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Let us consider the Albert algebra, realized as a matrix algebra of 3x3 Her-
mitian matrices over the octonions O : this is the largest of finite-dimensional,
simple rank-3 Jordan algebras [Jordan, Wigner, von Neumann ’34].
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By fixing a rank-1 idempotent p € R [Peirce decomposition], one obtains
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corresponding, in terms of representations of the corresponding (reduced) struc-
ture groups :

E6(_26) — Spm(Q, 1) & 801,1;
27 = 10_o 46144 164.

J>(0) is the rank-2 Jordan algebra over the octonions O, and it is nothing but
the spin factor So 1, which in general is a rank-2 Jordan algebra with quadratic
form of signature 9 + 1.
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6(—26) — Spin(9,1) @ SO 1:
27 = 10_o 46144 164.



At the level of Lie algebras of the various symmetry groups of the Jordan

algebras, one obtains :

oct : f4 —52) = $09 D 16
16 ~ (@P2)

Moufang plane

stry . €6(—26) — 16, 3 @ )0 ¥ 163

3-grading : (16’ 163) is a Jordan pair#pair of JA’s

16’ ©16 ~ T ((C, ®0)P?)

split-complex Rosenfeld plane

CUI‘lf : C7(—25) = 1_o& 32(_,)1 D @1‘-‘ )O & 32%1) ¥ 12;

5-grading, contact type : 32(/) (MW spinor) is a the reduced Freudenthal TS over J3(H)

32) & 3200 ~ T ((H, ® Q) P?)

split-quaternionic Rosenfeld plane

£ 128") = 14_, @ 64", @@ R), @ 641 © 14;

qeonj €3(—24)
5-grading, ext. Poincaré type : 64(/) (MW spinor) may realize a non-chiral Kantor pair over J3(H)
128" = 64 ®64~ T ((0O;®0)P?

split-octonionic Rosenfeld plane



In some papers dating back to 97 and "98, Bars, Sezgin, Nishino, Rudychev
and Sundell constructed SYM theories beyond 9 + 1 space-time dimensions,
namely in 10 + 2, 11 4+ 3 and 12 + 4. The multi-time interpretation is delicate,
and we will not enter in such subtleties here; let us only mention that the
enhancement of the number of timelike dimensions in the sequence
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was considered as multi-particle symmetry : a single particle enjoys so0g9 1 sym-
metry, while two, three and four particles acquire enhanced so1¢ 2, s0;13 and
50192 4 symietry, respectively. Also, in such an enhancement Lorentz covariance
s spoiled, since putting all particles but one on-shell yields constant momenta

that appear as null-vectors.



is the space-time, purely bosonic, symmetry Lie algebra of the
N — (1,0)  SYM in 11 4+ 3  space-time  dimensions

[Sezgin 97| [Bars '97] [Nishino 98| wWe will call it Sezgin-Bars-Nishino (SBN) superalgebra

By generalizing such results, the following global N' = (1, 0) chiral supersym-
metry algebras in various dimensions were found (n € N U {0})

1. D= (9+8n)+ 1: [Rios, AM, Chester "19]
{Qu,Qp} = (P}/pj)aﬁ B+ ('}”m'"%)aﬁ Ly s T oo ('}/M'"%Hn)aﬁ Lty oo s
2. D= (10+ 8n) + 2:
{Qa. Qst = (V") ap Zuw + (V") 05 Zpsops oo+ (V1) 0 Z - syan -
3. D= (11+ 8n)+ 3:
{Qa,Qp} = ('YWP)Q@ Zywp + ('T'ul'“m)aﬁ T (’YM'“WHH)@B Zjis oo san
4. D = (12 + 8n) + 4:

{QOH QB} — 770552 + (’YMIMWL)QB ZML--H@ T (f)/ul.“’us)aﬁ ZMl---~M8 Tt (7M1...“8+4n)a6 Zul---~ﬁt8+4n'



o /7, are the bosonic p-form generators;
M1 Hp O ’

o yHLHp = ~tttp 71 where O is the charge conjugation matrix:

e the maximal rank y-matrices have a definite duality property, and hence
the corresponding bosonic generator is taken to be self-dual;

1. D=(9+8n)+ 1: [Rios, AM, Chester "19]
{Qu,Qp} = (Vﬂ)aﬁ B+ ('“/M"'%)aﬁ Ly s T oo (”/M'"MSHH)@@ Lty oo s
2. D= (104 8n) + 2:
{Qa. Qst = (V") ap Zuw + (V") 05 Zpsops oo+ (V1) 0 Z - syan -
3. D= (11+ 8n)+ 3:
{Qa,Qp} = ('YWP)@@ Zywp + ('V'ul'“m)aﬁ T (’Ym'“””m)aﬁ Zjis oo san
4. D = (12+ 8n) + 4:

{QOH QB} — 770552 + (PYMIMMLl)a,B ZM1~~N4 T (Wul.“’us)aﬁ ZMl---~M8 Tt (Wﬁl.““SJAn)QB Zul---~ﬁt8+4n'



e the rhs’s of anti-commutators below span the full symmetric space ) @4,
where ¢ is the MW spinor in the dimension under consideration;

e among the chiral superalgebras below, only the one in D = (9+4n)+ (1+
4n) space-time dimensions is a proper Poincaré superalgebra, containing
the momentum operator P, in the rhs:

1. D=(948n)+ 1: [Rios, AM, Chester "19]

{Qa-Qst = (V) as Pu+ (") 0 Zpyois + o+ (1 152) 05 Zi s

2. D = (10 4 8n) + 2:

{QOA? Qﬁ} — (/.YMV)Q)B Zpr’ + (,-}/Ml-nﬁLG)aB Zpb'l....pt,(; + + (’Yﬂl..‘u6+4n)a5 Zpb1....pbe+4n°

3. D = (11 + 8n) + 3:

{Qa,Qp} = ('Vuyp)@ﬁ Zyvp + ('mem)gﬁ /TR s (WMMWHH)O@ Ly pirtan

4. D = (12 + 8n) + 4:

{QOH Qﬁ} — 770552 + (PYMIMMLl)a[j’ Zm.--m T (Wul.“’us)aﬁ ZMl---~M8 Tt (Wﬁl.““wﬁm)aﬁ Zul---~ﬁt8+4n'



e the symmetry property of the y-matrices and the reality and conjugation
properties of spinor representations are defined by two parameters: D =
s+t mod(8) and p = s — t mod(8), where mod(8) denotes the Bott
periodicily.

1. D=(9+8n)+ 1: [Rios, AM, Chester "19]
{Qa, Qst = (V)as Pu+ (") 05 Zpsois oo £ (1 H559) 5 Z i
2. D= (10+ 8n) + 2:

{QOA? Q)B} — (/YMV)QB Zpbl/ + (,-}/Ml-nﬁLG)aB Zpbl....pt,(; + + (,-)/Mlu‘l«b(ﬁ—}—ﬁln)aﬁ Zpb1....pbe+4n°

3. D= (11+ 8n)+ 3: n=0:SBN superalgebra

{Qa,Qp} = (PVHVP)QB Zyvp + (,Y,ul---m)@ﬁ /TR s (/YMMWHH)QB Ly pirtan
SBN sequence

4. D = (12 + 8n) + 4:

{QOH QB} — 770552 + (’YMIMWL)QB ZML--H@ T (f)/ul.“’us)aﬁ ZMl---~M8 Tt (7M1...“8+4n)a6 Zul---~ﬁt8+4n'



Q : can the SBN supemlgeb_m be realized on a brane worldvolume ¢
We need a 11-brane in (af least) 3 timelike dimensions.

A1 : If the 11-brane is a central extension of a minimal, chiral superalgebra
in D = s+ 3, the smallest (odd) sis s =19 =1148 (n =1 in SBN sequence) :

{Qa; QB} — (/-YM/P)Q@ ZPWP + (zy“lo..u7)a5 Zulmu? + (,},#1...;&11)0{5 Z,ul---ull

electric 7-brane magnetic 11-brane
(1,0) superalgebra in 19+3 [Rios, AM, Chester ’18, ‘19]
However, in (1,0) minimal, chiral superalgebra in D = 19 4+ 3 the 11-brane is
the magnetic dual of the electric 7-brane.

A2 : If one wants to have the 11-brane as an electric central extension of a
minimal, chiral superalgebra in D = s+43, the smallest (odd) sis s = 27 = 11416
(n =2 in SBN sequence) :

{Qo:; QB} — (,}/#UP)CX}B Zw/p_l_(,wuy..u?)aﬁ Z,ul...pw
(1,0) superalgebra in 27+3 [Rios, AM, Chester '18, *
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electric 11-brane
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electric 11-brane

(’7#1"'“15)045 Ly ouis

magnetic 15-brane

{Qaa QB} — (’-}/#UP)QB Zuup—l_(,y#l...“?)aﬁ Z;uq...,u,?

(1,0) superalgebra in 27+3 [Rios, AM, Chester '18, ‘19]

In D =27+ 3, the electric 11-brane has a multi-time worldvolume, with

signature 11 + 3, which can be used to provide a worldvolume realization

for the 11 + 3 SYM of [Bars '97] and [Sezgin '97]. In other words, the multi-

time worldvolume of the electric 11-brane in 27 + 3 can support the SBN
superalgebra in 11 4 3 :

{Qm QB} = (’pr)a,g Z,u,up + (7“1"'“7)a5 Z,u,l...pw (1,0) SBN superalgebrain 11+3

clectric 3-brane magnetic 7-brane

The SBN superalgebra in 11 + 3 gives rise to M-superalgebra (N = 1 in
10 + 1) (and thus to ITA (1,1) superalgebra in 9 + 1), but also to IIB (2,0)
superalgebra in 9 4+ 1 (through N =2 1in 10+ 1) :

(17 0)10—|—2
——
@NE (1,0)11+3 — (1, 1)11_|_1 — (1, 0)11+1 — I = (N = 1)1())
\3 &
(N =2) 1544 ITA = (1,1)g
[Rudychev, Sezgin, Sundell '97] + ¥
IIB = (2, O)QD—> — — (1,0)944




Conjecture : String dualities (at least the ones involving M-theory, type
ITA and type IIB) may be traced back to transitions among orbits of the strati-
fication of the MW semispinor representation space 64 under the non-transitive

action of Spin(11,3). Such transformations belong to the pseudo-Riemannian,
mazximal and homogeneous non-symmetric space

SLgs (R)
Spinii s

, dimgp = 4,004, y := nc—c=88.

The SBN superalgebra in 11 + 3 gives rise to M-superalgebra (N = 1 in
10 + 1) (and thus to ITA (1,1) superalgebra in 9 + 1), but also to IIB (2,0)
superalgebra in 9 4+ 1 (through N =2 1in 10+ 1) :
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Conjecture : String dualities (at least the ones involving M-theory, type
ITA and type IIB) may be traced back to transitions among orbits of the strati-
fication of the MW semispinor representation space 64 under the non-transitive

action of Sm}n(l 1, 3). Note : so(11,3) and 64 occur in the 0- and \pm1- graded parts

This is interesting, for the following reasons : Of the 5-grading of eg(-24) of extended Poincaré type,
as discussed in [Cantarini-Ricciardo-Santi]

e (D7,64) is a f-group action (in the sense of [Vinberg '76]), thus it has a
finite number of nilpotent orbits. Moreover, the ring of invariant polyno-
mials is 1-dimensional, and it is freely generated (i.e., with no syzygies)
by Ig, an homogeneous polynomial of degree 8.

e The polynomial Ig has been recently related to a remarkable rank-14 ma-
trix factorization over 64 or 64’ [Abuaf & Manivel "19].

e The semidirect product D7y x 64 appeared in relation to a mysterious .
algebra X5 in the charting of Vogel’s plane [Mkrtchyan "12].
(L,U)10+42
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(N: 2)10+1 11 (1 1
¥

[Rudychev, Sezgin, Sundell '97] ¥
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electric 11-brane

(,7#1..#15 )Q:B Zu1---u15

magnetic 15-brane

{Qm QB} — (,},#up)aﬁ Zuup‘l‘(’)/“l"'m)ag Zm---m
(1,0) superalgebra in 2743 [Rios, AM, Chester ‘19]

Thus, we have found a worldvolume realization/support of 11 43 SBN
superalgebra (which is the higher-dimensional apatar of both J\/f/-s«nﬁralgebra
in 10 + 1 and IIB superalgebra in 9 + 1) by 1heans of theAargest electric p-
brafe central extension of an element (namely /for n ="7) of the SBN sequence

of syperalgebras (i.e., in terms of theofil_jg)_ minimal chiral

@ (L,0)1143) — (L D114 —

{
VT 2o

[Rudychev, Sezgin, Sundell '97]
1B = (2, %)—:»




Hence one can consider the reduction from

{QOEJ QB} — (wa}p)aﬁ Zw/,o"_(’)/ul..#?)aﬁ Zu1...;,z7
(1,0) superalgebra in 2743

(zy#l-..#ll)aﬁ Z’uq.“}uj11

electric 11-brane

(»}/Ph - 15 )O:B Zﬂfl e

magnetic 15-brane

down to

{QO“L’ QB} — (Pyu)aﬁ PN -+ (’Yuy)aﬁ Z!J«V + (,-},Hl--- ’ ZHl---HS + (,-}/Ml---uﬁ)aﬁ ZLH...;LG

N=1 superalgebra in 26+1
1. 13
(’7 )aﬁ Z!J»l---ulsa

magnetic 13-brane

+ (»quq N )orB Z!«Ll i

consistent with the representation theoretical counting

8,192 ©,8,192 = 27 ¢ 351 ¢&80.7305296.01044,686,.825$58,436,285520,058. 300,
8.192.8,193/2=33,558,528  l-form P, 2-form M2 5 5rm M5  6-form M6 9-form M9 10-form M10  13-form M13



Considering the worldvolume of the maximal electric p-brane extension of
such superalgebras, this reduction corresponds to reducing SBN superalgebra

prp 1. 7
{Qa,Qs} < (v )aﬁ Zyvp Hy )aﬁ Ly ..opiy
electric 3-brane magnetic 7-brane
SBN (1,0) superalgebra in 1143, supported by tt of the electric 11\brane of (1,0) superalgebra in 27+3

down/ to M -superalgebra

{Qa, Qﬁ} = (’7“)@,6’ P, +

N =1 M-superalgebra in 10+1, supported by the W

M- ps
8 )aﬁ Zuy . s s

wagnetic 5-brane M5

=1 superalgebra in 2641

consistent with the representation theoretical counting

32,32 = 11 & 955 & 462 .
32:33/2=528 1-form P, 2-form M2 5-form M5



Considering the worldvolume of the maximal electric p-brane extension of
such superalgebras, this reduction corresponds to reducing SBN superalgebra

{Qa. Qs} (,},uf/p)aﬁ Zpvp (,}/ul--ﬂ?)aﬁ Ly ..opiy

electric 3-brane magnetic 7-brane
SBN (1,0) superalgebra in 1143, supported by tt of the electric 11\brane of (1,0) superalgebra in 27+3

down/ to M -superalgebra

{Qa Qﬁ} - (’7“)@,6’ P+
electric 2-brane M2

N =1 M-superalgebra in 10+1, supported by the W

s

)aﬁ ZMl---M.Ba

wagnetic 5-brane M5

e—etectric 10-brane o =1 superalgebra in 2641

consistent with the representation theoretical counting

This puts forward the following conjecture [Rios, AM, Chester "19] :
M-theory can be realized as a worldvolume theory of an electric
10-brane in a higher (26 4 1)-dimensional space-time

Since in 26 + 1 an electric 10-brane is dual to a magnetic 13-brane, the
conjecture seemingly implies the existence of a mysterious “dual M-theory”,
realized as a worldvolume theory of a magnetic 13-brane in a higher
(26 + 1)-dimensional space-time.



Q :/Why 20 + 1 signz;ture is interesting?

A1 : Because in 26 + 1 space-time dimensions it has been formulated the
bosonic M-theory
Horowitz & Susskind "01]

Horowitz and Susskind conjectured there exists a strong coupling limit of bosonic string theory that generalizes the
relation between M-theory and superstring theory, called bosonic M-theory The main evidence for the existence
of such a D = 26 + 1 theory comes from the dilaton and its connection to the coupling constant, with the dilaton
entering the action for the massless sector of bosonic string theory as

1 L
EH“VPH'[ g ) )

S _ /d26$\/__g€—26;’) [R—i—dlv#gbv“gb _
in a way similar to type IIA string theory, as if representing the compactification scale of a Kaluza-Klein reduction
from D = 26+ 1 space-time dimensions with 324 — 299+ 24 + 1 graviton decomposition. However, while in type ITA
string theory the existence of a vector boson in the string spectrum implies an S' compactification, in closed bosonic
string theory there is no massless vector. For this reason, an S'/Z, orbifold compactification of bosonic M-theory was
proposed as its origin The bosonic string is then a stretched membrane across the interval; the orbifold breaks
translation symmetry, tnus the massless vector does not appear.



In “Monstrous M -theory” [AM, Rios, Chester '20], a purely bosonic grav-
ity theory in 26 4+ 1 has been proposed, such that it contains Horowitz &
Susskind’s bosonic M-theory as a subsector, and it relates, upon reduction to
25+ 1, to the smallest representation of the Monster group M, of dimension 1
(dilaton ¢ in 25+ 1) and 196, 883. Such a theory has been named Monstrous
M-theory, or M?-theory.

M?-theory is purely bosonic. A certain subsector of it, coupled to a Rarita-
Schwinger 1-form spinor field in 26 + 1, enjoys the same number of massless
bosonic and fermionic degrees of freedom (B = F'), a necessary condition for
supersymmetry to exist. A Lagrangian has been conjectured in [AM, Rios,
Chester "20] for such a theory, but no further evidence for supersymmetry
so far.

If one proceeds as it is done in M-theory in 10 4 1, then B # F.



To recap :

By generalizing some results by [Sezgin '97], [Bars ’97] and [Nishino 98],
we considered the minimal, chiral (1,0) non-standard global superalgebra
in 27 + 3 space-time dimensions, which can be centrally extended by an
electric 11-brane and its 15-brane magnetic dual [Rios, AM, Chester '18].

We proposed the (multi-time) worldvolume of the 11-brane itself as sup-
port for the (1,0) SYM theory in 11+ 3 space-time dimensions introduced
in [Sezgin '97] and [Bars 97].

As discussed in [Rudychev, Sezgin, Sundell 97|, the (1,0) superalgebra in
11 4 3 dimensions reduces to

i) the ' = 1 M-superalgebra in 10+1 (and thus to the maximal non-chiral
(1,1) type ITA superalgebra in 9 + 1);
and to

ii) the maximal chiral (2,0) type IIB superalgebra in 9 + 1.



e Thus, we proposed the reduced (single-time) 10-brane worldvolume theory
in 10 4+ 1 space-time dimensions as a worldvolume realization of M-
theory (this also entails the existence of a would-be “dual worldvolume
M-theory” realized as a worldvolume theory in 13+ 1) [Rios, AM, Chester
"19].

e The space-time reduction 27+ 3 — 26 4+ 1 induces a 11 +3 — 10+ 1
reduction for the worldvolume of the largest electric brane which centrally
extends the corresponding minimal superalgebra, and thus it yields a nat-
ural map from

from bosonic M-theory [Horowitz & Susskind 01] in D =26 + 1
to to D =10+ 1 M-theory.

e The worldvolume picture may provide a quite natural explation of the
origin of the Eg ® FEgs heterotic string (through anomaly cancellation);
indeed, the Horava-Witten work on heterotic M-theory [Horava & Witten
'96] requires a manifold with boundary in 10+ 1 dimensions, which occurs
naturally if the (10 + 1)-dimensional manifold is itself a brane worldvolume
with boundary.



e Thus, we proposed the reduced (single-time) 10-brane worldvolume theory
in 10 4+ 1 space-time dimensions as a worldvolume realization of M-
theory (this also entails the existence of a would-be “dual worldvolume
M-theory” realized as a worldvolume theory in 13+ 1) [Rios, AM, Chester
"19].

e The space-time reduction 27+ 3 — 26 4+ 1 induces a 11 +3 — 10+ 1
reduction for the worldvolume of the largest electric brane which centrally
extends the corresponding minimal superalgebra, and thus it yields a nat-
ural map from

from bosonic M-theory [Horowitz & Susskind 01] in D =26 + 1
to to D =10+ 1 M-theory.

Remark. By suitably changing the space-time signatures, the same con-
clusions can be obtained for the other versions of M-theory, named M’-theory
(in 6 +5) and M*-theory (in 10 4+ 2) [Hull '98]; indeed, besides 10 + 1, the
signatures 6 + 5 and 10 + 2 are the only other signatures which allow for a real
32-dimensional spinor representation of the spin group in D = 11.

w



Q : How can the 16 transverse dimensions be described 7



Q : How can the 16 transverse dimensions be described 7

A : They sit in the vector module 16 of Spin(16). By virtue of Dynkin’s
“anomalous” embedding [Dynkin '57, Ramond 03], the smallest subgroup of
Spin(16) such that the 16 of Spin(16) stays irreducible is its maximal, non-
symmetric subgroup Spin(9) :

Spin(16) D  Spin(9);
16 = 16,

which is a consequence of the self-conjugatedness of the spinor irrepr. of the
spinor irrepr. of Spin(9) (i.e., A'1 € 16 @5 16). Thus, the “minimal” approach
to the 16 transverse dimensions is to regard them as fitting the spinor module
of Spin(9).

From the theory of cosets, the 16 of Spin(9) describes the tangent space to

the symmetric space

Fy—59)
=% ~ QP2
Spin(9) ’

the Cayley-Moufang plane, which is the largest projective octonionic space.



Q : How can the 16 transverse dimensions be described 7

A : They sit in the vector module 16 of Spin(16). By virtue of Dynkin’s
“anomalous” embedding [Dynkin '57, Ramond 03], the smallest subgroup of
Spin(16) such that the 16 of Spin(16) stays irreducible is its maximal, non-
symmetric subgroup Spin(9) :

Spin(16) D  Spin(9);
16 = 16,

which is a consequence of the self-conjugatedness of the spinor irrepr. of the
spinor irrepr. of Spin(9) (i.e., 3'1 € 16 ®4 16). Thus, the “minimal” approach
to the 16 transverse dimensions is to regard them as fitting the spinor module
of Spin(9).
From the theory of cosets, the 16 of Spin(9) describes the tangent space to
the symmetric space
Fy—59)

F4(=52) A p2
Spin(9) 0P,

the Cayley-Moufang plane, which is the largest projective octonionic space.

Thus, a direct consequence of Dynkin’s “anomalous” embedding is
the description of the 16 spacial dimensions transverse to the 10-brane in 264 1
in terms of QP2
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