D-Branes and Doubled Geometry

Richard Szabo

M-Theory and Mathematics: Classical and Quantum Aspects

Outline

- Introduction
- Para-Hermitian Geometry
- ► Born Sigma-Models
- Born D-Branes
- Metric Algebroids and Wess-Zumino Terms
- Reduction: D-Branes on the Physical Spacetime
- Example: D-Branes on Doubled Nilmanifolds

with Vincenzo Emilio Marotta

[arXiv: 1810.03953, 1910.09997, 2104.07774, 2202.05680]

Introduction

- Manifest T-duality invariance: Correct description involves algebroids and 'doubled geometry'
- ► Generalized geometry: $TM \longrightarrow \mathbb{T}M = TM \oplus T^*M$ with structure of (twisted) Courant algebroid (Hitchin '02; Gualtieri '04)
- ▶ Double field theory (DFT): M → M = M × M

 Solving strong constraint (polarisation) reduces DFT structure to standard Courant algebroid (Siegel '93; Hull & Zwiebach '09; Hohm, Hull & Zwiebach '10;...)
- In this talk: Global description of DFT provided by para-Hermitian geometry and metric algebroids
- Phenomena described by T-duality: What is a D-brane in this setting?
- Conformal boundary conditions for Born sigma-model: Covariant version of doubled sigma-models for duality-symmetric string theory (Duff '90; Tseytlin '90; Hull '05; Berman, Copland & Thompson '07; Hull & Reid-Edwards '09; Copland '11; Lee & Park '13 ...)
- Generalize previous treatments of D-branes and doubled geometry (Hull '04; Lawrence, Schulz & Wecht '06; Albertsson, Kimura & Reid-Edwards '08; Hull & Sz '19; Sakatani & Uehara '20)

Double Field Theory and Para-Hermitian Geometry

- Para-Hermitian Geometry: A "real version" of complex Hermitian geometry
- Addresses global issues of doubled geometry, provides simple elegant framework for generalized flux compactifications and non-geometric backgrounds

 (Hull '04; Vaisman '12; Freidel, Rudolph & Svoboda '17;

 Chatzistavrakidis, Jonke, Khoo & Sz '18; Svoboda '18; Marotta & Sz '18;

 Mori, Sasaki & Shiozawa '19; Hassler, Lüst & Rudolph '19;

 Kimura, Sasaki & Shiozawa '22; ...)
- Other applications of para-Hermitian geometry:
 - Formulation of $\mathcal{N}=2$ vector multiplets in Euclidean spacetimes (Cortés, Mayer, Mohaupt & Saueressig '03; Cortés & Mohaupt '09)
 - Lagrangian and non-Lagrangian dynamical systems (Marotta & Sz '18)
 - ► 2D 'twisted' SUSY sigma-models (Abou-Zeid & Hull '99; Stojevic '09; Hu, Moraru & Svoboda '19)
- ▶ Modern perspective: Geometry on $\mathbb{T}M = TM \oplus T^*M \longleftrightarrow TM$
- **Examples:** Fibre bundles $(T^*M, TM, ...)$, Doubled Lie groups, Drinfel'd doubles, and quotients $(T^{2d}, doubled twisted torus, ...)$

Para-Hermitian Manifolds

- ▶ Para-complex structure $K: T\mathcal{M} \longrightarrow T\mathcal{M}$ on 2d-dim manifold \mathcal{M} with $K^2 = +1$, whose ± 1 -eigenbundles L_{\pm} have same rank d
- ▶ Splits $TM = L_+ \oplus L_-$, integrability of L_+ and L_- independent
- Para-Hermitian structure (K, η) : metric η with signature (d, d) satisfying compatibility $K^{\top} \eta K = -\eta$
- Fundamental 2-form $\omega = \eta K$, $d\omega =$ 'generalized fluxes' If symplectic ($d\omega = 0$) then (K, η) para-Kähler structure
- $ightharpoonup L_{\pm}$ maximally isotropic with respect to η and ω
- **Example:** $\mathcal{M} = T^*M \xrightarrow{\pi} M$ with canonical symplectic 2-form ω_0 ; para-Hermitian structures correspond to isotropic splittings of

$$0 \longrightarrow \ker(\pi_*) \longrightarrow T(T^*M) \longrightarrow \pi^*(TM) \longrightarrow 0$$

▶ Para-Hermitian vector bundles: $\mathbb{T}M = TM \oplus T^*M$, exact Courant algebroids , . . .

Generalized Metrics & Born Geometry

▶ B-transformation of (K, η) on $T\mathcal{M} = L_+ \oplus L_-$:

$$e^B = \begin{pmatrix} \mathbb{1} & 0 \\ B & \mathbb{1} \end{pmatrix} \in \operatorname{Aut}(T\mathcal{M}) \text{ where } B: L_+ \longrightarrow L_- \text{ with}$$

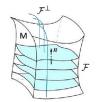
$$\eta(B(X), Y) = -\eta(X, B(Y)) =: b(X, Y)$$

- ▶ $K \longrightarrow K_B = e^B K e^{-B}$ where (K_B, η) is another para-Hermitian structure with fundamental 2-form $\omega_B = \eta K_B = \omega + 2 b$
- Generalized metric on a para-Hermitian manifold (\mathcal{M}, K, η) : $I \in \operatorname{Aut}(T\mathcal{M})$ covering id_M with $I^2 = \mathbb{1}$ Defines Riemannian metric $\mathcal{H} = \eta I$ on \mathcal{M}
- \triangleright \mathcal{H} defined by metric on L_+ and B-transformation (g,b)
- ▶ If $\mathcal{H} \omega^{-1} \mathcal{H} = -\omega$ then $(\eta, \omega, \mathcal{H})$ is a Born geometry Specified by metric g on L_+
- ▶ Generalized T-duality: $O(T\mathcal{M}) \subset \operatorname{Aut}(T\mathcal{M})$ isometries of η , preserve Born geometry structure: $K_{\vartheta} = \vartheta K \vartheta^{-1}$, $\mathcal{H}_{\vartheta} = \vartheta^*(\mathcal{H})$ for $\vartheta \in O(T\mathcal{M})$

Born Sigma-Model

$$\begin{split} S[\mathbb{X}] \; &=\; \frac{1}{4} \, \int_{\Sigma_2} \, \mathcal{H}_{IJ} \, \mathrm{d}\mathbb{X}^I \, \wedge \star \, \mathrm{d}\mathbb{X}^J + \frac{1}{4} \, \int_{\Sigma_2} \, \mathbb{X}^*(\omega) \\ \mathbb{X} : \Sigma_2 \longrightarrow \mathcal{M} \quad , \ \, (\eta,\omega,\mathcal{H}) \; = \; \text{Born geometry on } \mathcal{M} \end{split}$$

▶ Strong Constraint: Assuming $L_- \subset T\mathcal{M}$ involutive selects physical spacetime as a **quotient** $M = \mathcal{M}/\mathcal{F}$ by action on leaves of foliation of \mathcal{M} by \mathcal{F} with $L_- = T\mathcal{F}$ (Hull & Reid-Edwards '09; Vaisman '12; Park '13; Lee, Strickland-Constable & Waldram '15)



Reduces Born sigma-model if there is a Riemannian submersion $q:(\mathcal{M},\mathcal{H})\longrightarrow (M,\bar{g})$ such that $g=q^*\bar{g}$ is leaf-invariant (Marotta & Sz '19)

► Killing Lie algebroid: Lie algebroid A over Riemannian target space $(\mathcal{M}, \mathcal{H})$ such that $\nabla^A \mathcal{H} = 0$ for flat A-connection $\nabla^A : \Gamma(A) \times \Gamma(T\mathcal{M}) \longrightarrow \Gamma(T\mathcal{M})$ (Kotov & Strobl '14; ...)

Gauging the Born Sigma-Model

- Apply to Killing Lie algebroid $\rho: T\mathcal{F} \hookrightarrow T\mathcal{M}$: Born sigma-model can be gauged along foliation $\mathcal{F} \iff \mathcal{L}_V g = 0$ for all $V \in \Gamma(T\mathcal{F})$, where \mathcal{H} is determined by metric g on L_+
- If \mathcal{M}/\mathcal{F} is smooth, then there is a Riemannian submersion $q:(\mathcal{M},\mathcal{H})\longrightarrow (\mathcal{M}/\mathcal{F},\bar{g})$ such that $g=q^*\bar{g}$
- ω descends to 2-form \bar{b} on \mathcal{M}/\mathcal{F} if L_+ is locally spanned by projectable vector fields V_i : $[V_i, W] \in \Gamma(T\mathcal{F})$ for all $W \in \Gamma(T\mathcal{F})$, and $\mathcal{L}_W \eta = 0$
- $ightharpoonup d\mathbb{X}' \longrightarrow D^A\mathbb{X}' = d\mathbb{X}' \rho^{lj} A_i$ for $T\mathcal{F}$ -valued connection 1-form A
- Euler-Lagrange equation for A gives 'self-duality constraint':

$$D^{A}X = \eta^{-1}\mathcal{H} \star dX$$

Reduces Born sigma-model to standard string sigma-model into physical spacetime $(\mathcal{M}/\mathcal{F}, \bar{g}, \bar{b})$

▶ Generalized T-duality $(\mathcal{M}, \eta, K, \mathcal{H}) \longrightarrow (\mathcal{M}, \eta, K_{\vartheta}, \mathcal{H}_{\vartheta})$ with $T\mathcal{M} = L^{\vartheta}_{+} \oplus L^{\vartheta}_{-}$; if $L^{\vartheta}_{-} = T\mathcal{F}^{\vartheta}$ then sigma-models for $(\mathcal{M}/\mathcal{F}, \bar{g}, \bar{b})$ and $(\mathcal{M}/\mathcal{F}^{\vartheta}, \bar{g}^{\vartheta}, \bar{b}^{\vartheta})$ are T-dual

Boundary Conditions for the Born Sigma-Model

 $ightharpoonup (\sigma, \tau)$ local coordinates for Σ, with boundary $\partial \Sigma$:

$$\left. \left(- \frac{1}{2} \, \mathcal{H}_{IJ} \, \partial_{\sigma} \mathbb{X}^{J} \, \mathsf{d} \sigma + \omega_{IJ} \, \partial_{\tau} \mathbb{X}^{J} \, \mathsf{d} \tau \right) \right|_{\partial \Sigma} \; = \; 0$$

▶ Solution given by subbundle $L \subset TM$ ("tangent vectors"):

$$0\longrightarrow L\longrightarrow T\mathcal{M}\longrightarrow T\mathcal{M}/L\longrightarrow 0$$

and orthogonal splitting $TM = L \oplus L^{\perp}$ wrt generalized metric \mathcal{H} , with orthogonal projectors $\Pi: T\mathcal{M} \longrightarrow L$ and $\Pi^{\perp}: T\mathcal{M} \longrightarrow L^{\perp}$

 Together with self-duality constraint, conformal boundary conditions are solved by

$$\eta(\Pi(Z_I),\Pi(Z_J)) = 0 = \eta(\Pi^{\perp}(Z_I),\Pi^{\perp}(Z_J))$$
 , $\omega(\Pi(Z_I),\Pi(Z_J)) = 0$

for a local frame $\{Z_l\}$ of $T\mathcal{M}$

▶ Thus L is maximally isotropic wrt both η , ω (but not necessarily integrable)

Born D-Branes

- ▶ Def.: A Born D-brane is a maximally isotropic subbundle $L_D \subset T\mathcal{M}$ such that $K(L_D) = L_D$
- **Examples:** Eigenbundles L_{\pm} of para-complex structure K
- ▶ If $W_D = L_+ \cap L_D$ has constant rank, then $L_D = W_D \oplus \eta^\sharp(\mathsf{Ann}(W_D))$ with metric

$$\mathcal{H}_D = \begin{pmatrix} g_D & 0 \\ 0 & \eta g_D^{-1} \end{pmatrix} \quad , \quad g_D = g|_{W_D}$$

- ▶ Generalized T-duality $\vartheta \in O(T\mathcal{M})$ sends D-brane L_D for Born sigma-model $S(\mathcal{H}, \omega)$ into (\mathcal{M}, K, η) to D-brane $L_D^\vartheta = \vartheta(L_D)$ for Born sigma-model $S(\mathcal{H}_\vartheta, \omega_\theta)$ into $(\mathcal{M}, K_\vartheta, \eta)$
- ▶ Standard picture of D-branes as submanifolds when $L_D = T\mathcal{F}_D$ is integrable: Each leaf of foliation \mathcal{F}_D of \mathcal{M} is a d-dim submanifold of \mathcal{M} whose tangent vectors satisfy the boundary conditions
- Chan-Paton bundles induced by B-transformations (with suitable integrality)

Dirac Structures

- Generalised submanifold (\mathcal{W}, L) for an exact Courant algebroid $E \longrightarrow \mathcal{M}$ with anchor $\rho \colon \mathcal{W} \subset \mathcal{M}, \ L \subset E$ maximally isotropic integrable with $\rho(L) = T\mathcal{W}$ (Gualtieri '04; Zambon '07)
- ▶ Generalized para-complex D-brane supported on $\mathcal{W} \subseteq \mathcal{M}$ for an exact Courant algebroid $E \longrightarrow \mathcal{M}$ with anchor ρ and generalized para-complex structure \mathcal{K} : Generalized submanifold (\mathcal{W}, L) such that $\mathcal{K}(L) = L$
- ▶ Born sigma-model corresponds (up to B-transformations) to the 'large Courant algebroid' $\mathbb{T}\mathcal{M} = T\mathcal{M} \oplus T^*\mathcal{M}$ with generalized metric determined by \mathcal{H} (Alekseev & Strobl '04; Ševera '15)
- $(\eta, K) \text{ gives generalized para-complex structure } \mathcal{K}_K = \begin{pmatrix} K & 0 \\ 0 & -K^\top \end{pmatrix}$ preserving splitting on $\mathbb{T}\mathcal{M}$ (Hu, Moraru & Svoboda '19)
- **Born** D-brane L_D defines Dirac structure $D = L_D \oplus Ann(L_D)$ on TM
- For each leaf W_D of L_D , $(W_D, D|_{W_D})$ is a generalized para-complex brane: $\mathcal{K}_K(D|_{W_D}) = D|_{W_D}$ (since $K(L_D) = L_D$)

Metric Algebroids

- Metric algebroid: Anchored pseudo-Euclidean vector bundle $(E, \langle -, \rangle_E, \rho)$ with bracket $[-, -]_E : \Gamma(E) \times \Gamma(E) \longrightarrow \Gamma(E)$:
- Any anchored pseudo-Euclidean vector bundle admits infinitely many metric algebroid stuctures (Vaisman '12)
- Metric algebroids ←→ symplectic 2-algebroids

 (del Carpio-Marek '15; Marotta & Sz '21)

 (aka 'symplectic nearly Lie 2-algebroids' (Bruce & Grabowski '16)

 'symplectic pre-NQ-manifolds of degree 2' (Deser & Sämann '16)

 'pre-QP-manifolds' (Heller, Ikeda & Watamura '16))
- Any para-Hermitian manifold (\mathcal{M}, K, η) admits a unique 'canonical' metric algebroid bracket $[-,-]_{\mathcal{T}\mathcal{M}}$ preserving K, with anchor $\mathbb{1}_{\mathcal{T}\mathcal{M}}$: L_{\pm} are involutive wrt $[-,-]_{\mathcal{T}\mathcal{M}}$, and $[-,-]_{\mathcal{T}\mathcal{M}}$ is compatible with Lie algebra of vector fields on $\mathcal{T}\mathcal{M}$ (Freidel, Rudolph & Svoboda '17))

Related Algebroids

- Pre-Courant algebroids: $\rho: E \longrightarrow T\mathcal{M}$ bracket morphism (symplectic almost Lie 2-algebroids (Bruce & Grabowski '16)))
- ► Courant algebroids: Jacobi identity for $[-,-]_E$ (symplectic Lie 2-algebroids (Ševera '98; Roytenberg '99))
- ▶ DFT algebroid on a para-Hermitian manifold (\mathcal{M}, K, η) : $\rho: (E, \langle -, -\rangle_E) \longrightarrow (T\mathcal{M}, \eta)$ isomorphism of pseudo-Euclidean vector bundles with $\rho \, \rho^* = \eta^{-1}$ (Chatzistavrakidis, Jonke, Khoo & Sz '18; Svoboda '18; Hu, Moraru & Svoboda '19; Grewcoe & Jonke '20; Marotta & Sz '21)
- ▶ Example: Splitting and projection of large Courant algebroid $\mathbb{T}\mathcal{M}$ is a DFT algebroid isomorphic to canonical metric algebroid, reduces to standard Courant algebroid on physical spacetime \mathcal{M}/\mathcal{F} when $L_- = \mathcal{T}\mathcal{F}$ DFT algebroids lie "in between" two Courant algebroids
- Note: Generalised para-complex branes make sense for exact pre-Courant algebroids — extension to metric algebroids?

Adding a Wess-Zumino Term

- ▶ Difference between any two metric algebroid brackets on $(\mathcal{M}, \mathcal{K}, \eta)$ is a 3-form H_D on \mathcal{M}
- ▶ Canonical 3-form H_{can} : Choose canonical metric algebroid and reference bracket induced by Levi-Civita connection of η ($H_{\text{can}}=0$ iff $d\omega=0$)
- (\mathcal{M}, K, η) is admissible if $H_2(\mathcal{M}) = 0$ and $\frac{1}{4\pi}[H_{can}] \in H^3(\mathcal{M}; \mathbb{Z})$
- ▶ Defines Wess-Zumino term $\frac{1}{2} \int_{V} \mathbb{X}^{*}(H_{\mathsf{can}})$, $\partial V = \Sigma$ for Born sigma-model, H_{can} represents Ševera class of associated Courant algebroid
- For open strings, consider relative maps $\mathbb{X}: (\Sigma, \partial \Sigma) \longrightarrow (\mathcal{M}, \mathcal{W})$ and relative admissibility: $H_2(\mathcal{M}, \mathcal{W}) = 0$, $\frac{1}{4\pi} [(H_{can}, B_{can})] \in H^3(\mathcal{M}, \mathcal{W}; \mathbb{Z})$ for some 2-form B_{can} on \mathcal{W}
- ▶ $L_{\mathcal{W}} := \operatorname{im}(T\mathcal{W} \longrightarrow T\mathcal{M})$ is a Born D-brane iff $\mathcal{W} \subset \mathcal{M}$ Lagrangian submanifold, $B_{\operatorname{can}} = 0$ and $H_{\operatorname{can}}|_{\mathcal{W}} = 0$ (orientation condition)
- ► Can only couple to *flat* Chan-Paton bundles analogous to A-branes

Generalized Para-Complex Branes

▶ Generalized submanifolds (W, L) on an exact Courant algebroid correspond to subbundles

$$L \ = \ L^F := \big\{ X + \alpha \in T\mathcal{W} \oplus T^*\mathcal{M}|_{\mathcal{W}} \ \big| \ \alpha|_{\mathcal{W}} = \iota_X F \big\} \subset \mathbb{T}\mathcal{M}$$

for some 2-form F on W with $dF + H_{can}|_{W} = 0$

- Example: For a Born D-brane L_D and its Dirac structure $D = L_D \oplus \text{Ann}(L_D)$, $(\mathcal{W}_D, D|_{\mathcal{W}_D})$ is a generalized para-complex D-brane iff $H_{\text{can}}|_{\mathcal{W}_D} = 0$ (since F = 0)
- ► Example: For a Born D-brane L_D and given $F \in \Omega^2(\mathcal{W})$, (\mathcal{W}_D, L^F) is a generalized para-complex D-brane iff

$$K^{\top}(\iota_X F) + \iota_{K(X)} F \in Ann(TW_D) \quad \forall X \in \Gamma(TW_D)$$

If $H_{\operatorname{can}}\big|_{\mathcal{W}_D}=0$ (integrability), $F\in\Omega^2_{\mathbb{Z}}(\mathcal{W}_D)$ and K integrable, then F is the curvature of a para-holomorphic Chan-Paton bundle (C,∇^C) on \mathcal{W}_D — analogous to B-branes (Lawn & Schäfer '05)

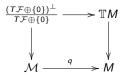
D-Branes on the Physical Spacetime

- D-branes are defined by "tangent vectors" distributions on tangent bundle of target space, need to be integral to interpret leaves as D-brane worldvolumes
- ▶ When $L_- = T\mathcal{F}$ and $q: (\mathcal{M}, \mathcal{H}) \longrightarrow (\mathcal{M} = \mathcal{M}/\mathcal{F}, \overline{g})$ is a Riemmannian submersion, $dq|_{L_+}: L_+ \longrightarrow T\mathcal{M}$ fibrewise isomorphism
- ▶ Born D-brane $L_D = T\mathcal{F}_D \subset T\mathcal{M}$ induces $dq(L_D) = T\mathcal{F}_D^q \subseteq TM$, leaves of foliation \mathcal{F}_D^q supported by physical D-branes in (M, \bar{g}, \bar{b})
- Example: $L_{-} = T\mathcal{F} \implies 0$ -branes on M (fully Dirichlet) L_{+} integrable \implies spacetime-filling D-branes (fully Neumann)
- ► D-branes are associated with Dirac structures on Courant algebroid for corresponding sigma-model (Zabzine '04; Asakawa, Sasa & Watamura '12)
- Consider reduction of Born D-branes as reduction of Dirac structures, using techniques of Courant algebroid reduction

(Bursztyn, Cavalcanti & Gualtieri '05; Zambon '07)

Dirac Reduction of Born D-Branes

- For $A = T\mathcal{F} \oplus \{0\} \subset \mathbb{T}\mathcal{M}$, A^{\perp} spanned by $Y + \mathrm{d}(q^*f)$ for projectable $Y \in \Gamma(T\mathcal{M})$ and $f \in C^{\infty}(M)$, which are 'basic'
- lacktriangledown Hence large Courant algebroid $\mathbb{T}\mathcal{M}$ reduces to standard Courant algebroid $\mathbb{T}M$ through pullback diagram



- ▶ For a Born D-brane $L_D = T\mathcal{F}_D \subset T\mathcal{M}$, $D = L_D \oplus \mathsf{Ann}(L_D)$ is a Dirac structure for large Courant algebroid $\mathbb{T}\mathcal{M}$ such that $D \cap A^\perp$ still spanned by $Y + \mathsf{d}(q^*f)$
- ▶ Hence if L_D admits a sub-bundle spanned by projectable vector fields, then D descends to a Dirac structure D_{red} on $M = \mathcal{M}/\mathcal{F}$

Example: D-Branes on Doubled Nilmanifolds

- ▶ H = 3d Heisenberg group with Drinfel'd double $T^*H = H \times \mathbb{R}^3$, basis $\{Z_i, \tilde{Z}^i\}_{i=x,y,z}$ of left-invariant vector fields on $T(T^*H)$
- (\mathcal{M}, K, η) : $\mathcal{M} = \Gamma_m \setminus T^*H$ for discrete cocompact subgroup Γ_m with $m \in \mathbb{Z}$, $K(Z_i) = +Z_i$ $K(\tilde{Z}^i) = -\tilde{Z}^i$, and η induced from duality pairing between Lie(H) and \mathbb{R}^3
- Nilmanifold: Principal T^3 -bundle $\mathcal{M} \longrightarrow \mathcal{N}_m = \text{nilmanifold of degree } m$
 - $ightharpoonup L_+ = ext{D3-brane filling } N_m, ext{ Dirac structure } TN_m \subset \mathbb{T}N_m$
 - ▶ $L_D = \text{Span}(Z_x, Z_y, \tilde{Z}^z)$ reduces to Dirac structure associated with foliation of N_m with T^2 leaves wrapped by D2-branes
- ▶ T^3 with H-flux: T^3 -fibration $\mathcal{M} \longrightarrow T^3$, m = DD class of gerbe on T^3 B-transformation sends $\{Z_i, \tilde{Z}^i\} \longrightarrow \{Z'_i, \tilde{Z}'^i\}$, $K \longrightarrow K'$
 - ▶ $L_D = \text{Span}(Z'_x, \tilde{Z}'^y, \tilde{Z}'^z)$ yields Dirac structure associated with foliation of T^3 with S^1 leaves wrapped by D1-branes, T-dual to D0-branes on N_m from reducing Born D-brane L_-
 - ► $H_{can} = -\frac{3}{2} m \, dx \wedge dy \wedge dz$, $H_{can}(Z'_x, Z'_y, Z'_z) \neq 0$ forbids D3-branes wrapping T^3 for $m \neq 0$