M-theory and matter
via
Twisted equivariant differential (TED) K-theory

Hisham Sati
New York University Abu Dhabi (NYUAD)

M-Theory and Mathematics:
Classical and Quantum Aspects

12-16 Jan. 2023
NYUAD

wrbgaiesljgugridcala LY
EANYu |ABUDHABI £

1/44



Overview of a program (series of papers) joint with: Urs Schreiber.

Related work also with: Domenico Fiorenza, Dan Grady, Alexander Voronov.

[s]= s.

[SS]= S.-Schreiber

[FSS]= Fiorenza-S.-Schreiber
[GS]= Grady-S.
[SV]=S.-Voronov

2/44



TED K-theory: High energy vs. condensed matter

General wisdom:
Twisted Equivariant Differential (TED) Topological K-theory

classifies
stable D-branes free topological phases
in string theory in condensed matter theory
and some
enhancement to
non-perturbative effects ‘interacting phases ‘
is needed
to account for
M-branes ‘topological order ‘
harboring
N ~ 1 YM theory anyon statistics
for hadrodynamics for topological quantum gates
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Outline/Theme

The main theme:

Issue

Solution

TED-K had never really been constructed

M-theory had remained notoriously elusive

Nonperturbative aspects of field theory
(M-theory) are actually practically relevant

— Systematic construction of TED K-theory

— Precise proposal for interacting enhancement
via Hypothesis H

— Concrete implementation of topological order
via TED-K

Embedding in M-theory via M-branes

Physics context:

@ a mix of high energy and condensed matter.

@ Exact constructions/duality and not just analogies.
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Mathematical Richness of M-theory

Twisted
cohomology

Topological
phases of
matter

Rational

== \-THEORY Homotopy

/ \ theory
/

Equivariant
homotopy

Algebraic

eometr
[talk by Urs] & v

[talk by Sasha]
Topological
Quantum

Computing
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Generalities on what physics wants

@ Nontrivial physical entities, such as fields, charges, etc., generically take
values in cohomology.

@ Anomalies and quantum considerations require generalized versions
(cobordism, elliptic cohomology, K-theory, etc.) depending on context.

‘ Generalized Cohomology ‘

@ Twisting: Account for symmetries via automorphisms. Physically: it is the
coupling between fields that are being twisted with those doing the twist.

interesting i interplay

@ Equivariant: Account for (spacetime) singularities/symmetries via group

actions, e.g. orbifolds, orientifolds ... < | Quite subtle

@ Differentially refined: Include geometric data, such as connections, Chern

character form, smooth structure, smooth representatives of maps ... 6/44



1. Generalized cohomology

Motivation from modelling of fields (in QFT, string theory and M-theory).

Schematically:
y E*(M) Quantum M-theory

anomaly cancellation 'S
H*(M; 2)
quantization g
Hir (M)
gauge *g
Q*(M) Classical Sugra

Generalized

A
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@ We would like to introduce automorphisms.
@ These arise from geometric and physical considerations.
@ Homotopy p.o.v.: moduli/family setting; bundles of spectra § ——= &

v

X
twistq twistqr twisty twistg
ﬂ exac uantization ﬂ anomal ﬂ

Q* (M) 2o 3 (M) 2288 o (M Z) L E*(M)

complex cancellation

Relations among various twists?

Example (twistq)

Twisted differential forms are forms valued in the orientation line bundle.
Top such form is a density (pseudo-volume form).
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Example: Twisted de Rham cohomology

@ The de Rham complex (Q°,d) : L Qf '(X) N QX)) = ..
e Twist by a 1-form built out of scalar ftn: d ~ dg = d + dpA with dqf =0.

d

Example (Witten's deformation of Morse theory)

For smooth f : M — R, the Witten differential is ds = e~ det = d + sdf A,
where s € R. Then d?> =0, ds : QP — QP*L. The term e~ is a

quasi-isomorphism o QF 9. p+l
e—sr’ \L o \L e—sf
Qr %, Qe

and ds yields isomorphic cohomology groups.

o Twist by a closed 3-form: dy, = d — H3A, with d23 =0.

Definition
Twisted de Rham cohomology: H'(X, H3) := ker(dp,)/im(dy,)

Example ( The Ramond-Ramond (RR) fields in string theory)

Rationally, F =", U~ Faite, € =0 or 1 for type lIA or type IIB string theory.
These are twisted by a closed 3-form, the NS-field Hs.




Reverse engineering for twisted generalized cohomology

Rational twisted cohomology arises as image of some Chern character.

The Chern-Dold character: Primary image of any generalized cohomology theory
is rationalization. [Fss book in press: The Chern character in abelian and nonabelian cohomology]

£

A

che Lifting back: : Postnikov towers, AHSS, -+

@, H™(X: mi(E) @2 Q)

Example (Twisted K-theory)

Degree three twist Hs:

chy, : K*(X,Hs) —  HY(X,Hs)
——— ———
twisted K—theory twisted de Rham cohomology

[Rosenberg, Bouwknegt-Carey-Mathai-Murray-Stevenson, Atiyah-Segal, - - -]
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Differential refinement: cohomology

@ Introduce geometric data via differential forms (connections, Chern forms,
--+), i.e., retain differential form representatives of cohomology classes.

Q*(M)
H*(M; Q) H*(M; Z) E*(M)
H*(M; Q) H*(M; Z) E*(M)

@ Amalgam of an underlying (topological) cohomology theory and the data of
differential forms:

‘ Differential gen. cohomology‘ Forms
Gen. cohomology de Rham cohomology

@ That is, we have a homotopy fiber product (of sheaves of spectra classifying)

“Differential cohomology = Cohomology X de Rham Forms” 1148



Differential generalized cohomology

Start with a generalized cohomology theory E

Q(X, E.) :=Q(X) ®z E.  Smooth diff. forms with coefficients in E, := E(x)
Qu(X, E.) C Q(X, E.) closed forms

Har (X, E..) cohomology of the complex (Q(X, E.), d)

Definition

A differential /smooth extension of h is a contravariant functor
E : Compact Smooth Manifolds —» Graded Abelian Grps
ch(X7 E*)
R i
E(X) Har(X, Ex)

T

E(X)

R

Chern-Dold character chf
3
| e, EYX) s @H (G m(E)€, Q)

W" Dold’s equivalence
extensions !

. Eeneralized  p(X7) of scalars
[FSS21]. gohomolozy i
L T B () e Homg (7. (E),R], Hd"(X)) e

differential-geometric Chern-Dold character +

This has a nonabelian/nonlinear generalization — cf. Cohomotopy for M-theory,, ,,



The full structure: TED

‘ Twisted N Equivariant N Differential N Generalized ‘

Qe (M) Geometric

twisty !J;W t;f{f{ adjoin twiste
HG(M Q) HE(M; Z) EQJ) Topological
Hec(M; Q) Heo(M; Z) E*c(M) Combined

Proper Orbifold Cohomology — [arX:2008.01101]
The twisted non-abelian character map ~ [arX:2009.11909]
Equivariant Principal co-bundles — [arX:2112.13654]
Anyonic Defect Branes in TED-K-Theory  [arX:2203.11838]
The twisted equivariant character map  [SS23-TEC in preparation]
Twisted equivariant differential generalized cohomology = [SS23-TED work in progress|

+ earlier work [GS] ...
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https://ncatlab.org/schreiber/show/Proper+Orbifold+Cohomology
https://ncatlab.org/schreiber/show/The+Character+Map+in+Twisted+Non-Abelian+Cohomology
http://ncatlab.org/schreiber/show/Equivariant+principal+infinity-bundles
http://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory
https://ncatlab.org/schreiber/show/The+Character+Map+in+Twisted+Equivariant+Non-Abelian+Cohomology
https://ncatlab.org/schreiber/show/The+Character+Map+in+Twisted+Equivariant+Non-Abelian+Cohomology

Motivation/Application in string theory

Examples ([GS])
@ Type | (I1) RR fields live in twisted differential KO-theory KO (K-theory k\;)

© Differential refinements of various twisted cohomology theories.

e G C spacetime with RR fields/D-branes in TED K-theory.

‘charges, fields € TED K-theory‘ [Grady-Schreiber-S.] in progress.

o Later we will consider TED K-theory of configuration spaces to connect to
cohomotopy that describes fields/flux quantization in M-theory.
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Rosetta stone
Line bundle over Single probe D-brane |
Brillouin d-torus. of codimension d |

Single anti D-brane

Single-electron state
in d-dim crystal

Single positron state

Bloch-Floquet transform

Virtual line bundle
over Brillouin torus

Hilbert space bundle
over Brillouin d-torus

Family of

of codimension d

Unstable (tachyonic)
DY /DY-brane state

Tachyon field

Dressed Dirac
vacuum operator

Valence bundle of

Fredholm operators

Virtual bundle of their
kernels and cokernels

after tachyon condensation

stable D-brane state f

Stable D-brane charge

CPT symmetry

Crystallographic symmetry

Orbifold K-theory

Gauged internal symmetry

| Inner local system-twist

electron/positron states |
Topological phase | K-theory class
| KR/KU/KO-theory Type VIIA/IB
Spacetime orbifolding

Inside of orbi-singularity
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Rosetta stone

Berry connection

Mass terms

Nodal point charge

Differential K-theory

Differential K-LES

Flat K-theory

Chan-Paton gauge field

Axio-Dilaton RR-field

Defect brane charge

N band nodes

Interacting n-electron states
around N band nodes

Sug-anyon species

N-punctured
Brillouin torus

Vector bundle over
n-point configuration space in
N-punctured Brillouin torus

Holonomy of
inner local system

N defect branes

Interacting n probe branes
around N defect branes

SL(2,Z)-charges
of defect branes

[PAoU
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Subtleties with the equivariant setting

Key subtlety:

Constructing the twisted equivariant Chern character as map of equivariant
moduli stacks, to give the differential theory.

@ this is previously under-developed, because equivariant classifying spaces are
generally far from simply-connected/nilpotent (complications with RHT).

@ Equivariant Eilenberg-Maclane spaces pick a local system = deg. 1 twist.
(i.e. Equivariant classifying space for equivariant gerbes)

We will see how some of this works in the applications.
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Turn on its head

The Galois-theoretic/local systems effect hidden in this technicality is responsible
for the appearance of conformal blocks and braid group statistics in TED-K
= Mathematically accounts for anyons in topological phases of matter.

Novel mathematical reflection of the physics folklore that something special
happens inside the singularities.
[Matches all the expectations of strings/D-branes on ADE singularties]

Get a rich structure from the singularities/fixed points of the group action:

Fred /PU(H
<O :e // ( ) mapping stack FredG//G* — MﬂpS (BG, FI'Cd//PU(j{))Sth
.te.\"ff”/ adjunction Sl
e — 'é‘.}:w‘f: c l ) l
X x* /G ——> BPU(H i &
.,rm.si..gm/{ﬂ.y i rsgtk)) X Tt BGT it Maps(BG, BPU(H) )™

Fredholm bundle
adjunct equivariant twist j

G* := Hom(G,U(1)) denotes the Pontrjagin-dual group
(note BPU ~ B2U(1) by stability of reps of PU).
G finite subgroup of SU(2) so that HZ, (G, U(1) = 0.
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The B-field twist — Inner local systems

On fixed loci (orbi-singularities)
X/G ~ Xxx/G = XxBG
the B-field twist induces secondary twists by “inner local systems"™

stable twists over fixed locus

Maps (X x /G, B*U(1)) ~ Maps(X x BG, B*U(1))
~ Maps (X, Maps(BG, B*U(1)))
~ Maps(X, BG* x B?U(1))

~ Maps(X, BG*) x Maps(X, BU(1))

inner local systems bundle gerbes
Here we are assuming G C SU(2) so that Hg., (G, U(1)) =o0.
n

G* := Hom(G,U(1)) denotes the Pontrjagin-dual group.
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Combining with the B-field twist

Combining CPT-quantum symmetries (more later) and the twisting by a B-field:

The homotopy fiber sequence of 2-stacks (the hat means correct stacky cofibrant
resolution)

universal Dixmier-Douady class

BU(H) —— B(U(#0)/U(1)) -2 B2U(1)

induces a surjection of equivalence classes of equivariant higher bundles

equivariant projective bundles equivariant bundle gerbes

7o Maps(X/G, B(U(#)/U(1))) 2 mMaps(X/G,B2U(1))
which has a natural section:

“stable twists”

7t0Maps()z’/7z;7 B2U(1)) — o Maps ()(/;E, B (% ¥ ({e,C} Y {e,P})))
equivariant bundle gerbes .
full quantum-symmetry twists

@ The LHS is what is done in the literature (and what we focus on).

@ The RHS should be richer ... yet unstable ... perhaps beyond K-theory.
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The B-field twist — Inner local systems — Chern character.

One aspect of these twistings becomes transparent under the Chern character:

periodic de Rham cohomology

KU°(X; C) = dﬂeaNsz (Q;R(X; C),d)

complex K-theory

KU(X)

Chern character

(1) For twist by B-field B, there is a closed differential 3-form H; such that:

plain B-field
-twisted K-theory 3-twisted periodic de Rham cohomology
KUMB(X) 2t KUB(G €)= @ ™2 (R (X €),d+ Ha n )

dei

(2) For twist by inner Z,-local system, there is closed 1-form w1 with holonomy in
Z,, C U(1) such that:

inner local system . oo
-twisted K-theory 1-twisted periodic de Rham cohomology

KUgbal(x)  mmeen gy e (g (X ©),drewi A)
of A-type singularity " ifzﬁ
This is the hidden 1-twisting in TED-K — will be related to anyons [talk by Urs]
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Vacua of electron/positron field in Coulomb background

Q: Why K-theory in condensed matter? State-antistate, natural for e~ /e™

Fact [Klaus-Scharf77][Carey-Hurst-O'Brien82]
The vacua of the free Dirac field in a clas-
sical Coulomb background are characterized

by Fredholm operators

Fredholm operator

F

finite-dimensional kernel

R
=

finite-dimensional cokernel

coker(F)

ker(F) H bounded linear

¥ €H |V (¢IFlyp) =0

on the single-electron/positron Hilbert space:

single electron
Hilbert space

electron states in < s %
dressed vacuum ker(F) H F F/
®
Fy Seq
y e e,

Pe,
Tator
single positron
Hilbert space

number of electrons in

e i dressed vacuum state
ind(F) = dim(ker(F))
= dim (coker(F*))

“Total charge”

Y eHI|Vs (YIFl¢) =0

H

positron states in

H ——» coker(F) ‘dressed vacuum

number of positrons in
dressed vacuum state

— dim (coker( F))
— dim(ker(F*))
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Quantum symmetries

@ What symmetry operators act on these?
@ On these dressed vacua of electron/positron states, the following
CPT-twisted projective group (graded Fredhom, so we need two copies)

even projective unitary group et “\v\z”:o“
g™ Ol
U U g
M x ( Zo X 7o )
u(1) N~~~
{e.P} {eT}

@ The following explains CPT for the Dirac field:
C:=PT, P[U,U]:=[U,U]P, T[U,U]:=][U,U]T

naturally acts by conjugation:

[Us, U] F +— U'oFoU-
C-[Us, U] F — UZ'oFtoUs
P-[Us, U-] F — UloF*ouUy
T-[Up,U] @ F +— Ui'oFoU-

These happen to be the group of quantum symmetries in condensed matter.
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Group actions

1 1
1 1
e A ——— RY roio
(fully I group
Crystallographic \[ 4 Euclidean
group Ger — R9 % O(d) isometry
(diserete) i i group
ooy G —— O(d)  “an
(finite) Eroup
1 i
1 1

Brillouin all trivial -
torus Euclidean momenta lattice momenta Pontrjagin dual group

BT T¢ = Hom(A, R) /Hom(A, Z) ~ Hom(A,U(1))

Gy CT¢ = Hom(Gy CA,U(1))

erystallographic

S
&
orbi-orientifold

CP-symmetries

o m Gux (feThx{eCl)  +  X)Gu.
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Group actions 2

Symmetries g
G Gpy @ {e,T/C} x {e,P} x {e,S}
External Internal Gext Gint
ext int
C ta“ h' T' al 0 't orbi-orienti-folded Brillouin torus
rystallographic ime-revers n-site Sd e R i
Gy e {o,1} {e,T}, {e,C} eg {e,P}, {e,5} T4)G = T/ e X+ Gim
Symmetry name Action

Gpt Crystallographic point transformation Orthogonal transformation on BT

1 Inversion Point reflection on BT

T Time reversal Point reflection on BT & complex conj. on obs.

[} Charge conjugation Point reflection on BT & complex conj. + deg. flip on obs.
P Parity reversal No action on BT & degree flip on obs.

N

Spin flip No action on BT & some projective action on obs.
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Corresponding description

Projective involutions KR/KU/KO-theory ‘ Quantum CPT-symmetries
Orbifolding Orbifold K-theory | Crystallographic symmetries
Orbi-singularity Fixed point theory ‘ Internal symmetries
. Orbi-singularity Twisted differential “fictitious” gauge symmetries
with Inner local system Fixed point theory (anyonic braiding phases)

Fred. / (% 1 {e, P} x {e,T})

Gex-SPT/SET _ o . .
{crystalline insulator phases} - H KR*(T/Gex) = I[;]I e
T [Geu — B <% x {e,P} x {e,T})

SPT=symmetry protected phases: G-equivariantly nontrivial, in that it cannot be
adiabatically deformed (while repsecting given G-symmetry) to a topologically trivial
phase.

SET=symmetry enhanced phases: one in addition requires that the underlying
topological phase (i.e., forgetting the quantum symmetry) is trivial.
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Twisted equivariant KR-theory

Homotopy classes of quantum-symmetry equivariant families of self-adjoint odd
Fredholm operators constitute twisted equivariant KR-cohomology:

gt f quant tri
% group of quantum symmetries

Fred?. //(w % {e.P} x {e,T})

oo ‘
@e‘\ i g

59\‘ o universal bundle of

<‘ & - self-adjoint odd Fredholm operators
T . d’\ &\“ = \\, over moduli stack of quantum symmetries

KRZL(X) := S
orbi-
orientifold ~”

X/G
gt

L\r

B(UWOXID o« fo,P} x (e, 7))

&

B({e,C} x {e,T})

twist T

%,
B, ’71,4,

g / “htpy
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Concrete setting: Free topological phases of matter

= ldea: Single-particle valence bundle of electrons in crystalline insulator
classified by topological K-theory of Brillouin torus
equivariant wrt quantum symmetries [Kitaev 09] [FreedMoorel2]

Bundle of all

Single particle |/ — {k (= ifd, W) eH® H | |<'([)|Hk|’{p)| < ;.I,F} C B reitivistic

lence bundls
valence bundle Bloch states

J

~
Brillouin torus of d
momenta in crystal

EeR
e e —
higher bands | = —
[ ——
ey [ -
Conductionband | = esS—— TN
—
Chemical potential #r — - gap — - — - - | e
¥ [ ]
Valence band | | bands of R occ.oicd
lowest bands | M——  (valence bundle ora/conductor  semi-conductor insulator
—
keTd

[Mathai-Thiang] use T-duality (in analogy with D-branes) to understand such
systems.
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Example — Orientifold KR-theory

Let / be Inversion action on 2-torus T2 ~ R2/Z? and trivial action on observables

™ L T2 Fredg S N Fredg

ko — =k, F +— F.

If T acts as / on T2, then KR™"= 1 is Atiyah's Real K-theory aka orienti-fold
K-theory: (the hat is the image on Fredholm operators)

(so this gives an interpretation of KR-theory as the time-reversal-equivariant
topological phases).

Frcdg J(U(3H) % {e,T})

-
KR(T%?) = ¢ mppeny = p o BUOD e T))

iy, (o
or i e \1\ES
7 s combined O pger®
ice i ot 0
~ > with

B{e,T}

/ "hpy

But what happens on /-fixed loci, i.e., on “orientifolds” ?
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CPT Quantum symmetries — 10 global

[FreedMoorel2]
‘ Equivariance group G= H‘ {e} | {e,P} H {e,T} | {e,C} ‘ {e,T} x {e,C} |
Realization as r= + - il Ml
’ :
quantum symmetry fe T T Y I S (S T
Eg= 1?6}3
E,= 15[3 16,6
Eq= P [y |
Maximal induced P ’ i P
Clifford action. Eg=|| B B B (g f]ﬁ) B B B B B B
anticommuting with
all G-invariant 0dd E. - (0 1) ¢ cg | ¢
Fredholm operators 2 = A s :
g ) icp iCp
Eiy= (g ’UT) iTCh
_ 0if
Eu= (i? 0 )
viwisted Grequivaiant — ype || ey | gyt | ko* | KO* | KOP | KO® | KO! | KOP | KOS | KO7
KR-theory of fixed loci
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Example — T/-equivariant KR-theory is KO°-theory

The combination T -/

acts trivially on the domain space and
by complex conjugation on observables.

Hence (T - /)-equivariant (?2 = +1)-twisted KR-theory is KO%-theory:

Fredg//(U(_’l{) x{e,T})
) I
KO"(X) ~ ¥ xs/{e,TI} 2os1——— B(U(H) x {e,T})
m, e
B{e,T}
= 0|1 |2 |3|4[5[6[7|8]|9
KOS = || Z |Zy |Z, [0 |Z |00 |0 Z|2Z

’ / “htpy
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Interacting enhancement via Hypothesis H
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@ Interacting n-electron wavefunctions are functions on the space of n points in
Brillioun torus

o Pauli exclusion = these span vector bundle away from the locus of coinciding
points:

Slater determinants of Bloch states

Rt V. c 10 Span{%,~~~,,n((k 81, (K »s))}(,. o]
(RN o

l (', 8"

epariion racaad {Equfi) (Td\{k1,~- ,kN}) - {(kl,“nk”) e (T4)" bvéj kizélkf and i\_fk"%kz}
o ' sin;\.:ll?l:rl:lies

in complement of N “nodal”
points inside the Brillouin torus exclusion

This locus is known as the configuration space of n points.

Idea: Do not avoid these points, but embrace them (as we did for singularities).
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Deep theorems (Hopf, Pontrjagin, Segal) relate configurations of points to
Cohomotopy theory — a non-abelian generalized cohomology theory:

sphere

Cohomotopy w"(X) = Map(X, §" )/hlpr
(S"ﬂK(Z,n))*
an, HN(X:Z) = Map(X, K(Z,n))/,

E.-M.-space

Hypothesis H: 4-Cohomotopy is a flux quantization law for C-field in 11d
super-gravity:

Bianchi identity for supergravity C-field

d Gy :—%64/\64}
/cncrd

gen. character map

w00 —2— { (&) eanen

J(sux(z,au)) ] ﬁ::%‘

H(XT) { Gi € QR (X) ‘ ficy :0}

dGs =0

cnerd

In fact, tangentially twisted 4-Cohomotopy, coupling this to the spacetime metric,
implies a list of subtle topological conditions expected to hold in M-theory.
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Twisted Cohomotopy theory [FSS]

To include nontrivial spacetime topology (needed for anomaly cancellation), we
involve structures arising from the tangent bundle.

In degree d — 1, there is a canonical twisting on Riemannian d-manifolds, given by

the unit sphere bundle in the orthogonal tangent bundle:

J-twisted
Cohomotopy theory

TXd(Xd) .

continuous section
= twisted cocycle

/
/

Ve

> S(TXY) ————= 5771/ 0(d)

tangent

universal tangent
unit sphere bundle

unit sphere bundle

g

X9

l

X

x—X . BO(d)
classifying map of
tangent/frame bundle

/ ~ homotopy

BO(d)

continuous function

%:motopy
X
twist

BO(d)

= §771/0(d)

k¢

/ " homotopy

BO(d)

Since the canonical morphism O(d) — Aut(S9~1) is known as the

J-homomorphism, we may call this J-twisted Cohomotopy theory, for short.  3s/aa



Twisted cohomotopy and anomalies [FSS]

Hypothesis H: The C-field 4-flux & 7-
flux forms in M-theory are subject to
charge quantization in J-twisted Cohomo-
topy cohomology theory in that they are
in the image of the non-abelian Chern
character map from J-twisted Cohomo-
topy theory.

= Cancellation of main anomalies:

Framed M-branes and topological invariants
ADE-Equivariant Cohomotopy and M-branes
The rational higher structure of M-theory
Cohomotopy implies M-theory anom. canc.
Cohomotopy implies M5-brane WZ term
Cohomotopy implies tadpole cancellation
Cohomotopy implies intersecting brane obs.
Cohomotopy implies M5-brane anom. canc.
Cohomotopy implies String structure on M5
Cohomotopy implies GS-mechanism
Cohomotopy implies GS-mechanism on M5
M/F-Theory as Mf-theory

arX:
arX:
arX:
arX:
arX:
arX:
arX:
arX:
arX:
arX:
arX:
arX:

Half-integral flux quantization

[G4+ %pl] (S H4(X,Z)
———

=: Ga integral flux

Background charge

q(Ga)
=

quadratic form

= Ga(Ga— 3 )

=(Ga)o

DMW-anomaly cancellation

Wy (TX)

Il

Integral equation of motion

¢ (G.
3L

=65¢*

M5-brane anomaly cancellation

M5 M5
form + ha

chiral
fermion

& =0
~—~
bulk

inflow

~—
self-dual
3-flux

M2-brane tadpole cancellation

NMZ
~~

number of
M2-branes

+q( Gs ) = Is
One loop
polynomial

1310.
1805.
.02834]
.10207]
1906.
1909.
1912,
2002.
2002.
2008.
2011.
2103.

1903
1904

1060
05987]

07417]
12277)
10425]
07737
11093]
08544
06533
01877
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The perspective

@ Single electron: old
@ Multiple electrons — interacting ground states.
@ The beauty of this is that K-theory still applies and is physically motivated.

H Single electron Multiple electrons interacting
Classical X cohomotopy moduli involving Maps(X, $*)
Quantum K(X) K (cohomotopy moduli)
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Quantum field theory of Defect branes via TED-K

Correlators of some Euclidean QTFs are encoded in the de Rham cohomology
of a configuration space of points ([Berghoff14]).

Correlators= Hj (Configuration space) ‘

Example: for 3d Chern-Simons theory [AxelrodSinger94], leads to
Kontsevich's graph complexes;

The evident suggestion that therefore the generalized cohomology (such as
the K-theory) of configuration spaces might reflect yet more details of
quantum field theory.

‘ E*(Configuration space) ‘

We find a fair bit of deep structure in QFT is reflected in the (twisted,
equivariant, differential, generalized, ...) cohomology of configuration spaces
of points.
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@ Realize the picture below physically and mathematically.
@ Previously: no derivation of topological phases.

o Applying K-theory to configuration spaces makes the anyons.

ion
/ U(t2))
. phase e
Some ground state for Berry —antum & Another ground state for
seen a |1/; (1 )> —adrabatic O fixed defect positions

fixed defect positions 0
TED K: ki ko--- at time & ki ko, at time t,
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Precise proposal for interacting enhancement via “Hypothesis H”

@ Evaluate TED K-cohomology not on Brillouin torus/spacetime-orbifold itself,
but on its configuration space of points, and generally: on its Cohomotopy
moduli.

@ The TED K-cohomology of n-point configurations in Brillouin torus classifies
valence bundle of n-electron interacting states.

@ Moreover, generalized cohomology of intersecting Cohomotopy moduli spaces
reflects intersecting brane observables expected from non-abelian DBI action.

~» Hypothesis H:

Quantum observables on non-perturbative interacting ground states are in
generalized cohomology (e.g. TED K-theory) of twisted Cohomotopy moduli.
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Differential coh

-brane gauge theories

Zoom in beyond foundational /structural M-theoretic considerations [S.-Schreiber]:

@ A differential refinement of Cohomotopy cohomology theory is given by
un-ordered configuration spaces of points.

@ The fiber product of such differentially refined Cohomotopy cocycle spaces
describing D6 L D8-brane intersections is homotopy-equivalent to the ordered
configuration space of points in the transversal space.

@ The higher observables on this moduli space are equivalently weight systems
on horizontal chord diagrams.

Cohomotopy cohomology
theory

Hypothesis H

Differential

refinement
e S

Fiber product

A/‘/\/\/\/\/

Intersecting branes ‘

Observables

Configuration spaces
of points

éCohomology

Weight systems on
Chord diagrams

Model
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Combining the above seemingly distinct mathematical areas reflect a multitude of
effects expected on brane intersections in string theory. So aside from structural
utility for M-theory, Hypothesis H implies:

M-theoretic observables on D6 L D8-configurations (cf. parametrized).
Chan-Paton observables.

String topology operations.

Multi-trace observables of BMN matrix model.

Hanany-Witten states.

BLG 3-Algebra observables.

Bulk Wilson loop observables.

Single-trace observables

of SYK & BMN model.

Fuzzy funnel observables.

Supersymmetric indices.

't Hooft string amplitudes.

Top-down M-theory via Hypothesis H: knowledge about gauge field theory and
perturbative string theory is not used in deriving the algebras of observables of
M-theory, but only to interpret them.
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M-brane realization

Quantum states of branes as cohomology of Cohomotopy cocycle spaces
according to Hypothesis H.

Hanany-Witten theory|  Seiberg-Witten theory of
of codim=3 branes defect codim=2 branes
Intersecting branes NS5 =D6_1.D8 “M3" = M5 1L M5
Charge quantization law 4-Cohomotopy 3-Cohomotopy
Cocycle space / [I Conf (R ®) 11 Conf (Rz)
configuration space Neen {1+, Ni} Nen {1
Ez\g)lf_'tgioﬂlgge}t\,\?se) Weight systems/ 5A[2-Conforma| blocks/
quantum states + observables Chord diagrams Braid group reps
— talk by Urs
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Thank you!
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