, \ldots\right), \quad d G_{2}=p_{2}\left(G_{1}, G_{2}, \ldots\right), \ldots
$$

then its reduction to X / S^{1} will be given by form fields

$$
G_{1}, G_{2}, \ldots, \quad S G_{1}, S G_{2}, \ldots, \quad \omega
$$

$\operatorname{deg} S G_{i}=\operatorname{deg} G_{i}-1, \operatorname{deg} \omega=2$, with EOMs

$$
\begin{gathered}
d G_{i}=p_{i}\left(G_{1}, G_{2}, \ldots\right)+S G_{i} \wedge \omega \\
d S G_{i}=-S p_{i}\left(G_{1}, G_{2}, \ldots\right), \quad d \omega=0
\end{gathered}
$$

where S is extended as a square-zero derivation of the algebra of polynomials $\mathbb{R}\left[G_{1}, G_{2}, \ldots\right]$.

Toroidification versus Iteraded Cyclification

Use toroidication $\mathcal{T}^{k} S^{4}:=\mathcal{L}^{k} S^{4} / / T^{k}$ instead of iterated cyclification $\mathcal{L}_{c}^{k} S^{4}$ to allow for more symmetry

Cyclification Toroidification
$\mathcal{L}_{c}^{k} S^{4}=\mathcal{L}\left(\ldots\left(\mathcal{L S}^{4} / / S^{1}\right) \ldots\right) / / S^{1} \quad \mathcal{T}^{k} S^{4}=\mathcal{L}^{k} S^{4} / / T^{k}$

More axions, like $S_{2} \omega_{1}$ Same toroidal symmetry
Less non-abelian symmetry
$M\left(\mathcal{L}_{c}^{k} S^{4}\right)=\operatorname{VPB}^{k}\left(M\left(S^{4}\right)\right)$

Some axions, like $S_{3} S_{2} S_{1} G_{4}$ Same toroidal symmetry
More non-abelian symmetry

$$
M\left(\mathcal{T}^{k} S^{4}\right)=S V_{k}\left(M\left(S^{4}\right)\right)
$$

Defined by different adjunctions:

$\operatorname{Hom}_{\mathbb{R}-\mathrm{DGCA}}(M, N /(w)) \xrightarrow{\sim} \operatorname{Hom}_{\mathbb{R}[w]-\mathrm{DGCA}}(\operatorname{VPB}(M), N)$ $\operatorname{Hom}_{\mathbb{R}-\operatorname{dGCA}}\left(M, N /\left(w_{1}, \ldots, w_{k}\right)\right) \xrightarrow{\sim} \operatorname{Hom}_{\mathbb{R}\left[w_{1}, \ldots, w_{\mathbb{R}}\right] \operatorname{DGCA}}\left(\mathrm{SV}_{k}(M), N\right)$

Example of a Toroidification

$$
\begin{aligned}
& M\left(\mathcal{T}^{3} S^{4}\right)=\left(\mathbb{R}\left[g_{4}, g_{7}, s_{i} g_{4}, s_{i} g_{7}, s_{i} s_{j} g_{4}, s_{i} s_{j} g_{7}, s_{i} s_{j} s_{k} g_{4}, s_{i} s_{j} s_{k} g_{7}, w_{i}\right], d\right), \\
& 1 \leq i, j, k \leq 3, \quad s_{j} s_{i}=-s_{i} s_{j}, \\
& d g_{4}=\sum_{i=1}^{3} s_{i} g_{4} \cdot w_{i}, \quad d g_{7}=-\frac{1}{2} g_{4}^{2}+\sum_{i=1}^{3} s_{i} g_{7} \cdot w_{i}, \\
& d s_{i} g_{4}=\sum_{j=1}^{3} s_{j} s_{i} g_{4} \cdot w_{j}, \quad d s_{i} g_{7}=s_{i} g_{4} \cdot g_{4}+\sum_{j=1}^{3} s_{j} s_{i} g_{7} \cdot w_{j}, \\
& d s_{i} s_{j} g_{4}=s_{i} s_{j} s_{k} g_{4} \cdot w_{k}, \quad k \neq i, j, \\
& d s_{i} s_{j} g_{7}=-s_{i} s_{j} g_{4} \cdot g_{4}-s_{i} g_{4} \cdot s_{j} g_{4}+s_{i} s_{j} s_{k} g_{7} \cdot w_{k}, \quad k \neq i, j \\
& d s_{1} s_{2} s_{3} g_{4}=0, \quad d s_{1} s_{2} s_{3} g_{7}=s_{1} s_{2} s_{3} g_{4} \cdot g_{4}+\sum_{\substack{i<j \\
k \neq i, j}} \operatorname{sgn}\left(\begin{array}{ccc}
1 & 2 & 3 \\
i & j & k
\end{array}\right) s_{i} s_{j} g_{4} \cdot s_{k} g_{4}, \\
& d w_{i}=0, \quad 1 \leq i \leq 3 .
\end{aligned}
$$

The E_{k} series

The Cartan matrix

$$
C=\left(c_{i j}\right)=\left[\begin{array}{cccccccc}
2 & 0 & 0 & -1 & 0 & \ldots & 0 & 0 \\
0 & 2 & -1 & 0 & 0 & \ldots & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & \ldots & 0 & 0 \\
-1 & 0 & -1 & 2 & -1 & \ldots & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & \ldots & 0 & 0 \\
& & & \vdots & & & & \\
0 & 0 & 0 & 0 & 0 & \ldots & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & \ldots & -1 & 2
\end{array}\right]
$$

is almost the negative of the incidence matrix of the Dynkin diagram (except for the diagonal entries $c_{i j}=2$),

More on the E_{k} series

k	Universal Target	Type of E_{k}	Lie Algebra \mathfrak{e}_{k}
0	S^{4}	A_{-1}	$\mathfrak{s l}_{0}=\varnothing$
1	$\mathcal{T}^{1} S^{4}$	A_{0}	$\mathfrak{s l}_{1}=0$
1	IIB	A_{1}	$\mathfrak{s l}_{2}$
2	$\mathcal{T}^{2} S^{4}$	A_{1}	$\mathfrak{s l}_{2}$
3	$\mathcal{T}^{3} S^{4}$	$A_{2} \times A_{1}$	$\mathfrak{s l}_{3} \oplus \mathfrak{s l}_{2}$
4	$\mathcal{T}^{4} S^{4}$	A_{4}	$\mathfrak{s l}_{5}$
5	$\mathcal{T}^{5} S^{4}$	D_{5}	$\mathfrak{s o}_{10}$
6	$\mathcal{T}^{6} S^{4}$	E_{6}	\mathfrak{e}_{6}
7	$\mathcal{T}^{7} S^{4}$	E_{7}	\mathfrak{e}_{7}
8	$\mathcal{T}^{8} S^{4}$	E_{8}	\mathfrak{e}_{8}
9	$\mathcal{T}^{9} S^{4}$	E_{9}	affine $\mathfrak{e}_{9}=\widehat{\mathfrak{e}_{8}}$
10	$\mathcal{T}^{10} S^{4}$	E_{10}	hyperbolic \mathfrak{e}_{10}

Lie algebra of type E_{k}

We will define a (trivial) central extension \mathfrak{g}_{k} of the split real form $E_{k(k)}$ of the Lie algebra \mathfrak{e}_{k} of type E_{k} (assume $k \geq 3$).
Fix a real vector space \mathfrak{h}_{k} of dimension $k+1$. We assume a set of k linearly independent elements (thought of as simple coroots) α_{i}^{\vee} of \mathfrak{h}_{k} and a set of k linearly independent elements (thought of as simple roots) α_{i} of the dual space \mathfrak{h}_{k}^{*}, such that $\alpha_{i}\left(\alpha_{j}^{\vee}\right)=c_{j i}$, are given.
The Lie algebra \mathfrak{g}_{k} is defined by (Chevalley) generators $e_{1}, e_{2}, \ldots, e_{k}, f_{1}, f_{2}, \ldots, f_{k}$ and the elements of \mathfrak{h}_{k} and relations:

- $\left[h, h^{\prime}\right]=0$ for $h, h^{\prime} \in \mathfrak{h}_{k}$;
- $\left[h, e_{i}\right]=\alpha_{i}(h) e_{i}$ for $h \in \mathfrak{h}_{k}$;
- $\left[h, f_{i}\right]=-\alpha_{i}(h) f_{i}$ for $h \in \mathfrak{h}_{k}$;
- $\left[\boldsymbol{e}_{i}, f_{j}\right]=\delta_{i j} \alpha_{i}^{\vee}$;
- If $i \neq j$ (so $\left.c_{i j} \leq 0\right)$ then $\operatorname{ad}\left(e_{i}\right)^{1-c_{i j}}\left(e_{j}\right)=0$ and $\operatorname{ad}\left(f_{i}\right)^{1-c_{i j}}\left(f_{j}\right)=0$ (Serre relations).

The E_{k} Symmetry of M-theory Reduced on T^{k}

We consider the parabolic subalgebra \mathfrak{p}_{k} generated by all the generators but e_{1} and define an action of \mathfrak{p}_{k} on $M\left(\mathcal{T}^{k} S^{4}\right)$, as follows:

$$
\begin{array}{r}
f_{1} g_{4}=f_{1} g_{7}=f_{1} s_{i} g_{4}=f_{1} s_{i} g_{7}=f_{1} s_{i} s_{j} g_{4} \\
=f_{1} s_{i} s_{j} g_{7}=f_{1} s_{i} s_{j} s_{l} g_{4}=f_{1} s_{i} s_{j} s_{l} g_{7}=f_{1} w_{i}=0,
\end{array}
$$

$$
\text { except for } f_{1} s_{i} s_{j} g_{4}=\operatorname{sgn}\left(\begin{array}{lll}
1 & 2 & 3 \\
i & j & 1
\end{array}\right) w_{l} \text { for }\{i, j, l\}=\{1,2,3\}
$$

$$
\text { and } f_{1} s_{1} s_{2} s_{3} g_{7}=g_{4}
$$

$$
\left[f_{1}, s_{i}\right]=0, \quad 4 \leq i \leq k
$$

$$
h g_{4}=\varepsilon_{0}(h) g_{4}, \quad h g_{7}=2 \varepsilon_{0}(h) g_{7}
$$

$$
\left[h, s_{i}\right]=-\varepsilon_{i}(h) s_{i}, \quad h w_{i}=\varepsilon_{i}(h) w_{i}, \quad 1 \leq i \leq k
$$

$$
e_{i} g_{4}=e_{i} g_{7}=0, \quad 2 \leq i \leq k
$$

$$
e_{i} w_{j}=\delta_{i j} w_{i-1}, \quad 2 \leq i \leq k, 1 \leq j \leq k,
$$

$$
\left[e_{i}, s_{j}\right]=-\delta_{i-1, j} s_{i}, \quad 2 \leq i \leq k, 1 \leq j \leq k
$$

$$
f_{i} g_{4}=f_{i} g_{7}=0, \quad 2 \leq i \leq k
$$

$$
f_{i} w_{j}=\delta_{i-1, j} w_{i}, \quad 2 \leq i \leq k, 1 \leq j \leq k,
$$

$$
\left[f_{i}, s_{j}\right]=-\delta_{i j} s_{i-1}, \quad 2 \leq i \leq k, 1 \leq j \leq k
$$

Main Theorems: U-Duality in $(11-k)$-Dim M-Theory

Theorem 1

The above formulas define a (linear) action of the parabolic Lie subalgebra \mathfrak{p}_{k} of \mathfrak{g}_{k} on the Sullivan minimal model $M\left(\mathcal{T}^{k} S^{4}\right)$, i.e., a Lie-algebra homomorphism

$$
\mathfrak{p}_{k} \rightarrow \operatorname{Der} M\left(\mathcal{T}^{k} S^{4}\right)
$$

Theorem 2

The action of \mathfrak{p}_{k} on $M\left(\mathcal{T}^{k} S^{4}\right)$ may be extended to an action of \mathfrak{g}_{k} by (linear) graded derivations in $\operatorname{Der}^{0} M\left(\mathcal{T}^{k} S^{4}\right)$. In other words, we have a commutative diagram of Lie-algebra homomorphisms

Meaning of Theorem 2

The component L^{0} of a dg-Lie algebra L^{\bullet} plays the role of a gauge Lie algebra in deformation theory governed by L^{\bullet}. In the case of a Sullivan minimal model $M(X)$, the dg-Lie algebra Der ${ }^{\bullet} M(X)$ describes the deformation theory of the Quillen minimal model $Q(X)$ as an L_{∞}-algebra. In the case of $X=\mathcal{T}^{k} S^{4}$, the Quillen minimal model is just a graded Lie algebra, the rational homotopy Lie algebra $\pi_{\bullet}\left(\mathcal{T}^{k} S^{4}\right)[1] \otimes \mathbb{Q}$ of $\mathcal{T}^{k} S^{4}$ with respect to the Whitehead product. From the physics perspective, the Lie algebra \mathfrak{g}_{k} acts by gauge transformations in the L_{∞} deformation theory of the gauge Lie algebra $\pi_{\bullet}\left(\mathcal{T}^{k} S^{4}\right)[1] \otimes \mathbb{Q}$ of the reduction of M-theory on the torus T^{k}. This gauge Lie algebra is a k-fold dimensional reduction of the M-theory gauge algebra $\pi_{\bullet}\left(S^{4}\right)[1] \otimes \mathbb{Q}$, which is based on generators x_{3} of degree 3 and x_{6} of degree 6:

$$
\left[x_{3}, x_{3}\right]=x_{6}, \quad\left[x_{3}, x_{6}\right]=0
$$

