Derived n-plectic geometry:

towards non-perturbative BV-BFV quantisation and M-theory

Luigi Alfonsi

Joint work with Charles Young to appear soon

Talk at

M-Theory and Mathematics 2023

New York University Abu Dhabi

15/01/2023

Table of contents

- Introduction
- Pormal derived smooth stacks
- 3 Ordinary *n*-plectic geometry
- 4 Derived *n*-plectic geometry
- Outlook

Table of Contents

- Introduction
- Pormal derived smooth stacks
- 3 Ordinary *n*-plectic geometry
- Derived n-plectic geometry
- Outlook

Introduction: Batalin-Vilkovisky (BV) theory

The space of solutions of the field equations of a classical field theory is exactly the critical locus $\mathrm{Crit}(S)$ of its action functional S.

Introduction: Batalin–Vilkovisky (BV) theory

The space of solutions of the field equations of a classical field theory is exactly the critical locus $\mathrm{Crit}(S)$ of its action functional S.

Idea of BV-theory

Look at its **derived critical locus** $\mathbb{R}\mathrm{Crit}(S)$, a derived enhancement of $\mathrm{Crit}(S)$.

Introduction: Batalin–Vilkovisky (BV) theory

The space of solutions of the field equations of a classical field theory is exactly the critical locus $\operatorname{Crit}(S)$ of its action functional S.

Idea of BV-theory

Look at its derived critical locus $\mathbb{R}\mathrm{Crit}(S)$, a derived enhancement of $\mathrm{Crit}(S)$.

Main approaches to make classical (and quantum) BV-theory precise in the literature:

NQP-manifolds approach. [Jurčo, Raspollini, Sämann, Wolf, ...] Algebra of classical observables is given by a Poisson dg-Lie algebra of functions on an NQP-manifold, i.e. a differential-graded manifold (dg-manifold) equipped with a (−1)-shifted symplectic form. (Equivalently, a symplectic L_∞-algebroid.)

Introduction: Batalin–Vilkovisky (BV) theory

The space of solutions of the field equations of a classical field theory is exactly the critical locus $\operatorname{Crit}(S)$ of its action functional S.

Idea of BV-theory

Look at its **derived critical locus** $\mathbb{R}\mathrm{Crit}(S)$, a derived enhancement of $\mathrm{Crit}(S)$.

Main approaches to make classical (and quantum) BV-theory precise in the literature:

- **Output** NQP-manifolds approach. [Jurčo, Raspollini, Sämann, Wolf, ...] Algebra of classical observables is given by a Poisson dg-Lie algebra of functions on an NQP-manifold, i.e. a differential-graded manifold (dg-manifold) equipped with a (-1)-shifted symplectic form. (Equivalently, a symplectic L_{∞} -algebroid.)
- **9 Factorisation Algebras approach.** [Costello, Gwilliam, Williams, ...] Algebra of classical observables is given by the \mathbb{P}_0 -algebra of functions on a (-1)-shifted symplectic formal moduli problem (i.e. a derived stack on Artinian dg-algebras), which is sheaved on spacetime.

Introduction: Batalin-Vilkovisky (BV) theory

The space of solutions of the field equations of a classical field theory is exactly the critical locus $\mathrm{Crit}(S)$ of its action functional S.

Idea of BV-theory

Look at its **derived critical locus** $\mathbb{R}\mathrm{Crit}(S)$, a derived enhancement of $\mathrm{Crit}(S)$.

Main approaches to make classical (and quantum) BV-theory precise in the literature:

- **Output** NQP-manifolds approach. [Jurčo, Raspollini, Sämann, Wolf, ...] Algebra of classical observables is given by a Poisson dg-Lie algebra of functions on an NQP-manifold, i.e. a differential-graded manifold (dg-manifold) equipped with a (-1)-shifted symplectic form. (Equivalently, a symplectic L_{∞} -algebroid.)
- **Q** Factorisation Algebras approach. [Costello, Gwilliam, Williams, ...] Algebra of classical observables is given by the \mathbb{P}_0 -algebra of functions on a (-1)-shifted symplectic formal moduli problem (i.e. a derived stack on Artinian dg-algebras), which is sheaved on spacetime.
- Perturbative Algebraic Quantum Field Theory (pAQFT). [Rejzner, ...] Algebra of observables is given by a net of locally convex topological Poisson *-algebras on spacetime.

Approaches (1) & (2) very close, (2) & (3) related by [Schenkel, Benini, ...]

Motivation: towards global smooth BV-theory

Formal Moduli Problem: (algebraic) derived stack on Artinian dg-algebras, i.e.

$$F: \operatorname{\mathsf{dgArt}}^{\leq 0} \longrightarrow \operatorname{\mathsf{sSet}}$$

Artinian dg-algebras \simeq algebras of function on "derived thickened points".

A (-1)-symplectic Formal Moduli Problem can be seen as the formal completion of a fully-fledged (-1)-symplectic derived stack at some given point.

Motivation: towards global smooth BV-theory

We have the following picture:

Formal Moduli Problem \longleftrightarrow Perturbative physics Formal derived smooth stack \longleftrightarrow Non-perturbative physics

Example (Stack of *G*-bundles with connection)

$$\underbrace{[\Omega^1(M,\mathfrak{g})/\mathcal{C}^\infty(M,\mathfrak{g})]}_{L_\infty\text{-algebroid}}\quad \neq\quad \underbrace{\mathsf{Bun}_G^\nabla(M)}_{\mathsf{stack of G-bundles}}\coloneqq [M,\mathsf{B}\,G_{\mathrm{conn}}]$$

- M-theory includes (higher) gauge theories
 - Quantisation requires BV-theory, i.e. derived geometry
 - Finite (higher) gauge transformations and global properties require stacks, i.e. higher geometry (e.g. Aharonov-Bohm phase and magnetic charge for electromagnetic field)
- Moreover, we have global string (and M-)dualities and non-perturbative effects
- It's not totally clear how the 0-symplectic (BFV) structure at the boundary would fit in this derived geometric picture.

Motivation: higher geometric (pre)quantisation

n-**plectic geometry** (or higher symplectic geometry) [Rogers, Baez, Saemann, Szabo, Bunk, Fiorenza, Schreiber, Sati, ...] naturally fits in the following picture:

Example (Closed string)

[Waldorf 2009]: transgression of a bundle gerbe on a smooth manifold M to a principal U(1)-bundle on the loop space $\mathcal{L}M = [S^1, M]$.

Motivation: higher geometric (pre)quantisation

n-**plectic geometry** (or higher symplectic geometry) [Rogers, Baez, Saemann, Szabo, Bunk, Fiorenza, Schreiber, Sati, ...] naturally fits in the following picture:

Example (Closed string)

[Waldorf 2009]: transgression of a bundle gerbe on a smooth manifold M to a principal U(1)-bundle on the loop space $\mathcal{L}M = [S^1, M]$.

- [Severa 2000]: Courant 2-algebroid and Vinogradov n-algebroid are higher generalisations of the Poisson 1-algebroid (as symplectic L_{∞} -algebroids).
- [Rogers 2011], [Sämann, Ritter 2015]: relation between the L_{∞} -algebras of observables on n-plectic manifolds and Vinogradov n-algebroids.

Table of Contents

- Introduction
- Pormal derived smooth stacks
- 3 Ordinary *n*-plectic geometry
- Derived n-plectic geometry
- Outlook

Geometry as theory of sheaves and stacks

• An ordinary geometric space can be encoded by its functor of points, i.e. a functor

$$\mathtt{space} \,:\, \mathtt{probing} \,\, \mathtt{spaces}^{\mathrm{op}} \,\, \longrightarrow \,\, \mathtt{sets}$$

which satisfies the sheaf condition.

Geometry as theory of sheaves and stacks

• An ordinary geometric space can be encoded by its functor of points, i.e. a functor

$$\mathtt{space:probing\ spaces}^{\mathrm{op}}\ \longrightarrow\ \mathtt{sets}$$

which satisfies the sheaf condition.

• In the same spirit, a higher geometric space can be defined as a stack, i.e. a functor

higher space : probing spaces
$$^{\mathrm{op}}$$
 \longrightarrow $\infty\text{-groupoids}$

which is fibrant-cofibrant respect to a certain simplicial model category structure.

Geometry as theory of sheaves and stacks

• An ordinary geometric space can be encoded by its functor of points, i.e. a functor

$$\mathtt{space} \,:\, \mathtt{probing} \,\, \mathtt{spaces}^{\mathrm{op}} \,\, \longrightarrow \,\, \mathtt{sets}$$

which satisfies the sheaf condition.

• In the same spirit, a higher geometric space can be defined as a stack, i.e. a functor

higher space : probing spaces
$$\stackrel{\mathrm{op}}{--\!\!\!--}\infty$$
-groupoids

which is fibrant-cofibrant respect to a certain simplicial model category structure.

A higher derived geometric space can be defined as a derived stack, i.e. a functor

higher derived
$$\ensuremath{^{\mathrm{op}}}$$
 derived spaces $\ensuremath{^{\mathrm{op}}}$ opposites $\infty\text{-groupoids}$

which is fibrant-cofibrant respect to a certain simplicial model category structure.

Family tree of smooth stacks

Family tree of smooth stacks

Family tree of smooth stacks

Formal derived smooth manifolds

Homotopy \mathcal{C}^{∞} -algebras: simplicial \mathcal{C}^{∞} -algebras with projective model structure, i.e.

$$h\mathsf{C}^\infty\mathsf{Alg}\,\coloneqq\,[\Delta^{\mathrm{op}},\mathsf{C}^\infty\mathsf{Alg}]^\circ_{\mathrm{proj}},$$

where $\boldsymbol{\Delta}$ is the simplex category.

Formal derived smooth manifolds

Homotopy \mathcal{C}^{∞} -algebras: simplicial \mathcal{C}^{∞} -algebras with projective model structure, i.e.

$$\mathsf{hC}^{\infty}\mathsf{Alg} \; \coloneqq \; [\Delta^{\mathrm{op}},\mathsf{C}^{\infty}\mathsf{Alg}]^{\circ}_{\mathrm{proj}},$$

where Δ is the simplex category.

The following will be our effective definition of formal derived manifolds.

Theorem [Carchedi, Steffens 2019]

There is a canonical equivalence of $(\infty, 1)$ -categories

$$\mathsf{dFMfd} \; \simeq \; \mathsf{hC}^{\infty}\mathsf{Alg}^{\mathrm{op}}_{\mathrm{fp}}$$

between the $(\infty,1)$ -category of formal derived manifolds, and the opposite of the $(\infty,1)$ -category of homotopically finitely presented homotopy \mathcal{C}^{∞} -algebras.

At an intuitive level, $U\in dFMfd$ is a geometric object whose algebra of smooth function is a homotopically finitely presented homotopy \mathcal{C}^{∞} -algebra modelled as

$$\mathcal{O}(U) = \left(\begin{array}{c} \cdots \\ \longrightarrow \\ \longrightarrow \end{array} \mathcal{O}(U)_3 \stackrel{\longrightarrow}{\longrightarrow} \mathcal{O}(U)_2 \stackrel{\longrightarrow}{\longrightarrow} \mathcal{O}(U)_1 \stackrel{\longrightarrow}{\longrightarrow} \mathcal{O}(U)_0 \end{array} \right)$$

where each $\mathcal{O}(U)_i$ is an ordinary \mathcal{C}^{∞} -algebra.

Formal derived smooth stacks

- We can define étale maps of formal derived smooth manifolds so that they truncate to local diffeomorphisms of ordinary manifolds.
- ullet By using étale maps, we can make dFMfd into a $(\infty,1)$ -site.
- By [Toen, Vezzosi 2006], we can define formal derived smooth stacks by

 $\textbf{dFSmoothStack} \; \coloneqq \; [\mathsf{dFMfd}^{\mathrm{op}}, \, \mathsf{sSet}]^{\circ}_{\mathsf{proj},\mathsf{loc}}.$

Formal derived smooth stacks

- We can define étale maps of formal derived smooth manifolds so that they truncate to local diffeomorphisms of ordinary manifolds.
- ullet By using étale maps, we can make dFMfd into a $(\infty,1)$ -site.
- By [Toen, Vezzosi 2006], we can define formal derived smooth stacks by

$$\mathsf{dFSmoothStack} \; \coloneqq \; [\mathsf{dFMfd}^{\mathrm{op}}, \, \mathsf{sSet}]^{\circ}_{\mathsf{proj},\mathsf{loc}}.$$

Formal derived smooth sets can be defined as those stacks whose underived-truncation happens to be an ordinary formal smooth set, i.e. as an element of the pullback

$$\textbf{dFSmoothSet} \; \coloneqq \; \textbf{dFSmoothStack} \; \times^{h}_{\textbf{FSmoothStack}} \; \textbf{FSmoothSet}$$

Thus, one has (co-)reflective embeddings

On an affine derived formal smooth set $\mathbb{R}\mathrm{Spec}(R)$, these maps amount to

$$t_0 \mathbb{R} \operatorname{Spec}(R) \simeq \operatorname{Spec}(\pi_0 R), \quad i \operatorname{Spec}(R) \simeq \mathbb{R} \operatorname{Spec}(R)$$

Derived differential cohesion

Let $C^{\infty}Alg^{\mathrm{red}}$ be the sub-category of reduced \mathcal{C}^{∞} -algebras, i.e. with no non-zero nilpotent elements. The reduction functor is defined by

$$(-)^{\mathrm{red}}: \mathsf{hC}^{\infty}\mathsf{Alg} \longrightarrow \mathsf{C}^{\infty}\mathsf{Alg}^{\mathrm{red}}$$

$$R \longmapsto R^{\mathrm{red}} \coloneqq \pi_0 R/\mathfrak{m}_{\pi_0 R}$$

where $\mathfrak{m}_{\pi_0 R} \subset \pi_0 R$ is the ideal of nilpotent elements of $\pi_0 R$.

This is right-adjoint to the natural embedding, i.e.

$$\mathsf{C}^{\infty}\mathsf{Alg}^{\mathrm{red}}_{\mathrm{fp}} \xleftarrow{(-)^{\mathrm{red}}} \mathsf{hC}^{\infty}\mathsf{Alg}_{\mathrm{fp}}.$$

Derived differential cohesion

Let $C^{\infty}Alg^{\mathrm{red}}$ be the sub-category of reduced \mathcal{C}^{∞} -algebras, i.e. with no non-zero nilpotent elements. The reduction functor is defined by

$$(-)^{\mathrm{red}} : \mathsf{hC}^{\infty}\mathsf{Alg} \longrightarrow \mathsf{C}^{\infty}\mathsf{Alg}^{\mathrm{red}}$$

$$R \longmapsto R^{\mathrm{red}} \coloneqq \pi_0 R/\mathfrak{m}_{\pi_0 R}$$

where $\mathfrak{m}_{\pi_0 R} \subset \pi_0 R$ is the ideal of nilpotent elements of $\pi_0 R$.

This is right-adjoint to the natural embedding, i.e.

$$\mathsf{C}^{\infty}\mathsf{Alg}^{\mathrm{red}}_{\mathrm{fp}} \xleftarrow{(-)^{\mathrm{red}}} \mathsf{hC}^{\infty}\mathsf{Alg}_{\mathrm{fp}}.$$

These give rise to a quadruplet of adjoint functors:

where **SmoothStack** := **Stack**(Mfd) is the $(\infty, 1)$ -topos of (non-formal) smooth stacks, i.e. of stacks on ordinary smooth manifolds.

This quadruplet is a differential cohesion structure, as defined by [Schreiber 2013]:

On an affine derived formal smooth set $\mathbb{R}\mathrm{Spec}(R)$, the crucial maps amount to

$$\iota^{\mathrm{red}}_{!}\mathrm{Spec}(R) \; \simeq \; \mathbb{R}\mathrm{Spec}(R) \qquad \iota^{\mathrm{red}*}\mathbb{R}\mathrm{Spec}(R) \; \simeq \; \mathrm{Spec}(R^{\mathrm{red}}),$$

This quadruplet is a differential cohesion structure, as defined by [Schreiber 2013]:

On an affine derived formal smooth set $\mathbb{R}\mathrm{Spec}(R)$, the crucial maps amount to

$$\iota^{\mathrm{red}}_{!}\mathrm{Spec}(R) \; \simeq \; \mathbb{R}\mathrm{Spec}(R) \qquad \iota^{\mathrm{red}*}\mathbb{R}\mathrm{Spec}(R) \; \simeq \; \mathrm{Spec}(R^{\mathrm{red}}),$$

Infinitesimal shape modality

$$\mathfrak{I}: dFSmoothSet \longrightarrow dFSmoothSet$$

$$X \longmapsto \iota^{\mathrm{red}}_* \circ \iota^{\mathrm{red}*}(X).$$

Adjunction $\iota^{\mathrm{red}*} \dashv \iota^{\mathrm{red}}_*$ implies that there is an adjunction unit (infinitesimal shape unit):

$$i_X: X \longrightarrow \mathfrak{I}(X)$$

Derived infinitesimal disks and jet bundles

Thanks to differential cohesion, we can do differential geometry on formal derived smooth sets, i.e. we can extend results of [Khavkine, Schreiber].

Roughly, this allows us to define derived infinitesimal disks by

Derived infinitesimal disks and jet bundles

Thanks to differential cohesion, we can do differential geometry on formal derived smooth sets, i.e. we can extend results of [Khavkine, Schreiber].

Roughly, this allows us to define derived infinitesimal disks by

This allows us to study a number of geometric objects, including jet bundles:

$$\operatorname{Jet}_M: E \longmapsto \operatorname{Jet}_M E := (\mathfrak{i}_M)^*(\mathfrak{i}_M)_* E.$$

which are designed to satisfy the property

$$(\mathrm{Jet}_M E)_x \simeq \Gamma(\mathbb{D}_x, E)$$

at any point $x \in M$.

Formal moduli problems as infinitesimal cohesion

Let **FMP** be the $(\infty,1)$ -category of Formal Moduli Problems, which can be seen as formal derived stacks on derived infinitesimal disks.

Differential forms

The complex of p-forms on a formal derived smooth set is

$$A^p(X) := \mathbb{R}\Gamma(X, \wedge_{\mathbb{O}_X}^p \mathbb{L}_X)$$

This gives rise to a bi-complex

Closed differential forms

The complex of closed p-forms on a formal derived smooth set is

$$A_{\mathrm{cl}}^{p}(X) := \Big(\prod_{n \geq p} A^{n}(X)[-n]\Big)[p]$$

with total differential $d_{dR} + Q$.

Definition (Closed form)

An *n-shifted closed p-form* on a derived formal smooth set X is defined as an *n*-cocycle $(\omega_i) \in \mathrm{Z}^n \mathrm{A}^p_{\mathrm{cl}}(X)$, i.e. as an element $\omega \in \mathrm{A}^p_{\mathrm{cl}}(X)$ such that $(\mathrm{d}_{\mathrm{dR}} + Q)\omega = 0$.

In other words, an *n*-cocycle in $A_{c1}^{\rho}(X)$ is given by a formal sum $\omega=(\omega_p+\omega_{p+1}+\ldots)$, where each form $\omega_i\in A^i(X)$ is an element of degree n+p-i, satisfying the equations

$$\begin{aligned} Q\omega_{p} &= 0, \\ \mathrm{d}_{\mathrm{dR}}\omega_{p} &+ Q\omega_{p+1} &= 0, \\ \mathrm{d}_{\mathrm{dR}}\omega_{p+1} + Q\omega_{p+2} &= 0, \\ &\vdots \end{aligned}$$

or, more compactly, $(d_{dR} + Q)\omega = 0$.

Table of Contents

- Introduction
- Pormal derived smooth stacks
- 3 Ordinary *n*-plectic geometry
- Derived n-plectic geometry
- Outlook

Ordinary *n*-plectic geometry

Definition (Ordinary *n*-plectic structure)

Given a formal smooth set $X \in \mathsf{SmoothSet}$, an n-plectic structure on X is a closed differential $(n+1)\text{-form }\Omega \in \Omega^{n+1}_{\operatorname{cl}}(X)$ such that the induced map

$$\Omega^{\sharp}: T_X \longrightarrow \wedge^n T_X^*$$

is a monomorphism.

Example (Symplectic structure)

A symplectic structure is a 1-plectic structure.

Poisson L_{∞} -algebra of observables

[Rogers 2011] Define Hamiltonian forms by

$$\Omega_{\mathrm{Ham}}^{n-1}(X) := \left\{ \alpha \in \Omega^{n-1}(X) \, \middle| \, \iota_{V_{\alpha}} \Omega = \mathrm{d}_{\mathrm{dR}} \alpha \right\}$$

We call V_{α} is the Hamiltonian vector of α .

The differential graded vector space

$$\operatorname{Ham}(X,\varOmega) \; = \; \left(\mathcal{C}^{\infty}(X) \xrightarrow{\operatorname{d}_{\operatorname{dR}}} \Omega^1(X) \xrightarrow{\operatorname{d}_{\operatorname{dR}}} \cdots \xrightarrow{\operatorname{d}_{\operatorname{dR}}} \Omega^{n-2}(X) \xrightarrow{\operatorname{d}_{\operatorname{dR}}} \Omega^{n-1}(X)\right)$$

equipped with brackets for all k > 1:

$$\ell_1(lpha) \ = \ egin{dcases} 0 & ext{if } |lpha| = 0, \ ext{d}_{ ext{dR}}lpha & ext{if } |lpha|
eq 0, \end{cases}$$
 $\ell_k(lpha_1,\ldots,lpha_k) \ = \ egin{dcases} (-1)^{inom{k+1}{2}}\iota_{V_{lpha_1}}\cdots\iota_{V_{lpha_k}}\Omega & ext{if } |lpha_1\otimes\cdots\otimeslpha_k| = 0, \ 0 & ext{if } |lpha_1\otimes\cdots\otimeslpha_k|
eq 0, \end{cases}$

is an L_{∞} -algebra.

Variational bi-complex

On the jet bundle there is a canonical splitting horizontal/vertical

$$d_{dR} = d_h + d_v$$

which gives rise to the variational bi-complex [Anderson 1989], i.e.

Pre-symplectic current of a field theory

Consider a Lagrangian density $\mathscr{L} \in \Omega^{m,0}(\mathrm{Jet} E)$.

[Anderson 1989] tells us that its differential can be decomposed by

$$d_{dR}\mathcal{L} = \delta_{EL}\mathcal{L} - d_{h}\Theta_{pre},$$

where

- ullet $\delta_{\mathrm{EL}}\mathscr{L}\in\Omega^{m,1}(\mathrm{Jet} E)$ is a "source" (m,1)-form
- $oldsymbol{\Theta}_{\mathrm{pre}} \in \Omega^{m-1,1}(\mathrm{Jet} E)$ is a (m-1,1)-form.

Definition (Pre-symplectic current)

The pre-symplectic current $\Omega_{\text{pre}} \in \Omega^{m-1,2}(\text{Jet}E)$ of a classical field theory is defined by the vertical derivative

$$\Omega_{\mathrm{pre}} \ \coloneqq \ \mathrm{d}_{\mathrm{v}} \Theta_{\mathrm{pre}}$$

This form is not closed: in fact, one has

$$d_{\mathrm{dR}}\Omega_{\mathrm{pre}} = -d_{\mathrm{v}}(\delta_{\mathrm{EL}}\mathscr{L})$$

Euler-Lagrange critical locus

The following is an application of [Khavkine, Schreiber 2017].

Euler-Lagrange critical locus

The Euler-Lagrange critical locus $\mathrm{Crit}_{\mathrm{EL}}(\mathscr{L})$ can be defined as the the pullback of formal smooth sets

where $e : \ker(\delta_{\mathrm{EL}} L) \hookrightarrow \mathrm{Jet} E$ is the natural embedding.

This has the crucial property that its fiber at any point $x \in M$ is given by germs of solutions of the field equations, i.e

$$\operatorname{Crit}_{\operatorname{EL}}(\mathscr{L})_{\times} \simeq \operatorname{Crit}(S)(\mathbb{D}_{\times})$$

Crucial example of *n*-plectic structure

Let $e_{\mathrm{EL}}: \mathrm{Crit}_{\mathrm{EL}}(\mathscr{L}) \hookrightarrow \mathrm{Jet} \mathcal{E}$ the natural embedding and define the pullback

$$\Omega := e_{\mathrm{EL}}^* \Omega_{\mathrm{pre}}.$$

Example

The pair $(\operatorname{Crit}_{\mathrm{EL}}(\mathscr{L}), \Omega)$ is an *n*-plectic formal smooth set with $n = \dim(M)$.

Crucial example of *n*-plectic structure

Let $e_{\mathrm{EL}}: \mathrm{Crit}_{\mathrm{EL}}(\mathscr{L}) \hookrightarrow \mathrm{Jet} \mathcal{E}$ the natural embedding and define the pullback

$$\Omega := e_{\mathrm{EL}}^* \Omega_{\mathrm{pre}}.$$

Example

The pair $(\operatorname{Crit}_{\mathrm{EL}}(\mathscr{L}), \Omega)$ is an *n*-plectic formal smooth set with $n = \dim(M)$.

Moreover, consider the transgression functor

$$\begin{split} \mathfrak{T}_{\Sigma}: \ \Omega^{\dim(\Sigma),\rho}(\mathrm{Crit}_{\mathrm{EL}}(\mathscr{L})) \ \longrightarrow \ \Omega^{\rho}\big(\mathrm{Crit}(S)(\Sigma_{\mathrm{th}})\big) \\ \xi \ \longmapsto \ \mathfrak{T}_{\Sigma}\xi \ \coloneqq \int_{\Sigma} j(-)^{*}\xi, \end{split}$$

which sends a (n-1,p)-form on $\mathrm{Crit}_{\mathrm{EL}}(\mathscr{L})$ to a p-form on the phase space $\mathrm{Crit}(S)(\Sigma_{\mathrm{th}})$ of the theory by integrating on a codimension 1 submanifold $\Sigma\subset M$.

This sends our *n*-plectic form to the honest symplectic form on the (infinite-dimensional) phase space of the theory, i.e.

$$\omega(\phi) = \int_{\Sigma} j(\phi)^* \Omega$$

Table of Contents

- Introduction
- Pormal derived smooth stacks
- 3 Ordinary *n*-plectic geometry
- Derived n-plectic geometry
- Outlook

Derived *n*-plectic structure

Definition (Derived *n*-plectic geometry)

Let $X \in \mathbf{dFSmoothSet}$ be a formal derived smooth set. A *p*-shifted *n*-plectic form is a cocycle $\Omega \in \mathbf{Z}^p\mathbf{A}^{n+1}_{\mathrm{cl}}(X)$ such that the induced morphism of quasi-coherent sheaves

$$\Omega^{\sharp} : \mathbb{T}_{X} \longrightarrow \wedge^{n} \mathbb{L}_{X}[p]$$

gives rise to a monomorphism of the ∞ -groupoids of their sections

$$\Omega^{\sharp}: \mathfrak{X}(X,0) \hookrightarrow \mathcal{A}^{n}(X,p)$$

Example (Derived symplectic structure)

A derived symplectic structure is, in particular, a derived 1-plectic structure.

Euler-Lagrange critical locus as a zero locus

It is possible to show that there are pullback squares

Euler-Lagrange critical locus as a zero locus

It is possible to show that there are pullback squares

This recasts the Euler-Lagrange critical locus into the zero-locus of section $\delta_{\rm EL}^{\infty} L$, i.e.

$$\operatorname{Crit}_{\operatorname{EL}}(\mathscr{L}) \simeq \ker(\delta_{\operatorname{EL}}^{\infty} L)$$

Derived Euler-Lagrange critical locus

The *derived Euler-Lagrange critical locus* is the formal derived smooth set defined by the homotopy pullback

$$\begin{array}{c} \mathbb{R}\mathrm{Crit}_{\mathrm{EL}}(\mathscr{L}) & \longrightarrow & \mathrm{Jet} E \\ \downarrow^{\rho_{\mathrm{EL}}} & \downarrow^{0} \\ \downarrow^{0} & \downarrow^{\delta_{\mathrm{EL}}^{\infty} L} & \mathrm{Jet}(T_{\mathrm{ver}}^{\vee} E) \end{array}$$

in the $(\infty, 1)$ -category of formal derived smooth sets.

Dually, we can compute the derived tensor product of \mathcal{C}^{∞} -algebras

$$\mathcal{O}(\mathbb{R}\mathrm{Crit}_{\mathrm{EL}}(\mathcal{L})) \ \simeq \ \mathcal{O}\big(\mathrm{graph}(\delta_{\mathrm{EL}}^{\infty}L)\big) \, \widehat{\otimes}_{\mathcal{O}(\mathrm{Jet}(T_{\mathrm{ver}}^{\vee}E))}^{\mathbb{L}} \, \mathcal{O}(\mathrm{Jet}E)$$

The underlying dg-algebra is going to be of the form

$$\mathcal{O}(\mathbb{R}\mathrm{Crit}_{\mathrm{EL}}(\mathscr{L})) \; \simeq \; \Gamma(\mathrm{Jet} E, \, \wedge^{\bullet} \mathrm{Jet}^{\vee}(\mathcal{T}_{\mathrm{ver}}^{\vee} E))$$

with differential given by contraction $Q = \langle \delta_{\mathrm{EL}}^{\infty} L, - \rangle$.

Derived variational *tri-complex* of $X = \mathbb{R}\mathrm{Crit}_{\mathrm{EL}}(\mathscr{L})$

Closed forms on the derived Euler-Lagrange critical locus

The complex of closed (p,q)-form on $X=\mathbb{R}\mathrm{Crit}_{\mathrm{EL}}(\mathscr{L})$ is

$$\mathbf{A}_{\mathrm{cl}}^{p,q}(X) \ := \ \Big(\prod_{\substack{j \geq p \\ j \geq q}} \mathbf{A}^{i,j}(X)[-i-j]\Big)[p+q],$$

An *n*-cocycle in the complex $A_{cl}^{p,q}(X)$ is given by a formal sum of elements

$$\Omega_{n}^{p,q}$$
 $\Omega_{n-1}^{p+1,q} \Omega_{n}^{p,q+1}$
 $\Omega_{n-2}^{p+2,q} \Omega_{n-2}^{p+1,q+1} \Omega_{n-2}^{p,q+2}$
 $\Omega_{n-3}^{p+3,q} \Omega_{n-3}^{p+2,q+1} \Omega_{n-3}^{p+1,q+2} \Omega_{n-3}^{p,q+3}$
 $\vdots \vdots \vdots \vdots \cdots$

where $\Omega_{n'}^{p',q'} \in \mathrm{A}^{p',q'}(X)_{n'}$ for each p',q',n'.

To be a cocycle, these elements have to satisfy the following set of equations:

$$\left\{ \begin{array}{ll} Q \Omega_{n}^{p,q} &= 0, \\ \\ \operatorname{d}_{\mathrm{v}} \Omega_{n}^{p,q} &+ Q \Omega_{n-1}^{p,q+1} &= 0, \\ \operatorname{d}_{\mathrm{h}} \Omega_{n}^{p,q} &+ Q \Omega_{n-1}^{p+1,q} &= 0, \\ \operatorname{d}_{\mathrm{h}} \Omega_{n}^{p,q} &+ Q \Omega_{n-1}^{p+1,q} &= 0, \\ \operatorname{d}_{\mathrm{h}} \Omega_{n-1}^{p,q+1} &+ \operatorname{d}_{\mathrm{v}} \Omega_{n-1}^{p+1,q} &+ Q \Omega_{n-2}^{p+1,q+1} &= 0, \\ \operatorname{d}_{\mathrm{h}} \Omega_{n-1}^{p,q+1} &+ Q \Omega_{n-2}^{p+2,q} &= 0, \\ \operatorname{d}_{\mathrm{h}} \Omega_{n-2}^{p,q+2} &+ Q \Omega_{n-3}^{p,q+3} &= 0, \\ \operatorname{d}_{\mathrm{h}} \Omega_{n-2}^{p,q+2} &+ \operatorname{d}_{\mathrm{v}} \Omega_{n-2}^{p+1,q+1} &+ Q \Omega_{n-3}^{p+1,q+2} &= 0, \\ \operatorname{d}_{\mathrm{h}} \Omega_{n-2}^{p,q+2} &+ \operatorname{d}_{\mathrm{v}} \Omega_{n-2}^{p+2,q} &+ Q \Omega_{n-3}^{p+2,q+1} &= 0, \\ \operatorname{d}_{\mathrm{h}} \Omega_{n-2}^{p+2,q} &+ Q \Omega_{n-3}^{p+3,q} &= 0, \\ \operatorname{d}_{\mathrm{h}} \Omega_{n-2}^{p+2,q} &+ Q \Omega_{n-3}^{p+3,q} &= 0, \\ \end{array} \right.$$

Transgression of shifted closed forms

Crucially, the following property holds still in the derived setting:

$$\mathbb{R}\mathrm{Crit}_{\mathrm{EL}}(\mathscr{L})_{\times} \simeq \mathbb{R}\mathrm{Crit}(S)(\mathbb{D}_{\times})$$

at any point $x \in M$.

• Roughly, this tells us that there exists a "derived transgression":

$$\mathfrak{T}_M:\,\mathcal{A}^{\dim(M),q}\big(\mathbb{R}\mathrm{Crit}_{\mathrm{EL}}(\mathscr{L}),n\big)\,\longrightarrow\,\mathcal{A}^q\big(\mathbb{R}\mathrm{Crit}(S)(M),n\big).$$

from the derived Euler-Lagrange critical locus to the the critical locus of the action functional at M.

Not too surprisingly, this derived transgression lifts to a map of closed forms

$$\mathfrak{T}_M: \mathcal{A}^{\dim(M),q}_{\operatorname{cl}}(\operatorname{\mathbb{R}Crit}_{\operatorname{EL}}(\mathscr{L}),n) \longrightarrow \mathcal{A}^q_{\operatorname{cl}}(\operatorname{\mathbb{R}Crit}(S)(M),n)$$

However, in the derived setting there is more!

• If $\partial M \simeq 0$ is trivial and $p \leq m$, we obtain a transgression map

$$\mathfrak{T}_M\,:\,\mathcal{A}^{\dim(M)-p,q}_{\mathrm{cl}}\big(\mathbb{R}\mathrm{Crit}_{\mathrm{EL}}(\mathscr{L}),n\big)\,\longrightarrow\,\mathcal{A}^q_{\mathrm{cl}}\big(\mathbb{R}\mathrm{Crit}(S)(M),n-p\big).$$

• If $\partial M \not\simeq 0$ is not trivial and $p \leq m$, we obtain a transgression map

$$\mathfrak{T}_M: \mathcal{A}^{\dim(M)-p,q}_{\mathrm{cl}}\big(\mathbb{R}\mathrm{Crit}_{\mathrm{EL}}(\mathscr{L}), n\big) \,\longrightarrow\, \mathcal{A}^q_{\mathrm{BFV}}\big(\mathbb{R}\mathrm{Crit}(S)(M), n-p\big),$$

where on the right-hand-side there is the ∞ -groupoids whose elements are couples

$$\omega \in A^q_{\mathrm{cl}}(\mathbb{R}\mathrm{Crit}(S)(M))_{n-p} \quad \varpi \in A^q_{\mathrm{cl}}(\mathbb{R}\mathrm{Crit}(S)(\partial M_{\mathrm{th}}))_{n-p+1}$$

such that

$$(d_{dR} + Q)\omega + \pi_{\partial M}^* \varpi = 0,$$

$$(d_{dR} + Q)\varpi = 0.$$

i.e. a shifted form ω whose failure to be closed amounts to the pullback of a closed form ϖ living on the boundary and 1 degree higher.

Canonical derived *n*-plectic structure of a classical field theory

Now, the derived Euler-Lagrange critical locus $\mathbb{R}\mathrm{Crit}_{\mathrm{EL}}(\mathscr{L})$

- ullet comes with a canonical (-1)-shifted (m,2)-form Ω_{BV} ,
- inherits a 0-shifted (m-1,2)-form $\Omega_{\mathrm{BFV}} \coloneqq p_{\mathrm{EL}}^* \Omega_{\mathrm{pre}}$ from $\mathrm{Jet} E$.

Canonical derived *n*-plectic structure of a classical field theory

Now, the derived Euler-Lagrange critical locus $\mathbb{R}\mathrm{Crit}_{\mathrm{EL}}(\mathscr{L})$

- ullet comes with a canonical (-1)-shifted (m,2)-form Ω_{BV} ,
- inherits a 0-shifted (m-1,2)-form $\Omega_{\mathrm{BFV}} \coloneqq p_{\mathrm{EL}}^* \Omega_{\mathrm{pre}}$ from $\mathrm{Jet} \mathcal{E}$.

One can show that $\Omega_{\mathrm{BFV}}+\Omega_{\mathrm{BV}}\in\mathrm{Z}^0\mathrm{A}^{m-1,2}_{\mathrm{cl}}(\mathrm{Crit}_{\mathrm{EL}}(\mathscr{L}))$ is a closed form, i.e.

$$egin{aligned} Q\Omega_{
m BFV} &= 0, \ {
m d}_{
m dR}\Omega_{
m BFV} + Q\Omega_{
m BV} &= 0, \ {
m d}_{
m dR}\Omega_{
m BV} &= 0. \end{aligned}$$

Example

 $(\mathbb{R}\mathrm{Crit}_{\mathrm{EL}}(\mathscr{L}),\ \Omega_{\mathrm{BFV}}+\Omega_{\mathrm{BV}})$ is a 0-shifted *n*-plectic structure with $n=\dim(M)$.

By derived transgression map of closed forms

$$\mathfrak{T}_M\,:\,\mathcal{A}_{\mathrm{cl}}^{\dim(M)-1,2}\big(\mathbb{R}\mathrm{Crit}_{\mathrm{EL}}(\mathscr{L}),0\big)\,\longrightarrow\,\mathcal{A}_{\mathrm{BFV}}^2\big(\mathbb{R}\mathrm{Crit}(S)(M),-1\big)$$

one makes contact with BV-BFV theory:

$$(\mathrm{d_{dR}}+Q)\omega_{\mathrm{BV}}+\pi_{\partial M}^{*}\varpi_{\mathrm{BFV}}=0, \ (\mathrm{d_{dR}}+Q)\varpi_{\mathrm{BFV}}=0.$$

Extra: higher derived brackets?

• Poisson structure: bivector π_2 such that $[\pi_2, \pi_2] = 0$.

Poisson algebroid $\mathfrak{Pois}(X,\pi_2)=T_X^* \stackrel{\pi_2^\flat}{\longrightarrow} T_X$ so that

$$\mathrm{CE}(\mathfrak{Pois}(X,\pi_2)) \ = \ \left(\Gamma(X,\wedge^*\mathcal{T}_X),\ \mathrm{d}_{\mathrm{CE}} = [\pi_2,-]
ight)$$

"Derived" L_{∞} -bracket:

$$\{f,g\} = [[\pi_2,f],g]$$

Extra: higher derived brackets?

• **Poisson structure**: bivector π_2 such that $[\pi_2, \pi_2] = 0$.

Poisson algebroid $\mathfrak{Pois}(X,\pi_2)=T_X^* \stackrel{\pi_2^b}{\longrightarrow} T_X$ so that

$$\mathrm{CE}(\mathfrak{Pois}(X,\pi_2)) \ = \ \left(\Gamma(X,\wedge^*T_X),\ \mathrm{d}_{\mathrm{CE}} = [\pi_2,-]\right)$$

"Derived" L_{∞} -bracket:

$$\{f,g\} = [[\pi_2,f],g]$$

• *k*-shifted Poisson structure: formal sum $\pi = \pi_2 + \pi_3 + \pi_4 + \dots$ such that each π_p is a (k + p - 2)-shifted *p*-vector and

$$Q\pi + \frac{1}{2}[\pi.\pi] = 0.$$

"Derived" Poisson algebroid $\mathfrak{Pois}(X,\pi)$ so that

$$\mathrm{CE}(\mathfrak{Pois}(X,\pi)) \ = \ \Big(\mathbb{R}\Gamma(X,\wedge^*\mathbb{T}_X), \ \mathrm{d}_{\mathrm{CE}} = Q + [\pi,-] \Big)$$

"Higher derived" L_{∞} -bracket [Voronov 2004]:

$$\ell_1(f) = \mathit{Q} f, \qquad \ell_p(f_1, f_2, \dots, f_p) = \operatorname{Proj} \left[\cdots \left[\left[\pi, f_1 \right], f_2 \right] \cdots, f_p \right]$$

⇒ Current work on Courant/Vinogradov version of this generalisation.

Table of Contents

- Introduction
- Pormal derived smooth stacks
- 3 Ordinary *n*-plectic geometry
- Derived n-plectic geometry
- Outlook

Outlook

- Setting to go beyond BV-quantisation
 - ▶ [Bunk, Sämann, Szabo], [Fiorenza, Sati, Schreiber]: higher geometric prequantisation of *n*-plectic structures and prequantum bundle *n*-gerbes
 - ► [Safronov]: geometric quantisation of derived symplectic structures in derived algebraic geometry via bundle *k*-gerbes
 - ⇒ Beyond BV-quantisation by "higher derived" geometric (pre)quantisation?
- Setting to go beyond BV-BRST theory
 - Usually one would consider $\Omega^*(X,\mathfrak{g})$ with L_∞ -structure and take shifted cotangent bundle $T^*[-1]\Omega^*(X,\mathfrak{g})$
 - ▶ We can consider $\operatorname{\mathsf{Bun}}_G^{\nabla}(X) \coloneqq [X,\operatorname{\mathsf{B}} G_{\operatorname{conn}}]$ (or some concretification of this), and take derived critical locus $\operatorname{\mathbb{R}Crit}(S)(M)$ for a given $S:\operatorname{\mathsf{Bun}}_G^{\nabla}(X)\to \mathbb{R}$
 - ⇒ Global geometric generalisation of BV-BRST theory?
- Investigate global and quantum aspects of dualities of string and M-theory

Thank you for your attention!

