The E_k Symmetry of Dimensional Reductions of M-Theory

Sasha Voronov¹ on joint work with Hisham Sati² arXiv:2111.14810, 2212.13968, ... M-Theory and Mathematics NYU Abu Dhabi, UAE

¹University of Minnesota and ²NYU Abu Dhabi

January 15, 2023

<ロト <四ト <注入 <注下 <注下 <

Hisham Sati's "Hypothesis H" (2013)

Hypothesis H: The dynamics of M-theory is governed by the rational homotopy theory (RHT) of S^4 . More precisely, the duality-symmetric equations of motion (EOMs) of supergravity in an 11d spacetime Y (background of M-theory)

$$dG_4 = 0, \qquad dG_7 = -\frac{1}{2}G_4 \wedge G_4$$

define a map

 $\varphi: \mathbf{Y} \to \mathbf{S}^4$

which induces a DGCA homomorphism

$$\varphi^*: M(S^4) \to \Omega^{ullet}_{\mathsf{dR}}(Y)$$

such that

$$arphi^*(g_4)=G_4, \quad ext{and} \quad arphi^*(g_7)=G_7.$$

Here $M(S^4) = (\mathbb{R}[g_4, g_7] | dg_4 = 0, dg_7 = -\frac{1}{2}g_4^2)$ is the Sullivan minimal model of S^4 (the RHT of S^4).

In M-theory

 $G_4 \rightsquigarrow C_3 \rightsquigarrow M2$ -brane $G_7 \rightsquigarrow C_6 \rightsquigarrow M5$ -brane

Via

$$\varphi: \mathbf{Y} \to \mathbf{S}^{4},$$

S⁴ becomes the *universal target of M-theory* and

 $\varphi^*(\mathsf{RHT} \text{ of } S^4) = \mathsf{EOMs} \text{ of } \mathsf{M}\text{-theory in } Y.$

<ロ>> < (回)、< (回)、< (回)、< (回)、< (回)、< (回)、(回)、(の)、3/18

This pattern continues for reductions of M-theory to d = 11 - k dimensions for all $k \ge 0$:

$$\varphi_k: Y^{11}/T^k = (S^1)^k \to \mathcal{L}^k_c S^4$$

with $\mathcal{L}_c^k S^4$ serving as a universal target space for (11 - k)-dim M-theory!!!

Here

$$\begin{split} \mathcal{L}_{c}^{k} Z &:= \mathcal{L}_{c}(\mathcal{L}_{c}(\dots(\mathcal{L}_{c} Z)\dots)), \\ \mathcal{L}_{c} Z &:= \mathcal{L} Z / \!\! / S^{1} := \mathcal{L} Z \times_{S^{1}} ES^{1}, \\ \mathcal{L} Z &:= \operatorname{Map}(S^{1}, Z), \end{split}$$

is the *iterated cyclic loop space* (*cyclification*) $\mathcal{L}_c^k Z$ of Z.

Generalized Hypothesis H

with all the EOMs on $X^{11-k} = Y^{11}/(S^1)^k$ may be read off from the Sullivan minimal model $M(\mathcal{L}_c^k S^4)$ of $\mathcal{L}_c^k S^4$, which is well-known, see next slides.

Example: Type IIA string theory

(as per Fiorenza-Sati-Schreiber 2017)

$$X^{10} = Y^{11} / S^1 \xrightarrow{\varphi_1} \mathcal{L}_c S^4$$

$$egin{aligned} & \mathcal{M}(\mathcal{L}_cS^4) = (\mathbb{R}[g_4,g_7,sg_4,sg_7,w],d), \ & |w|=2, & |sg_4|=3, & |sg_7|=6, \ & dg_4 = (sg_4)\cdot w, & dg_7 = -rac{1}{2}g_4^2 + (sg_7)\cdot w, \ & d(sg_4) = 0, & d(sg_7) = (sg_4)\cdot g_4, & dw = 0. \end{aligned}$$

In standard physics notation:

 $\begin{aligned} F_2 &:= \varphi_1^*(w), \quad H_3 := \varphi_1^*(sg_4), \quad F_4 := \varphi_1^*(g_4), \quad H_7 := \varphi_1^*(g_7). \end{aligned}$ Equations of motion (EOMs) of 10d type-IIA supergravity:

$$dF_4 = H_3 \wedge F_2, \qquad dH_7 = -\frac{1}{2}F_4 \wedge F_4 + F_6 \wedge F_2, \\ dH_3 = 0, \qquad dF_6 = H_3 \wedge F_4, \qquad dF_2 = 0.$$

Principle H

Any feature of or statement about the Sullivan minimal model $M(\mathcal{L}_c^k S^4)$ of an iterated cyclic loop space $\mathcal{L}_c^k S^4$ (or the rational homotopy type thereof) may be translated into a feature of or statement about the compactification of M-theory on the *k*-torus $T^k = (S^1)^k$.

The Unreasonable Effectiveness of Hypothesis H

Preparation: There are adjunctions (1) In **Topology**:

 $\mathsf{Map}(E(Y), Z) \xrightarrow{\sim} \mathsf{Map}_{/BS^1}(Y, \mathcal{L}_c Z),$

where E(Y) is the total space of the principal S^1 -bundle over Y corresponding to $Y \rightarrow BS^1$, see Braunack-Mayer, Sati, and Schreiber (2018). This property determines $\mathcal{L}_c Z$, up to unique homeomorphism over BS^1 .

(2) In Algebra:

 $\mathsf{Hom}_{\mathbb{R}\operatorname{-DGCA}}(M,N/(w)) \overset{\sim}{\longrightarrow} \mathsf{Hom}_{\mathbb{R}[w]\operatorname{-DGCA}}(\mathsf{VPB}(M),N),$

where VPB(M) is the "Vigué-Poirrier-Burgheleazation" of M, see Vigué-Poirrier and Burghelea (1985). This property determines VPB(M), up to unique isomorphism of dg- $\mathbb{R}[w]$ -algebras.

Translation: M = M(Z), N = M(Y), $\mathbb{R}[w] = M(BS^1)$, N/(w) = M(E(Y)), $VPB(M) = M(\mathcal{L}_c Z)$.

The Unreasonable Effectiveness of Hypothesis H

(1)
$$\operatorname{Map}(E(Y), Z) \xrightarrow{\sim} \operatorname{Map}_{/BS^{1}}(Y, \mathcal{L}_{c}Z)$$

(2) $\operatorname{Hom}_{\mathbb{R}\operatorname{-DGCA}}(M, N/(w)) \xrightarrow{\sim} \operatorname{Hom}_{\mathbb{R}[w]\operatorname{-DGCA}}(\operatorname{VPB}(M), N)$

(3) In M-Theory:

{M-theory of type M on E(Y)} $\xrightarrow{\sim}$ {M-theory of type R(M) on Y},

where the type of M-theory is expected to be determined by the dimension of the spacetime and we are actually speaking about pre-M-theories or **duality-symmetric supergravities**, to be precise. What constitutes a dimensionally reduced M-theory is exactly the "Vigué-Poirrier–Burgheleazation" of M-theory before the reduction. This property determines what the reduction is, up to unique change of variables for fields.

Translation: A reduced M-theory of Type *M* on spacetime Y = a DGCA homomorphism $M \rightarrow \Omega^{\bullet}_{dR}(XY)$ for a certain DGCA *M*.

Consequence: An M-theory on X^{11-k} = a DGCA homomorphism $M(\mathcal{L}^k_c S^4) \to \Omega^{\bullet}_{dR}(X)$.

Recipe for EOMs of Dimensional Reduction

Vigué-Poirrier-Burgheleazation of Supergravity

If supergravity on a spacetime X is given by form fields G_1 , G_2 , ..., with EOMs

$$dG_1 = p_1(G_1, G_2, \dots), \quad dG_2 = p_2(G_1, G_2, \dots), \dots,$$

then its reduction to X/S^1 will be given by form fields

$$G_1, G_2, \ldots, SG_1, SG_2, \ldots, \omega,$$

deg $SG_i = \deg G_i - 1$, deg $\omega = 2$, with EOMs

$$dG_i = p_i(G_1, G_2, \dots) + SG_i \wedge \omega, \ dSG_i = -Sp_i(G_1, G_2, \dots), \quad d\omega = 0,$$

where *S* is extended as a square-zero derivation of the algebra of polynomials $\mathbb{R}[G_1, G_2, ...]$.

Toroidification versus Iteraded Cyclification

Use toroidication $\mathcal{T}^k S^4 := \mathcal{L}^k S^4 /\!\!/ T^k$ instead of iterated cyclification $\mathcal{L}^k_c S^4$ to allow for more symmetry

Cyclification	Toroidification	
$\mathcal{L}_{c}^{k}S^{4} = \mathcal{L}(\ldots(\mathcal{L}S^{4}/\!\!/ S^{1})\ldots)/\!\!/ S^{1}$	$\mathcal{T}^k \mathcal{S}^4 = \mathcal{L}^k \mathcal{S}^4 /\!\!/ \mathcal{T}^k$	
More axions, like $S_2\omega_1$	Some axions, like $S_3 S_2 S_1 G_4$	
Same toroidal symmetry	Same toroidal symmetry	
Less non-abelian symmetry	More non-abelian symmetry	
$M(\mathcal{L}_{c}^{k}S^{4}) = VPB^{k}(M(S^{4}))$	$M(\mathcal{T}^kS^4) = \mathrm{SV}_k(M(S^4))$	

Defined by different adjunctions:

 $\mathsf{Hom}_{\mathbb{R}\operatorname{-DGCA}}(M, N/(w)) \xrightarrow{\sim} \mathsf{Hom}_{\mathbb{R}[w]\operatorname{-DGCA}}(\mathsf{VPB}(M), N)$

 $\mathsf{Hom}_{\mathbb{R}\operatorname{-DGCA}}(M, N/(w_1, \dots, w_k)) \stackrel{\sim}{\longrightarrow} \mathsf{Hom}_{\mathbb{R}[w_1, \dots, w_k]\operatorname{-DGCA}}(\mathsf{SV}_k(M), N)$

$$\begin{split} \mathcal{M}(\mathcal{T}^3S^4) &= \left(\mathbb{R}[g_4, g_7, s_ig_4, s_ig_7, s_is_jg_4, s_is_jg_7, s_is_js_kg_4, s_is_js_kg_7, w_i], d\right), \\ &1 \leq i, j, k \leq 3, \qquad s_js_i = -s_is_j, \\ dg_4 &= \sum_{i=1}^3 s_ig_4 \cdot w_i, \qquad dg_7 = -\frac{1}{2}g_4^2 + \sum_{i=1}^3 s_ig_7 \cdot w_i, \\ ds_ig_4 &= \sum_{j=1}^3 s_js_ig_4 \cdot w_j, \qquad ds_ig_7 = s_ig_4 \cdot g_4 + \sum_{j=1}^3 s_js_jg_7 \cdot w_j, \\ ds_is_jg_4 &= s_is_js_kg_4 \cdot w_k, \quad k \neq i, j, \\ ds_is_jg_7 &= -s_is_jg_4 \cdot g_4 - s_ig_4 \cdot s_jg_4 + s_is_js_kg_7 \cdot w_k, \quad k \neq i, j \\ ds_1s_2s_3g_4 &= 0, \qquad ds_1s_2s_3g_7 = s_1s_2s_3g_4 \cdot g_4 + \sum_{\substack{i < j \\ k \neq i, j}} \operatorname{sgn}\left(\frac{1}{i} \frac{2}{j} \frac{3}{k}\right)s_is_jg_4 \cdot s_kg_4, \\ dw_i &= 0, \qquad 1 \leq i \leq 3. \end{split}$$

・ロト (部)、(音)、(音)、音)の(で) 12/18

is almost the negative of the incidence matrix of the Dynkin diagram (except for the diagonal entries $c_{ii} = 2$),

k	Universal Target	Type of E_k	Lie Algebra e_k
0	S^4	A_1	$\mathfrak{sl}_0 = \emptyset$
1	$\mathcal{T}^1 S^4$	A ₀	$\mathfrak{sl}_1 = 0$
1	IIB	<i>A</i> ₁	sl2
2	$\mathcal{T}^2 S^4$	<i>A</i> ₁	sl2
3	$\mathcal{T}^3 S^4$	$A_2 imes A_1$	$\mathfrak{sl}_3\oplus\mathfrak{sl}_2$
4	\mathcal{T}^4S^4	A4	sl5
5	$\mathcal{T}^5 \mathcal{S}^4$	D_5	\$0 ₁₀
6	$\mathcal{T}^6 S^4$	E ₆	¢ ₆
7	$\mathcal{T}^7 S^4$	E ₇	e7
8	$\mathcal{T}^8 S^4$	E ₈	¢8
9	\mathcal{T}^9S^4	E ₉	affine $\mathfrak{e}_9 = \widehat{\mathfrak{e}_8}$
10	$\mathcal{T}^{10}S^4$	E ₁₀	hyperbolic e_{10}

Lie algebra of type E_k

We will define a (trivial) central extension \mathfrak{g}_k of the split real form $E_{k(k)}$ of the Lie algebra \mathfrak{e}_k of type E_k (assume $k \ge 3$).

Fix a real vector space \mathfrak{h}_k of dimension k + 1. We assume a set of k linearly independent elements (thought of as *simple coroots*) α_i^{\vee} of \mathfrak{h}_k and a set of k linearly independent elements (thought of as *simple roots*) α_i of the dual space \mathfrak{h}_k^* , such that $\alpha_i(\alpha_j^{\vee}) = c_{ji}$, are given.

The Lie algebra \mathfrak{g}_k is defined by (*Chevalley*) generators $e_1, e_2, \ldots, e_k, f_1, f_2, \ldots, f_k$ and the elements of \mathfrak{h}_k and relations:

•
$$[h, h'] = 0$$
 for $h, h' \in \mathfrak{h}_k$;

•
$$[h, e_i] = \alpha_i(h)e_i$$
 for $h \in \mathfrak{h}_k$;

•
$$[h, f_i] = -\alpha_i(h)f_i$$
 for $h \in \mathfrak{h}_k$;

•
$$[\boldsymbol{e}_i, f_j] = \delta_{ij} \alpha_i^{\vee};$$

• If
$$i \neq j$$
 (so $c_{ij} \leq 0$) then $\operatorname{ad}(e_i)^{1-c_{ij}}(e_j) = 0$ and $\operatorname{ad}(f_i)^{1-c_{ij}}(f_j) = 0$ (Serre relations).

The E_k Symmetry of M-theory Reduced on T^k

We consider the **parabolic subalgebra** \mathfrak{p}_k generated by all the generators but e_1 and define an action of \mathfrak{p}_k on $M(\mathcal{T}^k S^4)$, as follows:

$$f_{1}g_{4} = f_{1}g_{7} = f_{1}s_{i}g_{4} = f_{1}s_{i}g_{7} = f_{1}s_{i}s_{j}g_{4}$$

$$= f_{1}s_{i}s_{j}g_{7} = f_{1}s_{i}s_{j}s_{i}g_{4} = f_{1}s_{i}s_{j}s_{i}g_{7} = f_{1}w_{i} = 0,$$
except for $f_{1}s_{i}s_{j}g_{4} = sgn\left(\frac{1}{i}\frac{2}{j}\frac{3}{i}\right)w_{i}$ for $\{i, j, l\} = \{1, 2, 3\}$
and $f_{1}s_{1}s_{2}s_{3}g_{7} = g_{4},$

$$[f_{1}, s_{i}] = 0, \quad 4 \le i \le k,$$

$$hg_{4} = \varepsilon_{0}(h)g_{4}, \quad hg_{7} = 2\varepsilon_{0}(h)g_{7},$$

$$[h, s_{i}] = -\varepsilon_{i}(h)s_{i}, \quad hw_{i} = \varepsilon_{i}(h)w_{i}, \quad 1 \le i \le k,$$

$$e_{i}g_{4} = e_{i}g_{7} = 0, \quad 2 \le i \le k,$$

$$[e_{i}, s_{j}] = -\delta_{i-1,j}s_{i}, \quad 2 \le i \le k, 1 \le j \le k,$$

$$f_{i}g_{4} = f_{i}g_{7} = 0, \quad 2 \le i \le k,$$

$$f_{i}w_{j} = \delta_{i-1,j}w_{i}, \quad 2 \le i \le k, 1 \le j \le k,$$

$$[f_{i}, s_{j}] = -\delta_{ij}s_{i-1}, \quad 2 \le i \le k, 1 \le j \le k.$$

Theorem 1

The above formulas define a (linear) action of the **parabolic** Lie subalgebra \mathfrak{p}_k of \mathfrak{g}_k on the Sullivan minimal model $M(\mathcal{T}^k S^4)$, *i.e.*, a Lie-algebra homomorphism

$$\mathfrak{p}_k o \mathsf{Der}\, M(\mathcal{T}^k S^4).$$

Theorem 2

The action of \mathfrak{p}_k on $M(\mathcal{T}^k S^4)$ may be extended to an action of \mathfrak{g}_k by (linear) graded derivations in $\operatorname{Der}^0 M(\mathcal{T}^k S^4)$. In other words, we have a commutative diagram of Lie-algebra homomorphisms

Meaning of Theorem 2

The component L^0 of a dg-Lie algebra L^{\bullet} plays the role of a gauge Lie algebra in deformation theory governed by L[•]. In the case of a Sullivan minimal model M(X), the dg-Lie algebra Der[•] M(X) describes the deformation theory of the Quillen minimal model Q(X) as an L_{∞} -algebra. In the case of $X = \mathcal{T}^k S^4$, the Quillen minimal model is just a graded Lie algebra, the rational homotopy Lie algebra $\pi_{\bullet}(\mathcal{T}^kS^4)[1]\otimes\mathbb{Q}$ of $\mathcal{T}^k S^4$ with respect to the Whitehead product. From the physics perspective, the Lie algebra g_k acts by gauge transformations in the L_{∞} deformation theory of the gauge Lie algebra $\pi_{\bullet}(\mathcal{T}^kS^4)[1]\otimes\mathbb{Q}$ of the reduction of M-theory on the torus T^k . This gauge Lie algebra is a k-fold dimensional reduction of the M-theory gauge algebra $\pi_{\bullet}(S^4)[1] \otimes \mathbb{Q}$, which is based on generators x_3 of degree 3 and x_6 of degree 6:

$$[x_3, x_3] = x_6, \qquad [x_3, x_6] = 0.$$