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TED K-theory: High energy vs. condensed matter

General wisdom:
Twisted Equivariant Differential (TED) Topological K-theory

classifies

free topological phases
in condensed matter theory

stable D-branes
in string theory

and some
enhancement to

non-perturbative effects interacting phases

is needed
to account for

topological orderM-branes

harboring
N ∼ 1 YM theory
for hadrodynamics

anyon statistics
for topological quantum gates
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Outline/Theme

The main theme:

Issue Solution
TED-K had never really been constructed → Systematic construction of TED K-theory

M-theory had remained notoriously elusive → Precise proposal for interacting enhancement
via Hypothesis H

Nonperturbative aspects of field theory → Concrete implementation of topological order
(M-theory) are actually practically relevant via TED-K

Embedding in M-theory via M-branes

Physics context:
a mix of high energy and condensed matter.
Exact constructions/duality and not just analogies.

4 / 44



Mathematical Richness of M-theory

[talk by Urs]

M-THEORY

Topological
phases of
matter

Twisted
cohomology

Differential
cohomology

Generalized
cohomology

Equivariant
homotopy

Parametrized
homotopy

Topological
Quantum
Computing

Lie theory

Algebraic
geometry

Rational
Homotopy

theory

[talk by Sasha]
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Generalities on what physics wants

Nontrivial physical entities, such as fields, charges, etc., generically take
values in cohomology.
Anomalies and quantum considerations require generalized versions
(cobordism, elliptic cohomology, K-theory, etc.) depending on context.

Generalized Cohomology

vv �� ((

Twisted Equivariant Differential

I. Twisting: Account for symmetries via automorphisms. Physically: it is the
coupling between fields that are being twisted with those doing the twist.
interesting ↕ interplay

II. Equivariant: Account for (spacetime) singularities/symmetries via group
actions, e.g. orbifolds, orientifolds ... ← Quite subtle

III. Differentially refined: Include geometric data, such as connections, Chern
character form, smooth structure, smooth representatives of maps ... 6 / 44



1. Generalized cohomology

Motivation from modelling of fields (in QFT, string theory and M-theory).

Schematically:
E•(M) Quantum M-theory

H•(M;Z)

anomaly cancellation
OO

H•
dR(M)

quantization
OO

Ω•(M)

gauge
OO

Classical

OO

Sugra

OO

Generalized

��

Foundation Rational

OO
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2. Twists

We would like to introduce automorphisms.
These arise from geometric and physical considerations.
Homotopy p.o.v.: moduli/family setting; bundles of spectra S // E

��
X

Ω•(M)

twistΩ

��
exact

complex
// H•

dR(M)

twistdR

�� quantization // H•(M;Z)

twistH

�� anomaly

cancellation
// E•(M)

twistE

��

Relations among various twists?

Example (twistΩ)
Twisted differential forms are forms valued in the orientation line bundle.
Top such form is a density (pseudo-volume form).
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Example: Twisted de Rham cohomology
The de Rham complex (Ω•, d) : . . .

d−→ Ωi (X )
d−→ Ωi+1(X )

d−→ . . .
Twist by a 1-form built out of scalar ftn: d ; dϕ := d + dϕ∧ with d2

ϕ = 0.

Example (Witten’s deformation of Morse theory)
For smooth f : M → R, the Witten differential is ds = e−sf desf = d + sdf ∧,
where s ∈ R. Then d2

s = 0, ds : Ωp → Ωp+1. The term e−sf is a
quasi-isomorphism . . . // Ωp d //

e−sf ⟳��

Ωp+1

e−sf��

// . . .

. . . // Ωp ds // Ωp+1 // . . .

and ds yields isomorphic cohomology groups.

Twist by a closed 3-form: dH3 = d − H3∧, with d2
H3

= 0.

Definition
Twisted de Rham cohomology: H i (X ,H3) := ker(dH3)/im(dH3)

Example (The Ramond-Ramond (RR) fields in string theory)
Rationally, F =

∑
i≤5 u

−iF2i+ϵ, ϵ = 0 or 1 for type IIA or type IIB string theory.
These are twisted by a closed 3-form, the NS-field H3.

To make periodic: adjoin a generator u of degree 2 which implements the
periodicity & makes total degree uniform:

dH3 = d − u−1H3∧ .
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Reverse engineering for twisted generalized cohomology

Rational twisted cohomology arises as image of some Chern character.

The Chern-Dold character: Primary image of any generalized cohomology theory
is rationalization. [FSS book in press: The Chern character in abelian and nonabelian cohomology]

E n(X )

chE

��

Integral

⊕
k H

n+k(X ;πk(E )⊗Z Q) Rational

Lifting back: Postnikov towers,AHSS,···

OO

Example (Twisted K-theory)
Degree three twist H3:

chH3 : K•(X ,H3)︸ ︷︷ ︸
twisted K−theory

−→ Hev(X ,H3)︸ ︷︷ ︸
twisted de Rham cohomology

[Rosenberg, Bouwknegt-Carey-Mathai-Murray-Stevenson, Atiyah-Segal, · · · ]
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Differential refinement: cohomology
Introduce geometric data via differential forms (connections, Chern forms,
· · · ), i.e., retain differential form representatives of cohomology classes.

Ω•(M)

adjoin

uu
adjoin

��

adjoin

((
H•(M;Q)

refinement
��

H•(M;Z)

refinement
��

E•(M)

refinement
��

Ĥ•(M;Q) Ĥ•(M;Z) Ê•(M)

Amalgam of an underlying (topological) cohomology theory and the data of
differential forms:

Differential gen. cohomology

��

// Forms

��
Gen. cohomology // de Rham cohomology

That is, we have a homotopy fiber product (of sheaves of spectra classifying)

“Differential cohomology = Cohomology×de Rham Forms” 11 / 44



Differential generalized cohomology
Start with a generalized cohomology theory E
Ω(X ,E∗) := Ω(X )⊗Z E∗ Smooth diff. forms with coefficients in E∗ := E (∗)
Ωcl(X ,E∗) ⊆ Ω(X ,E∗) closed forms
HdR(X ,E∗) cohomology of the complex

(
Ω(X ,E∗), d

)
Definition
A differential/smooth extension of h is a contravariant functor

Ê : Compact Smooth Manifolds −→ Graded Abelian Grps
Ωcl(X ,E∗)

��
Ê(X )

R 33

I

++ ++

HdR(X ,E∗)

E(X )

OO

[FSS21]:

This has a nonabelian/nonlinear generalization – cf. Cohomotopy for M-theory.12 / 44



The full structure: TED

Twisted ∩ Equivariant ∩ Differential ∩ Generalized

Ω•
G(M)

adjoin

uu ��

adjoin

))

Geometric

H•
G(M;Q)

twistH

��

refinement
��

H•
G(M;Z)

twistH

��

refinement
��

E•
G(M)

twistE

��

refinement
��

Topological

Ĥ•
G(M;Q)

twistĤ

WW
Ĥ•

G(M;Z)

twistĤ

WW
Ê•

G(M)

twistÊ

WW
Combined

Proper Orbifold Cohomology [arX:2008.01101]
The twisted non-abelian character map [arX:2009.11909]

Equivariant Principal ∞-bundles [arX:2112.13654]
Anyonic Defect Branes in TED-K-Theory [arX:2203.11838]

The twisted equivariant character map [SS23-TEC in preparation]
Twisted equivariant differential generalized cohomology [SS23-TED work in progress]

+ earlier work [GS] ...
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Motivation/Application in string theory

Examples ([GS])
1 Type I (II) RR fields live in twisted differential KO-theory K̂O τ̂ (K-theory K̂τ̂ ).
2 Differential refinements of various twisted cohomology theories.

G ↷ spacetime with RR fields/D-branes in TED K-theory.

charges, fields ∈ TED K-theory [Grady-Schreiber-S.] in progress.

Later we will consider TED K-theory of configuration spaces to connect to
cohomotopy that describes fields/flux quantization in M-theory.
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Rosetta stone

←
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Rosetta stone
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Subtleties with the equivariant setting

Key subtlety:

Constructing the twisted equivariant Chern character as map of equivariant
moduli stacks, to give the differential theory.

this is previously under-developed, because equivariant classifying spaces are
generally far from simply-connected/nilpotent (complications with RHT).
Equivariant Eilenberg-MacLane spaces pick a local system ⇒ deg. 1 twist.
(i.e. Equivariant classifying space for equivariant gerbes)

We will see how some of this works in the applications.

17 / 44



Turn on its head

The Galois-theoretic/local systems effect hidden in this technicality is responsible
for the appearance of conformal blocks and braid group statistics in TED-K

⇒ Mathematically accounts for anyons in topological phases of matter.
Novel mathematical reflection of the physics folklore that something special
happens inside the singularities.
[Matches all the expectations of strings/D-branes on ADE singularties]
Get a rich structure from the singularities/fixed points of the group action:

G∗ := Hom
(
G ,U(1)

)
denotes the Pontrjagin-dual group

(note BPU ∼ B2U(1) by stability of reps of PU).
G finite subgroup of SU(2) so that H2

Grp(G ,U(1) = 0.
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The B-field twist – Inner local systems

On fixed loci (orbi-singularities)

X�G ≃ X× ∗�G = X× BG

the B-field twist induces secondary twists by “inner local systems”:

Here we are assuming G ⊂
fin

SU(2) so that H2
Grp

(
G , U(1)

)
= 0.

G∗ := Hom
(
G ,U(1)

)
denotes the Pontrjagin-dual group.
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Combining with the B-field twist

Combining CPT-quantum symmetries (more later) and the twisting by a B-field:

The homotopy fiber sequence of 2-stacks (the hat means correct stacky cofibrant
resolution)

The LHS is what is done in the literature (and what we focus on).
The RHS should be richer ... yet unstable ... perhaps beyond K-theory.
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The B-field twist – Inner local systems – Chern character.
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Vacua of electron/positron field in Coulomb background

Q: Why K-theory in condensed matter? State-antistate, natural for e−/e+

Fact [Klaus-Scharf77][Carey-Hurst-O’Brien82]
The vacua of the free Dirac field in a clas-
sical Coulomb background are characterized
by Fredholm operators

“Total charge”
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Quantum symmetries
What symmetry operators act on these?
On these dressed vacua of electron/positron states, the following
CPT-twisted projective group (graded Fredhom, so we need two copies)

The following explains CPT for the Dirac field:

C := PT , P·
[
U+ , U−

]
:=

[
U− , U+

]
·P , T ·

[
U+ , U−

]
:=

[
U+ , U−

]
·T

naturally acts by conjugation:

[U+,U−] : F 7−→ U−1
+ ◦ F ◦ U−

C · [U+,U−] : F 7−→ U−1
− ◦ F t ◦ U+

P · [U+,U−] : F 7−→ U−1
− ◦ F∗ ◦ U+

T · [U+,U−] : F 7−→ U−1
+ ◦ F ◦ U−

These happen to be the group of quantum symmetries in condensed matter.
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Group actions

BT
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Group actions 2
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Corresponding description

SPT=symmetry protected phases: G -equivariantly nontrivial, in that it cannot be
adiabatically deformed (while repsecting given G -symmetry) to a topologically trivial
phase.

SET=symmetry enhanced phases: one in addition requires that the underlying
topological phase (i.e., forgetting the quantum symmetry) is trivial.
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Twisted equivariant KR-theory

Homotopy classes of quantum-symmetry equivariant families of self-adjoint odd
Fredholm operators constitute twisted equivariant KR-cohomology:
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Concrete setting: Free topological phases of matter

⇒ Idea: Single-particle valence bundle of electrons in crystalline insulator
classified by topological K-theory of Brillouin torus
equivariant wrt quantum symmetries [Kitaev 09] [FreedMoore12]

[Mathai-Thiang] use T-duality (in analogy with D-branes) to understand such
systems.

28 / 44



Example – Orientifold KR-theory

Let I be Inversion action on 2-torus T̂2 ≃ R2/Z2 and trivial action on observables

If T acts as I on T2, then KRT̂ 2 = +1 is Atiyah’s Real K-theory aka orienti-fold
K-theory: (the hat is the image on Fredholm operators)
(so this gives an interpretation of KR-theory as the time-reversal-equivariant
topological phases).

But what happens on I -fixed loci, i.e., on “orientifolds” ?
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CPT Quantum symmetries – 10 global choices
[FreedMoore12]

↑
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Example – TI -equivariant KR-theory is KO0-theory

The combination T · I acts trivially on the domain space and
by complex conjugation on observables.

Hence (T · I )-equivariant (T̂ 2 = +1)-twisted KR-theory is KO0-theory:
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Interacting enhancement via Hypothesis H
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Interacting n-electron wavefunctions are functions on the space of n points in
Brillioun torus
Pauli exclusion ⇒ these span vector bundle away from the locus of coinciding
points:

This locus is known as the configuration space of n points.

Idea: Do not avoid these points, but embrace them (as we did for singularities).
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Deep theorems (Hopf, Pontrjagin, Segal) relate configurations of points to
Cohomotopy theory – a non-abelian generalized cohomology theory:

Hypothesis H: 4-Cohomotopy is a flux quantization law for C-field in 11d
super-gravity:

In fact, tangentially twisted 4-Cohomotopy, coupling this to the spacetime metric,
implies a list of subtle topological conditions expected to hold in M-theory.
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Twisted Cohomotopy theory [FSS]

To include nontrivial spacetime topology (needed for anomaly cancellation), we
involve structures arising from the tangent bundle.
In degree d − 1, there is a canonical twisting on Riemannian d-manifolds, given by
the unit sphere bundle in the orthogonal tangent bundle:

J-twisted
Cohomotopy theory π

TXd

(X d) :=



tangent
unit sphere bundle

S(TX d)

p

��

//

universal tangent
unit sphere bundle

Sd−1�O(d)

��
X

continuous section
= twisted cocycle

44

X
TXd

classifying map of
tangent/frame bundle

// BO(d)

/
∼ homotopy

BO(d)

≃


X

TXd

twist $$

continuous function // Sd−1�O(d)

ww
BO(d)

homotopy��

/
∼ homotopy

BO(d)

Since the canonical morphism O(d) −→ Aut(Sd−1) is known as the
J-homomorphism, we may call this J-twisted Cohomotopy theory, for short. 35 / 44



Twisted cohomotopy and anomalies [FSS]
Hypothesis H: The C-field 4-flux & 7-
flux forms in M-theory are subject to
charge quantization in J-twisted Cohomo-
topy cohomology theory in that they are
in the image of the non-abelian Chern
character map from J-twisted Cohomo-
topy theory.
⇒ Cancellation of main anomalies:
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The perspective

Single electron: old
Multiple electrons → interacting ground states.
The beauty of this is that K-theory still applies and is physically motivated.

Single electron Multiple electrons interacting

Classical X cohomotopy moduli involving Maps(X ,S4)

Quantum K (X ) K (cohomotopy moduli)
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Quantum field theory of Defect branes via TED-K

Correlators of some Euclidean QTFs are encoded in the de Rham cohomology
of a configuration space of points ([Berghoff14]).

Correlators= H∗
dR(Configuration space)

Example: for 3d Chern-Simons theory [AxelrodSinger94], leads to
Kontsevich’s graph complexes;

The evident suggestion that therefore the generalized cohomology (such as
the K-theory) of configuration spaces might reflect yet more details of
quantum field theory.

E∗(Configuration space)

We find a fair bit of deep structure in QFT is reflected in the (twisted,
equivariant, differential, generalized, ...) cohomology of configuration spaces
of points.
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Realize the picture below physically and mathematically.
Previously: no derivation of topological phases.
Applying K-theory to configuration spaces makes the anyons.

Brillouin torus

wIκ

nodal point

time
braiding

T̂2

k
I

k
I

seen in
TED K:

Some ground state for
fixed defect positions
k1, k2, · · · at time t1

∣∣ψ(t1)〉 Berry phase unitary transformation

= adiabatic quantum gate

∣∣ψ(t2)〉
Another ground state for

fixed defect positions
k1, k2, · · · at time t2
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Precise proposal for interacting enhancement via “Hypothesis H”

Evaluate TED K-cohomology not on Brillouin torus/spacetime-orbifold itself,
but on its configuration space of points, and generally: on its Cohomotopy
moduli.
The TED K-cohomology of n-point configurations in Brillouin torus classifies
valence bundle of n-electron interacting states.

Moreover, generalized cohomology of intersecting Cohomotopy moduli spaces
reflects intersecting brane observables expected from non-abelian DBI action.

⇝ Hypothesis H:
Quantum observables on non-perturbative interacting ground states are in
generalized cohomology (e.g. TED K-theory) of twisted Cohomotopy moduli.
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Differential cohomotopy and D-brane gauge theories

Zoom in beyond foundational/structural M-theoretic considerations [S.-Schreiber]:
(1) A differential refinement of Cohomotopy cohomology theory is given by

un-ordered configuration spaces of points.
(2) The fiber product of such differentially refined Cohomotopy cocycle spaces

describing D6 ⊥ D8-brane intersections is homotopy-equivalent to the ordered
configuration space of points in the transversal space.

(3) The higher observables on this moduli space are equivalently weight systems
on horizontal chord diagrams.

Cohomotopy cohomology
theory

Differential
refinement

//

Hypothesis H

��

Configuration spaces
of points

Cohomology
��

Fiber product

tt

Model

Intersecting branes oo
Observables

Weight systems on
Chord diagrams
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Combining the above seemingly distinct mathematical areas reflect a multitude of
effects expected on brane intersections in string theory. So aside from structural
utility for M-theory, Hypothesis H implies:

M-theoretic observables on D6 ⊥ D8-configurations (cf. parametrized).
Chan-Paton observables.
String topology operations.
Multi-trace observables of BMN matrix model.
Hanany-Witten states.
BLG 3-Algebra observables.
Bulk Wilson loop observables.
Single-trace observables
of SYK & BMN model.
Fuzzy funnel observables.
Supersymmetric indices.
’t Hooft string amplitudes.

Top-down M-theory via Hypothesis H: knowledge about gauge field theory and
perturbative string theory is not used in deriving the algebras of observables of
M-theory, but only to interpret them.
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M-brane realization

Quantum states of branes as cohomology of Cohomotopy cocycle spaces
according to Hypothesis H.

Hanany-Witten theory
of codim=3 branes

Seiberg-Witten theory of
defect codim=2 branes

Intersecting branes NS5 = D6⊥D8 “M3′′ = M5⊥M5 QuantumStatesAndObservables

Charge quantization law 4-Cohomotopy 3-Cohomotopy

Cocycle space /
configuration space

∐
Nf∈N

Conf
{1, · · · ,Nf}

(
R3) ∐

N∈N
Conf

{1, · · · ,N}

(
R2)

(??)

(Twisted, fiberwise)
(Co)Homology /
quantum states + observables

Weight systems/
Chord diagrams

ŝl
k

2-Conformal blocks/
Braid group reps

ConformalBlocksAsTEdKTheory

→ talk by Urs
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Thank you!
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