# M-theory and matter via Twisted equivariant differential (TED) K-theory

Hisham Sati New York University Abu Dhabi (NYUAD)

> M-Theory and Mathematics: Classical and Quantum Aspects

> > 12-16 Jan. 2023 NYUAD

Center for Quantum & Topological Systems

Overview of a program (series of papers) joint with: Urs Schreiber.

Related work also with: Domenico Fiorenza, Dan Grady, Alexander Voronov.

[S] = S.

[SS] = S.-Schreiber

[FSS] = Fiorenza-S.-Schreiber

[GS] = Grady-S.

[SV] =S.-Voronov

#### TED K-theory: High energy vs. condensed matter



## Outline/Theme

#### The main theme:

| Issue                                                                                | Solution                                                         |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------|
| TED-K had never really been constructed                                              | ightarrow Systematic construction of TED K-theory                |
| M-theory had remained notoriously elusive                                            | → Precise proposal for interacting enhancement via Hypothesis H  |
| Nonperturbative aspects of field theory (M-theory) are actually practically relevant | ightarrow Concrete implementation of topological order via TED-K |
|                                                                                      | Embedding in M-theory via M-branes                               |

#### Physics context:

- a mix of high energy and condensed matter.
- Exact constructions/duality and not just analogies.

## Mathematical Richness of M-theory



#### Generalities on what physics wants

- Nontrivial physical entities, such as fields, charges, etc., generically take values in cohomology.
- Anomalies and quantum considerations require generalized versions (cobordism, elliptic cohomology, K-theory, etc.) depending on context.



- Twisting: Account for symmetries via automorphisms. Physically: it is the coupling between fields that are being twisted with those doing the twist.
  interesting ↑ interplay
- **Equivariant**: Account for (spacetime) singularities/symmetries via group actions, e.g. orbifolds, orientifolds ... ← Quite subtle
- Differentially refined: Include geometric data, such as connections, Chern character form, smooth structure, smooth representatives of maps ...

## 1. Generalized cohomology

Motivation from modelling of fields (in QFT, string theory and M-theory).



#### 2. Twists

- We would like to introduce automorphisms.
- These arise from geometric and physical considerations.
- Homotopy p.o.v.: moduli/family setting; bundles of spectra  $\mathcal{S} \longrightarrow \mathcal{E}$

Relations among various twists?

#### Example (twist $\Omega$ )

Twisted differential forms are forms valued in the orientation line bundle. Top such form is a density (pseudo-volume form).

# Example: Twisted de Rham cohomology

- The de Rham complex  $(\Omega^{\bullet}, d): \ldots \xrightarrow{d} \Omega^{i}(X) \xrightarrow{d} \Omega^{i+1}(X) \xrightarrow{d} \ldots$
- Twist by a 1-form built out of scalar ftn:  $d \rightsquigarrow d_{\phi} := d + d\phi \land$  with  $d_{\phi}^2 = 0$ .

# Example (Witten's deformation of Morse theory)

For smooth  $f: M \to \mathbb{R}$ , the Witten differential is  $d_s = e^{-sf} de^{sf} = d + sdf \wedge$ , where  $s \in \mathbb{R}$ . Then  $d_s^2 = 0$ ,  $d_s: \Omega^p \to \Omega^{p+1}$ . The term  $e^{-sf}$  is a quasi-isomorphism  $\Omega^p \xrightarrow{d} \Omega^{p+1} \longrightarrow \ldots$ 

and  $d_s$  yields isomorphic cohomology groups.

• Twist by a closed 3-form:  $d_{H_3} = d - H_3 \wedge$ , with  $d_{H_3}^2 = 0$ .

#### Definition

Twisted de Rham cohomology:  $H^i(X, H_3) := \ker(d_{H_3})/\operatorname{im}(d_{H_3})$ 

# Example (The Ramond-Ramond (RR) fields in string theory)

Rationally,  $F = \sum_{i \le 5} u^{-i} F_{2i+\epsilon}$ ,  $\epsilon = 0$  or 1 for type IIA or type IIB string theory. These are twisted by a closed 3-form, the NS-field  $H_3$ .

# Reverse engineering for twisted generalized cohomology

Rational twisted cohomology arises as image of some Chern character.

The Chern-Dold character: Primary image of any generalized cohomology theory is rationalization. [FSS book in press: The Chern character in abelian and nonabelian cohomology]



#### Example (Twisted K-theory)

Degree three twist  $H_3$ :

$$\operatorname{ch}_{H_3}: \underbrace{K^{\bullet}(X,H_3)}_{\operatorname{twisted}\,K-\operatorname{theory}} \longrightarrow \underbrace{H^{\operatorname{ev}}(X,H_3)}_{\operatorname{twisted}\,de\,Rham\,cohomology}$$

[Rosenberg, Bouwknegt-Carey-Mathai-Murray-Stevenson, Atiyah-Segal, · · · ]

## Differential refinement: cohomology

• Introduce geometric data via differential forms (connections, Chern forms, ...), i.e., retain *differential form representatives* of cohomology classes.



 Amalgam of an underlying (topological) cohomology theory and the data of differential forms:



• That is, we have a homotopy fiber product (of sheaves of spectra classifying)

# Differential generalized cohomology

- Start with a generalized cohomology theory *E*
- $\Omega(X, E_*) := \Omega(X) \otimes_{\mathbb{Z}} E_*$  Smooth diff. forms with coefficients in  $E_* := E(*)$
- $\Omega_{\mathrm{cl}}(X, E_*) \subseteq \Omega(X, E_*)$  closed forms
- $H_{\mathrm{dR}}(X, E_*)$  cohomology of the complex  $(\Omega(X, E_*), d)$

#### Definition

A differential/smooth extension of h is a contravariant functor  $\widehat{E}:$  Compact Smooth Manifolds  $\longrightarrow$  Graded Abelian Grps





This has a nonabelian/nonlinear generalization – cf. Cohomotopy for M-theory 12/44

#### The full structure: TED



Proper Orbifold Cohomology
The twisted non-abelian character map
Equivariant Principal ∞-bundles
Anyonic Defect Branes in TED-K-Theory
The twisted equivariant character map
Twisted equivariant differential generalized cohomology

[arX:2008.01101] [arX:2009.11909] [arX:2112.13654] [arX:2203.11838] [SS23-TEC in preparation] [SS23-TED work in progress]

+ earlier work [GS] ...

# Motivation/Application in string theory

#### Examples ([GS])

- Type I (II) RR fields live in twisted differential KO-theory  $\widehat{KO}_{\hat{\tau}}$  (K-theory  $\widehat{K}_{\hat{\tau}}$ ).
- 2 Differential refinements of various twisted cohomology theories.
  - G C spacetime with RR fields/D-branes in TED K-theory.

• Later we will consider TED K-theory of *configuration spaces* to connect to cohomotopy that describes fields/flux quantization in M-theory.

#### Rosetta stone

| Topological phases                         | Topological K theory                          | String/M theory                                      |
|--------------------------------------------|-----------------------------------------------|------------------------------------------------------|
| Single-electron state in d-dim crystal     | Line bundle over<br>Brillouin d-torus         | Single probe D-brane of codimension d                |
| Single positron state                      | Virtual line bundle<br>over Brillouin torus   | Single anti $\overline{D}$ -brane of codimension $d$ |
| Bloch-Floquet transform                    | Hilbert space bundle over Brillouin d-torus   | Unstable (tachyonic)<br>D9/D9-brane state            |
| Dressed Dirac<br>vacuum operator           | Family of Fredholm operators                  | Tachyon field                                        |
| Valence bundle of electron/positron states | Virtual bundle of their kernels and cokernels | stable D-brane state f<br>after tachyon condensation |
| Topological phase                          | K-theory class                                | Stable D-brane charge                                |

| Symmetry protection       | Twisted equivariance     | Global symmetries          |
|---------------------------|--------------------------|----------------------------|
| CPT symmetry              | KR/KU/KO-theory          | Type I/IIA/IIB             |
| Crystallographic symmetry | Orbifold K-theory        | Spacetime orbifolding      |
| Gauged internal symmetry  | Inner local system-twist | Inside of orbi-singularity |

 $\leftarrow$ 

| Topological order                                                | Twisted differentiality                                                             | Gauge symmetries                                  |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------|
| Berry connection                                                 | Differential K-theory                                                               | Chan-Paton gauge field                            |
| Mass terms                                                       | Differential K-LES                                                                  | Axio-Dilaton RR-field                             |
| Nodal point charge                                               | Flat K-theory                                                                       | Defect brane charge                               |
| Anyonic defects                                                  | TED-K of Configurations                                                             | Defect branes                                     |
| N band nodes                                                     | N-punctured<br>Brillouin torus                                                      | N defect branes                                   |
| Interacting <i>n</i> -electron states around <i>N</i> band nodes | Vector bundle over<br>n-point configuration space in<br>N-punctured Brillouin torus | Interacting n probe branes around N defect branes |
| su <sub>2</sub> -anyon species                                   | Holonomy of inner local system                                                      | SL(2, Z)-charges<br>of defect branes              |

## Subtleties with the equivariant setting

#### Key subtlety:

Constructing the twisted equivariant Chern character as map of equivariant moduli stacks, to give the differential theory.

- this is previously under-developed, because equivariant classifying spaces are generally far from simply-connected/nilpotent (complications with RHT).
- Equivariant Eilenberg-MacLane spaces pick a local system ⇒ deg. 1 twist.
   (i.e. Equivariant classifying space for equivariant gerbes)

We will see how some of this works in the applications.

#### Turn on its head

The Galois-theoretic/local systems effect hidden in this technicality is responsible for the appearance of conformal blocks and braid group statistics in TED-K

⇒ Mathematically accounts for anyons in topological phases of matter.

Novel mathematical reflection of the physics folklore that something special happens inside the singularities.

[Matches all the expectations of strings/D-branes on ADE singularties]

Get a rich structure from the singularities/fixed points of the group action:



 $G^* := \operatorname{Hom}(G, \operatorname{U}(1))$  denotes the Pontrjagin-dual group (note  $BPU \sim B^2U(1)$  by stability of reps of PU). G finite subgroup of SU(2) so that  $H^2_{\operatorname{Grp}}(G, U(1) = 0)$ .

## The B-field twist – Inner local systems

On fixed loci (orbi-singularities)

$$X /\!\!/ G \simeq X \times */\!\!/ G = X \times BG$$

the B-field twist induces secondary twists by "inner local systems":

#### stable twists over fixed locus

Maps 
$$(X \times */\!\!/ G, \mathbf{B}^2 \mathbf{U}(1)) \simeq \mathrm{Maps}(X \times \mathbf{B}G, \mathbf{B}^2 \mathbf{U}(1))$$

$$\simeq \mathrm{Maps}(X, \mathrm{Maps}(\mathbf{B}G, \mathbf{B}^2 \mathbf{U}(1)))$$

$$\simeq \mathrm{Maps}(X, \mathbf{B}G^* \times \mathbf{B}^2 \mathbf{U}(1))$$

$$\simeq \mathrm{Maps}(X, \mathbf{B}G^*) \times \mathrm{Maps}(X, \mathbf{B}^2 \mathbf{U}(1))$$
inner local systems bundle gerbes

Here we are assuming  $G \subset SU(2)$  so that  $H^2_{Grp}(G, U(1)) = 0$ .

 $G^* := \text{Hom}(G, U(1))$  denotes the Pontrjagin-dual group.

## Combining with the B-field twist

Combining CPT-quantum symmetries (more later) and the twisting by a B-field:

The homotopy fiber sequence of 2-stacks (the hat means correct stacky cofibrant resolution)

$$\mathbf{B}\mathrm{U}(\mathcal{H}) \longrightarrow \mathbf{B}\big(\mathrm{U}(\mathcal{H})/\mathrm{U}(1)\big) \stackrel{\mathrm{DD}}{\longrightarrow} \mathbf{B}^2\mathrm{U}(1)$$

induces a surjection of equivalence classes of equivariant higher bundles

$$\begin{array}{ll} \text{equivariant projective bundles} & \text{equivariant bundle gerbes} \\ \pi_0 \ \text{Maps}\Big(\widehat{X/\!\!/ G}, \mathbf{B}\big(\mathrm{U}(\mathcal{H})/\mathrm{U}(1)\big)\Big) & \stackrel{\mathrm{DD}_*}{\longrightarrow} & \pi_0 \operatorname{Maps}\Big(\widehat{X/\!\!/ G}, \mathbf{B}^2\mathrm{U}(1)\Big) \end{array}$$

which has a natural section:

$$\begin{array}{c} \text{``stable twists''} \\ \pi_0 \text{Maps} \big( \widehat{X /\!\!/ G}, \mathbf{B}^2 \text{U}(1) \big) \, \hookrightarrow \, \pi_0 \, \text{Maps} \bigg( \widehat{X /\!\!/ G}, \mathbf{B} \Big( \frac{\text{U}(\mathcal{H}) \times \text{U}(\mathcal{H})}{\text{U}(1)} \rtimes \big( \{e, C\} \times \{e, P\} \big) \Big) \bigg) \\ \text{equivariant bundle gerbes} \\ \text{full quantum-symmetry twists} \end{array}$$

- The LHS is what is done in the literature (and what we focus on).
- The RHS should be richer ... yet unstable ... perhaps beyond K-theory.

## The B-field twist - Inner local systems - Chern character.

One aspect of these twistings becomes transparent under the Chern character:

$$\begin{array}{ccc} \text{complex K-theory} & \text{periodic de Rham cohomology} \\ \text{KU}^0(X) & \xrightarrow{\text{Chern character}} \text{KU}^0(X; \, \mathbb{C}) & \simeq & \bigoplus_{d \in \mathbb{N}} H^{2d} \Big( \Omega_{dR}^{\bullet} \big( X; \, \mathbb{C} \big), d \Big) \end{array}$$

(1) For twist by B-field  $\widehat{B}_2$  there is a closed differential 3-form  $H_3$  such that:

plain B-field -twisted K-theory 3-twisted periodic de Rham cohomology 
$$KU^{n+\widehat{B}_2}(X) \xrightarrow[Chern\ character]{\text{twisted}}} KU^{\widehat{B}_2}(X; \mathbb{C}) \simeq \bigoplus_{d \in \mathbb{Z}} \mathcal{H}^{n+2d}\left(\Omega^{\bullet}_{dR}(X; \mathbb{C}), d + \cancel{H}_3 \wedge\right)$$

(2) For twist by inner  $\mathbb{Z}_{\kappa}$ -local system, there is closed 1-form  $\omega_1$  with holonomy in  $\mathbb{Z}_{\kappa} \subset \mathrm{U}(1)$  such that:

inner local system -twisted K-theory 
$$KU^{n+[\omega_1]}_{C_\kappa}(X) \xrightarrow{\text{twisted equivariant} \atop \text{Chern character}} \bigoplus_{\substack{d \in \mathbb{Z} \\ 1 \leq r \leq \kappa}} H^{n+2d}\left(\Omega^{\bullet}_{dR}(X;\,\mathbb{C}), d+r \cdot \omega_1 \wedge\right)$$

This is the hidden 1-twisting in TED-K – will be related to anyons [talk by Urs]

## Vacua of electron/positron field in Coulomb background

**Q:** Why K-theory in condensed matter? State-antistate, natural for  $e^-/e^+$ 

**Fact** [Klaus-Scharf77][Carey-Hurst-O'Brien82] The vacua of the free Dirac field in a classical Coulomb background are characterized by Fredholm operators





on the single-electron/positron Hilbert space:



"Total charge"

#### Quantum symmetries

- What symmetry operators act on these?
- On these dressed vacua of electron/positron states, the following CPT-twisted projective group (graded Fredhom, so we need two copies)

$$\frac{U(\mathcal{H})\times U(\mathcal{H})}{U(1)}\rtimes (\underbrace{\frac{\mathbb{Z}_2}{\{e,P\}}\times \frac{\mathbb{Z}_2}{\{e,T\}}}_{\text{cn},P})$$

The following explains CPT for the Dirac field:

$$C := PT, \quad P \cdot \begin{bmatrix} U_+, \ U_- \end{bmatrix} := \begin{bmatrix} U_-, \ U_+ \end{bmatrix} \cdot P, \quad T \cdot \begin{bmatrix} U_+, \ U_- \end{bmatrix} := \begin{bmatrix} \overline{U}_+, \overline{U}_- \end{bmatrix} \cdot T$$

naturally acts by conjugation:

These happen to be the group of quantum symmetries in condensed matter.

$$\begin{array}{lll} & [\mathsf{Karoubi\ 70}] \colon & \big\{ X \longrightarrow \mathsf{Fred}_K^\rho \big\}_{/\sim} & = & \left\{ \begin{array}{ll} \mathsf{KU}^\rho(X) = \mathsf{KU}^{\rho+2}(X) & | & \mathbb{K} = \mathbb{C} \\ \mathsf{KO}^\rho(X) = \mathsf{KO}^{\rho+8}(X) & | & \mathbb{K} = \mathbb{R} \end{array} \right. \\ \end{array}$$

## Group actions



## Group actions 2

| $\begin{array}{c} \text{Symmetries} \\ G \end{array}$        |                                                                   |  |  |  |
|--------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|
| Exter G <sub>ex</sub>                                        | $\begin{matrix} \textbf{Internal} \\ G_{\text{int}} \end{matrix}$ |  |  |  |
| Crystallographic $G_{\mathrm{pt}}$ , e.g. $\{\mathrm{e},I\}$ | On-site e.g. $\{e, P\}, \{e, S\}$                                 |  |  |  |

$$\begin{aligned} & \underbrace{G_{\text{pt}} \rtimes \{\text{e}, T/C\}}_{G_{\text{ext}}} \times \underbrace{\{\text{e}, P\} \rtimes \{\text{e}, S\}}_{G_{\text{int}}} \\ & \text{orbi-orienti-folded Brillouin torus} \\ & \widehat{\mathbb{T}}^d /\!\!/ G \simeq \widehat{\mathbb{T}}^d /\!\!/ G_{\text{ext}} \times * /\!\!/ G_{\text{int}} \end{aligned}$$

|             | Symmetry name                         | Action                                                     |
|-------------|---------------------------------------|------------------------------------------------------------|
| $G_{ m pt}$ | Crystallographic point transformation | Orthogonal transformation on BT                            |
| I           | Inversion                             | Point reflection on BT                                     |
| T           | Time reversal                         | Point reflection on BT & complex conj. on obs.             |
| C           | Charge conjugation                    | Point reflection on BT & complex conj. + deg. flip on obs. |
| P           | Parity reversal                       | No action on BT & degree flip on obs.                      |
| S           | Spin flip                             | No action on BT & some projective action on obs.           |

## Corresponding description

| Twisted equivariance                        | Sector of TED-K                            | Type of symmetry protection                             |
|---------------------------------------------|--------------------------------------------|---------------------------------------------------------|
| Projective involutions                      | KR/KU/KO-theory                            | Quantum CPT-symmetries                                  |
| Orbifolding                                 | Orbifold K-theory                          | Crystallographic symmetries                             |
| Orbi-singularity                            | Fixed point theory                         | Internal symmetries                                     |
| Orbi-singularity<br>with Inner local system | Twisted differential<br>Fixed point theory | "fictitious" gauge symmetries (anyonic braiding phases) |

$$\begin{cases} G_{\text{ext}}\text{-SPT/SET} \\ \text{crystalline insulator phases} \end{cases} \ = \ \coprod_{[\tau]} \mathsf{KR}^{\tau} \big( \widehat{\mathbb{T}}^d /\!\!/ G_{\text{ext}} \big) \ \simeq \ \coprod_{[\tau]} \begin{cases} \mathsf{Fred}_{\mathbb{C}}^0 /\!\!/ \Big( \frac{\mathsf{U}(\mathcal{H}) \times \mathsf{U}(\mathcal{H})}{\mathsf{U}(1)} \rtimes \{\mathsf{e}, P\} \times \{\mathsf{e}, T\} \Big) \\ \widehat{\mathbb{T}}^d /\!\!/ G_{\text{ext}} \xrightarrow{\tau} \mathbf{B} \Big( \frac{\mathsf{U}(\mathcal{H}) \times \mathsf{U}(\mathcal{H})}{\mathsf{U}(1)} \rtimes \{\mathsf{e}, P\} \times \{\mathsf{e}, T\} \Big) \end{cases}$$

SPT=symmetry protected phases: G-equivariantly nontrivial, in that it cannot be adiabatically deformed (while repsecting given G-symmetry) to a topologically trivial phase.

SET=symmetry enhanced phases: one in addition requires that the underlying topological phase (i.e., forgetting the quantum symmetry) is trivial.

#### Twisted equivariant KR-theory

Homotopy classes of quantum-symmetry equivariant families of self-adjoint odd Fredholm operators constitute *twisted equivariant* KR-cohomology:



## Concrete setting: Free topological phases of matter

⇒ Idea: Single-particle valence bundle of electrons in crystalline insulator classified by topological K-theory of Brillouin torus equivariant wrt quantum symmetries [Kitaev 09] [FreedMoore12]



[Mathai-Thiang] use T-duality (in analogy with D-branes) to understand such systems.

#### Example - Orientifold KR-theory

Let I be Inversion action on 2-torus  $\widehat{\mathbb{T}}^2\simeq\mathbb{R}^2/\mathbb{Z}^2$  and trivial action on observables

If T acts as I on  $\mathbb{T}^2$ , then  $KR^{\widehat{T}^2=+1}$  is *Atiyah's Real K-theory* aka *orienti-fold* K-theory: (the hat is the image on Fredholm operators) (so this gives an interpretation of KR-theory as the time-reversal-equivariant topological phases).

$$\operatorname{KR}\left(\widehat{\mathbb{T}}^{0,2}\right) \simeq \left\{ \begin{array}{c} \operatorname{Fred}_{\mathbb{C}}^{0} /\!\!/ \left(\operatorname{U}(\mathcal{H}) \rtimes \{\operatorname{e}, T\}\right) \\ \downarrow \\ \mathbb{T}^{2} /\!\!/ \{\operatorname{e}, I\} & \widehat{T}^{2} = +1 \longrightarrow \operatorname{\mathbf{B}}\left(\operatorname{U}(\mathcal{H}) \rtimes \{\operatorname{e}, T\}\right) \\ \downarrow & \operatorname{\mathbf{B}}\left\{\operatorname{e}, T\right\} \end{array} \right\} /\!\!/ \sim_{\operatorname{https}}$$

But what happens on *I*-fixed loci, i.e., on "orientifolds"?

# CPT Quantum symmetries – 10 global choices

#### [FreedMoore12]

| Equivariance group                              | G =               | {e}             | {e, <i>P</i> }  | {               | [e, T]                                                              | {e,             | <i>C</i> }      |                 | $\{e,T\}$            | < {e, C}        |                 |
|-------------------------------------------------|-------------------|-----------------|-----------------|-----------------|---------------------------------------------------------------------|-----------------|-----------------|-----------------|----------------------|-----------------|-----------------|
| Realization as $\tau$ :                         | $\widehat{T}^2 =$ |                 |                 | +1              | -1                                                                  |                 |                 | +1              | -1                   | -1              | +1              |
| quantum symmetry                                | $\widehat{C}^2 =$ |                 |                 |                 |                                                                     | +1              | -1              | +1              | +1                   | -1              | -1              |
|                                                 | $E_{-3} =$        |                 |                 |                 |                                                                     |                 |                 |                 | i $\hat{T}\hat{C}$ β |                 |                 |
|                                                 | $E_{-2} =$        |                 |                 |                 |                                                                     | iĈβ             |                 |                 | iĈβ                  |                 |                 |
| Maximal induced                                 | $E_{-1} =$        |                 | Pβ              |                 |                                                                     | Ĉβ              |                 | Ĉβ              | Ĉβ                   |                 |                 |
| Clifford action<br>anticommuting with           | $E_{+0} =$        | β               | β               | β               | $\begin{pmatrix} \beta & 0 \\ 0 & -\beta \end{pmatrix}$             | β               | β               | β               | β                    | β               | β               |
| all G-invariant odd Fredholm operators          | $E_{+1} =$        |                 |                 |                 | $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$                      |                 | Ĉβ              |                 |                      | Ĉβ              | Ĉβ              |
| Treations operators                             | $E_{+2} =$        |                 |                 |                 | $\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$                      |                 | iĈβ             |                 |                      | iĈβ             |                 |
|                                                 | $E_{+3} =$        |                 |                 |                 | $\begin{pmatrix} 0 & -\widehat{T} \\ \widehat{T} & 0 \end{pmatrix}$ |                 |                 |                 |                      | i <i>ĈĈβ</i>    |                 |
|                                                 | $E_{+4} =$        |                 |                 |                 | $\begin{pmatrix} 0 & i\hat{T} \\ i\hat{T} & 0 \end{pmatrix}$        |                 |                 |                 |                      |                 |                 |
| τ-twisted G-equivariant KR-theory of fixed loci | $KR^{\tau} =$     | KU <sup>0</sup> | KU <sup>1</sup> | KO <sup>0</sup> | KO <sup>4</sup>                                                     | KO <sup>2</sup> | KO <sup>6</sup> | KO <sup>1</sup> | KO <sup>3</sup>      | KO <sup>5</sup> | KO <sup>7</sup> |

# Example – TI-equivariant KR-theory is KO<sup>0</sup>-theory

The combination  $T \cdot I$  acts trivially on the domain space and by complex conjugation on observables.

Hence  $(T \cdot I)$ -equivariant  $(\widehat{T}^2 = +1)$ -twisted KR-theory is KO<sup>0</sup>-theory:



Interacting enhancement via Hypothesis H

- Interacting n-electron wavefunctions are functions on the space of n points in Brillioun torus
- Pauli exclusion ⇒ these span vector bundle away from the locus of coinciding points:

This locus is known as the **configuration space of** n **points**.

Idea: Do not avoid these points, but embrace them (as we did for singularities).

Deep theorems (Hopf, Pontrjagin, Segal) relate configurations of points to *Cohomotopy* theory – a *non-abelian* generalized cohomology theory:

Cohomotopy 
$$\pi^n(X) = \operatorname{Map}(X, \widehat{S^n})/_{\operatorname{htpy}}$$

$$\downarrow (S^n \to K(\mathbb{Z}, n))_*$$
ordinary cohomology  $H^n(X; \mathbb{Z}) = \operatorname{Map}(X, \underbrace{K(\mathbb{Z}, n)}_{\text{E-M-space}})/_{\operatorname{htpy}}$ 

Hypothesis H: 4-Cohomotopy is a flux quantization law for C-field in 11d super-gravity:

$$\pi^{4}(X) \xrightarrow{\text{character map} \atop \text{ch}_{\pi}^{n}} \left\{ \begin{pmatrix} G_{7} \\ G_{4} \end{pmatrix} \in \Omega_{\mathrm{dR}}^{\bullet}(X) \middle| \begin{array}{c} d \ G_{7} \\ d \ G_{4} = 0 \end{array} \right\}_{\text{cncrd}}^{\text{Bianchi identity for supergravity C-field}} \\ \downarrow \left( S^{4} \rightarrow K(\mathbb{Z}, 4) \right)_{*} & \downarrow G_{7} \rightarrow 0 \\ \downarrow G_{3} \rightarrow G_{4} \\ H^{4}(X; \mathbb{Z}) & \longrightarrow \left\{ G_{4} \in \Omega_{\mathrm{dR}}^{\bullet}(X) \middle| d \ G_{4} = 0 \right\}_{\text{cncrd}}^{\bullet}$$

In fact, tangentially twisted 4-Cohomotopy, coupling this to the spacetime metric, implies a list of subtle topological conditions expected to hold in M-theory.

# Twisted Cohomotopy theory [FSS]

To include nontrivial spacetime topology (needed for anomaly cancellation), we involve structures arising from the tangent bundle.

In degree d-1, there is a canonical twisting on Riemannian d-manifolds, given by the unit sphere bundle in the orthogonal tangent bundle:



Since the canonical morphism  $O(d) \longrightarrow \operatorname{Aut}(S^{d-1})$  is known as the *J-homomorphism*, we may call this *J-twisted Cohomotopy theory*, for short.

## Twisted cohomotopy and anomalies [FSS]

Hypothesis H: The C-field 4-flux & 7-flux forms in M-theory are subject to charge quantization in J-twisted Cohomotopy cohomology theory in that they are in the image of the non-abelian Chern character map from J-twisted Cohomotopy theory.

Framed M-branes and topological invariants ADE-Equivariant Cohomotopy and M-branes The rational higher structure of M-theory Cohomotopy implies M-theory anom. canc. Cohomotopy implies M5-brane WZ term Cohomotopy implies thapole cancellation Cohomotopy implies theresecting brane obs. Cohomotopy implies M5-brane anom. canc. Cohomotopy implies M5-brane anom. canc. Cohomotopy implies G5-mechanism Cohomotopy implies G5-mechanism on M5 Cohomotopy implies G5-mechanism on M5 M/F-Theory as Mf-theory

[arX:1310.1060]
5 [arX:1805.05987]
6arX:1903.02834]
6arX:1904.10207]
6arX:1906.07417]
6arX:1909.12277
6arX:1909.12277
6arX:2002.07737]
6arX:2002.01033
6arX:2002.01033
6arX:2003.01877
6arX:2003.01877

⇒ Cancellation of main anomalies:

| Half-integral flux quantization | $\left[\underbrace{G_4 + \frac{1}{4}p_1}_{=:\widetilde{G}_4 \text{ integral flux}}\right] \in H^4(X, \mathbb{Z})$                                                          |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Background charge               | $\underbrace{q(\widetilde{G}_4)}_{\text{quadratic form}} = \widetilde{G}_4 \left(\widetilde{G}_4 - \underbrace{\frac{1}{2}p_1}_{=(\widetilde{G}_4)_0}\right)$              |
| DMW-anomaly cancellation        | $W_7(TX) = 0$                                                                                                                                                              |
| Integral equation of motion     | $\underbrace{\operatorname{Sq}^{3}}_{=\beta\operatorname{Sq}^{2}}(\widetilde{G}_{4}) = 0$                                                                                  |
| M5-brane anomaly cancellation   | $\underbrace{I_{\text{fermion}}^{M5}}_{\text{chiral}} + \underbrace{I_{\text{sdf}}^{M5}}_{\text{3-flux}} + \underbrace{I_{\text{inflow}}^{\text{bulk}}}_{\text{bulk}} = 0$ |
| M2-brane tadpole cancellation   | $N_{ m M2} + q(\widetilde{G}_4) = l_8$ number of One loop M2-branes Polynomial                                                                                             |

## The perspective

- Single electron: old
- ullet Multiple electrons o interacting ground states.
- The beauty of this is that K-theory still applies and is physically motivated.

|           | Single electron | Multiple electrons interacting             |  |  |
|-----------|-----------------|--------------------------------------------|--|--|
| Classical | X               | cohomotopy moduli involving $Maps(X, S^4)$ |  |  |
| Quantum   | K(X)            | $\mathcal{K}$ (cohomotopy moduli)          |  |  |

#### Quantum field theory of Defect branes via TED-K

 Correlators of some Euclidean QTFs are encoded in the de Rham cohomology of a configuration space of points ([Berghoff14]).

$${\sf Correlators} = {\it H}_{\rm dR}^*({\sf Configuration\ space})$$

- Example: for 3d Chern-Simons theory [AxelrodSinger94], leads to Kontsevich's graph complexes;
- The evident suggestion that therefore the generalized cohomology (such as the K-theory) of configuration spaces might reflect yet more details of quantum field theory.

$$E^*(Configuration space)$$

 We find a fair bit of deep structure in QFT is reflected in the (twisted, equivariant, differential, generalized, ...) cohomology of configuration spaces of points.

- Realize the picture below physically and mathematically.
- Previously: no derivation of topological phases.
- Applying K-theory to configuration spaces makes the anyons.



#### Precise proposal for interacting enhancement via "Hypothesis H"

- Evaluate TED K-cohomology not on Brillouin torus/spacetime-orbifold itself, but on its configuration space of points, and generally: on its Cohomotopy moduli.
- The TED K-cohomology of *n*-point configurations in Brillouin torus classifies valence bundle of *n*-electron interacting states.
- Moreover, generalized cohomology of intersecting Cohomotopy moduli spaces reflects intersecting brane observables expected from non-abelian DBI action.

#### → Hypothesis H:

Quantum observables on non-perturbative interacting ground states are in generalized cohomology (e.g. TED K-theory) of twisted Cohomotopy moduli.

#### Differential cohomotopy and D-brane gauge theories

Zoom in beyond foundational/structural M-theoretic considerations [S.-Schreiber]:

- A differential refinement of Cohomotopy cohomology theory is given by un-ordered configuration spaces of points.
- ② The fiber product of such differentially refined Cohomotopy cocycle spaces describing  $D6 \perp D8$ -brane intersections is homotopy-equivalent to the *ordered* configuration space of points in the transversal space.
- The higher observables on this moduli space are equivalently weight systems on horizontal chord diagrams.



Combining the above seemingly distinct mathematical areas reflect a multitude of effects expected on brane intersections in string theory. So aside from structural utility for M-theory, Hypothesis H implies:

- *M-theoretic observables on* D6  $\perp$  D8-configurations (cf. parametrized).
- Chan-Paton observables.
- String topology operations.
- Multi-trace observables of BMN matrix model.
- Hanany-Witten states.
- BLG 3-Algebra observables.
- Bulk Wilson loop observables.
- Single-trace observables
- of SYK & BMN model.
- Fuzzy funnel observables.
- Supersymmetric indices.
- 't Hooft string amplitudes.

**Top-down M-theory via Hypothesis H**: knowledge about gauge field theory and perturbative string theory is not used in deriving the algebras of observables of M-theory, but only to interpret them.

#### M-brane realization

Quantum states of branes as cohomology of Cohomotopy cocycle spaces according to Hypothesis  $\mathsf{H}.$ 

|                                                                        | Hanany-Witten theory of codim=3 branes                                                                    | Seiberg-Witten theory of defect codim=2 branes                                |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Intersecting branes                                                    | $NS5 = D6 \perp D8$                                                                                       | $"M3" = M5 \perp M5$                                                          |
| Charge quantization law                                                | 4-Cohomotopy                                                                                              | 3-Cohomotopy                                                                  |
| Cocycle space / configuration space                                    | $\coprod_{N_{\mathrm{f}}\in\mathbb{N}} \mathrm{Conf}_{\{1,\cdots,N_{\mathrm{f}}\}}\big(\mathbb{R}^3\big)$ | $\coprod_{N\in\mathbb{N}}\operatorname*{Conf}_{\{1,\cdots,N\}}(\mathbb{R}^2)$ |
| (Twisted, fiberwise)<br>(Co)Homology /<br>quantum states + observables | Weight systems/<br>Chord diagrams                                                                         | ສິເ <sub>2</sub> -Conformal blocks/<br>Braid group reps                       |

ightarrow talk by Urs

Thank you!