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Introduction

Manifest T-duality invariance: Correct description involves algebroids and
‘doubled geometry’

Generalized geometry: TM — TM = TM & T*M with structure of
(twisted) Courant algebroid (Hitchin '02; Gualtieri '04)

Double field theory (DFT): M — M = M x M

Solving strong constraint (polarisation) reduces DFT structure to standard
Courant algebroid (Siegel '93; Hull & Zwiebach '09; Hohm, Hull & Zwiebach '10;. . .)

In this talk: Global description of DFT provided by para-Hermitian
geometry and metric algebroids

Phenomena described by T-duality: What is a D-brane in this setting?

Conformal boundary conditions for Born sigma-model: Covariant version
of doubled sigma-models for duality-symmetric string theory (Duff '90;
Tseytlin '90; Hull '05; Berman, Copland & Thompson '07; Hull & Reid-Edwards '09;
Copland '11; Lee & Park '13 ...)

Generalize previous treatments of D-branes and doubled geometry
(Hull '04; Lawrence, Schulz & Wecht '06; Albertsson, Kimura & Reid-Edwards '08;
Hull & Sz '19; Sakatani & Uehara '20)



Double Field Theory and Para-Hermitian Geometry

» Para-Hermitian Geometry: A ‘real version” of complex Hermitian
geometry

> Addresses global issues of doubled geometry, provides simple elegant
framework for generalized flux compactifications and non-geometric
backgrounds (Hull '04; Vaisman '12; Freidel, Rudolph & Svoboda '17;
Chatzistavrakidis, Jonke, Khoo & Sz '18; Svoboda '18; Marotta & Sz '18;
Mori, Sasaki & Shiozawa '19; Hassler, Liist & Rudolph '19;
Kimura, Sasaki & Shiozawa '22; ...)

» Other applications of para-Hermitian geometry:

» Formulation of A/ = 2 vector multiplets in Euclidean spacetimes
(Cortés, Mayer, Mohaupt & Saueressig '03; Cortés & Mohaupt '09)
» Lagrangian and non-Lagrangian dynamical systems (Marotta & Sz '18)

» 2D ‘twisted’ SUSY sigma-models (Abou-Zeid & Hull '99; Stojevic '09;
Hu, Moraru & Svoboda '19)

» Modern perspective: Geometry on TM = TM® T*M «+— TM

» Examples: Fibre bundles (T*M, TM, ...), Doubled Lie groups,
Drinfel'd doubles, and quotients (729, doubled twisted torus, ...)



Para-Hermitian Manifolds

Para-complex structure K : TM — TM on 2d-dim manifold M with
K? = +1, whose + 1-eigenbundles L+ have same rank d

» Splits TM =L, @ L_, integrability of Ly and L_ independent

» Para-Hermitian structure (K,n): metric n with signature (d, d) satisfying

compatibility KT nK = —n

Fundamental 2-form w =n K , dw = ‘generalized fluxes’
If symplectic (dw = 0) then (K, n) para-Kahler structure

» [+ maximally isotropic with respect to 1 and w

» Example: M = T*M -~ M with canonical symplectic 2-form wp;

para-Hermitian structures correspond to isotropic splittings of
0 — ker(my) — T(T*M) — 7" (TM) — 0

Para-Hermitian vector bundles: TM = TM & T*M
exact Courant algebroids ,



Generalized Metrics & Born Geometry

B-transformation of (K,n)on TM =L, & L_:

B 1
n(B(X), Y) = fn(X, B(Y)) =: b(X,Y)

eB = (]l 0) € Aut(TM) where B: Ly — L_ with

K — Kg = e® Ke™® where (Kg,n) is another para-Hermitian structure
with fundamental 2-form wg =nKg=w+2b

Generalized metric on a para-Hermitian manifold (M, K, n):
I € Aut(TM) covering idy with /2 =1
Defines Riemannian metric H =nl on M

» 7 defined by metric on L, and B-transformation (g, b)

> If Hw 'H = —w then (n,w,H) isa Born geometry

Specified by metric g on L,

Generalized T-duality: O(TM) C Aut(T M) isometries of 7, preserve
Born geometry structure: Ky = 9 K9t Hy = 9*(H) for 9 € O(TM)



Born Sigma-Model

SIX] = % [ HudX’/\*dXJ-i-%[z X* ()
2 2

X:% — M , (n,w,H) = Born geometry on M

» Strong Constraint: Assuming L_ C T M involutive selects physical
spacetime as a quotient M = M /F by action on leaves of foliation of

Mby Fwith L_=TF (Hull & Reid-Edwards '09; Vaisman '12; Park '13;
Lee, Strickland-Constable & Waldram '15)

Reduces Born sigma-model if there is a
Riemannian submersion

qg: (M, H) — (M, g) such that g = ¢*g
is leaf-invariant (Marotta & Sz '19)

» Killing Lie algebroid: Lie algebroid A over Riemannian target space
(M, H) such that V*H = 0 for flat A-connection
VA T(A) x [(TM) — [(TM) (Kotov & Strobl '14; ...)



Gauging the Born Sigma-Model

Apply to Killing Lie algebroid p: TF — TM:
Born sigma-model can be gauged along foliation F Lvg = 0 for
all V € I(TF), where H is determined by metric g on Ly

If M/F is smooth, then there is a Riemannian submersion
g: (M, H) — (M/F,g) suchthat g = q*g

w descends to 2-form b on M /F if L, is locally spanned by projectable
vector fields V;: [Vi, W] € [(TF) forall W el (TF), and Lwn = 0

> dX' — DX = dX' — p¥ A; for TF-valued connection 1-form A

Euler-Lagrange equation for A gives ‘self-duality constraint’:

DX = np 'H * dX
Reduces Born sigma-model to standard string sigma-model into physical
spacetime (M/F, g, b)

Generalized T-duality (M, n, K, H) — (M, n, Ky, Hs) with B
TM = L7@®L?; if 1Y = TF’ then sigma-models for (M/F,g,b)
and (M/F?,g”,b”) are T-dual



Boundary Conditions for the Born Sigma-Model

» (o, 7) local coordinates for ¥, with boundary 9% :

(—%H/J@UXJdU-FUJUaTXJdT”az =0

> Solution given by subbundle L C TM (“tangent vectors”):
0—L—TM—TM/L—0

and orthogonal splitting TM = L& L+ wrt generalized metric #, with
orthogonal projectors M: TM — L and M+ : TM — L+

» Together with self-duality constraint, conformal boundary conditions are
solved by

77(|_|(Z/)7 I_I(Z_j)) =0= U(HL(Z/), HJ_(ZJ)) , w(l_I(Z,), I_I(ZJ)) =0
for a local frame {Z;} of TM

» Thus L is maximally isotropic wrt both 7, w (but not necessarily
integrable)



Born D-Branes

Def.: A Born D-brane is a maximally isotropic subbundle Lp C TM
such that K(Lp) = Lp

Examples: Eigenbundles Lt of para-complex structure K

» If Wp = L, N Lp has constant rank, then Lp = Wp @nu(Ann(WD))

with metric

gp 0
HD:(O ngD—1> , 8D = g‘WD

Generalized T-duality ¥ € O(TM) sends D-brane Lp for Born

sigma-model S(H,w) into (M, K, n) to D-brane LY = ¥(Lp) for Born

sigma-model S(Hg,ws) into (M, Ky, n)

Standard picture of D-branes as submanifolds when Lp = TFp is
integrable: Each leaf of foliation Fp of M is a d-dim submanifold of M
whose tangent vectors satisfy the boundary conditions

Chan-Paton bundles induced by B-transformations (with suitable
integrality)



Dirac Structures

Generalised submanifold (W, L) for an exact Courant algebroid E — M
with anchor p: W C M, L C E maximally isotropic integrable with
p(L) = TW (Gualtieri '04; Zambon '07)

Generalized para-complex D-brane supported on W C M for an exact
Courant algebroid E — M with anchor p and generalized para-complex
structure IC:  Generalized submanifold (W, L) such that (L) = L

Born sigma-model corresponds (up to B-transformations) to the
‘large Courant algebroid’ TM = TM @ T*M with generalized metric
determined by H (Alekseev & Strobl '04; Severa '15)

0 —-K'
preserving splitting on TM (Hu, Moraru & Svoboda '19)

. . K
(n, K) gives generalized para-complex structure Kx = ( 0 )

Born D-brane Lp defines Dirac structure D = Lp @ Ann(Lp) on TM

» For each leaf Wp of Lp, (Wp, D|w,,) is a generalized para-complex

brane: ICK(D|WD) = D|WD (Since K(LD) = LD)



Metric Algebroids

Metric algebroid: Anchored pseudo-Euclidean vector bundle
(E,{(—,—)e,p) with bracket [—,—]e:T(E) xT(E) — TI'(E):

> p(e) (e, &) = ([e,e]e, &) + (&2, [e, &]e)e
> (le,ele,e)e = 3p(e)- (e e)e

Any anchored pseudo-Euclidean vector bundle admits infinitely many

metric algebroid stuctures (Vaisman '12)
Metric algebroids symplectic 2-algebroids

(del Carpio-Marek '15; Marotta & Sz '21)
(aka ‘symplectic nearly Lie 2-algebroids’ (Bruce & Grabowski '16)
‘symplectic pre-N Q-manifolds of degree 2’ (Deser & Samann '16)
‘pre-QP-manifolds’ (Heller, lkeda & Watamura '16))
Any para-Hermitian manifold (M, K, n) admits a unique ‘canonical’
metric algebroid bracket [—, —]7 a4 preserving K, with anchor 17 :
Ly are involutive wrt [—, —]7am, and [—, —] 7 is compatible with Lie

algebra of vector fields on T M (Freidel, Rudolph & Svoboda '17))



Related Algebroids

Pre-Courant algebroids: p: E — TM bracket morphism
(symplectic almost Lie 2-algebroids (Bruce & Grabowski '16)))

Courant algebroids: Jacobi identity for [—, —]¢
(symplectic Lie 2-algebroids (Severa '98; Roytenberg '99))

DFT algebroid on a para-Hermitian manifold (M, K, n):
p:(E,(—,—)e) — (TM,n) isomorphism of pseudo-Euclidean vector

bundles with pp* = 7771 (Chatzistavrakidis, Jonke, Khoo & Sz '18; Svoboda '18;
Hu, Moraru & Svoboda '19; Grewcoe & Jonke '20; Marotta & Sz '21)

Example: Splitting and projection of large Courant algebroid TM is a
DFT algebroid isomorphic to canonical metric algebroid, reduces to
standard Courant algebroid on physical spacetime M /F when

L. = TF — DFT algebroids lie "in between” two Courant algebroids

Note: Generalised para-complex branes make sense for exact pre-Courant
algebroids — extension to metric algebroids?



Adding a Wess-Zumino Term

Difference between any two metric algebroid brackets on (M, K, n) is a
3-form Hp on M

Canonical 3-form Hn: Choose canonical metric algebroid and reference
bracket induced by Levi-Civita connection of 7 (Hean = 0 iff dw = 0)

(M, K,n) is admissible if Ha(M) = 0 and 2 [Hean] € H*(M;Z)

Defines Wess-Zumino term %/X*(Hcan), OV = X for Born
v

sigma-model, Hean represents Severa class of associated Courant algebroid
For open strings, consider relative maps X : (¥X,0%X) — (M, W)

and relative admissibility: Ho(M, W) = 0 ,

ﬁ (Hean, Bean)] € H3(M,W;Z) for some 2-form B.n on W

Ly :=im(TW — TM) is a Born D-brane iff W C M Lagrangian

submanifold, Becn = 0 and Hcan|W = 0 (orientation condition)

Can only couple to flat Chan-Paton bundles — analogous to A-branes



Generalized Para-Complex Branes

» Generalized submanifolds (W, L) on an exact Courant algebroid
correspond to subbundles

L="L={X+aeTWe T Mlw | alw=uxF} CTM

for some 2-form F on W with dFJrHcan|W =0

» Example: For a Born D-brane Lp and its Dirac structure
D = Lp®Ann(Lp), (Wb, D|wy) is a generalized para-complex D-brane
iff Hcan|WD = 0 (since F = 0)
» Example: For a Born D-brane Lp and given F € Q*(W),
(Wb, L") is a generalized para-complex D-brane iff
K" (txF) + wp)F € Ann(TWp) VX € T(TWp)

If HC3”|WD = 0 (integrability), F € Q5(Wp) and K integrable, then

F is the curvature of a para-holomorphic Chan-Paton bundle (C,V¢)
on Wp — analogous to B-branes (Lawn & Schifer '05)



D-Branes on the Physical Spacetime

D-branes are defined by “tangent vectors” — distributions on tangent
bundle of target space, need to be integral to interpret leaves as D-brane
worldvolumes

When L = TF and qg: (M, H) — (M = M/F,g) isa
Riemmannian submersion, dq|., : Ly — TM fibrewise isomorphism

Born D-brane Lp = TJFp C TM induces dq(Lp) = TF;C TM,
leaves of foliation F}, supported by physical D-branes in (M, g, b)
Example: L- = TF 0-branes on M (fully Dirichlet)

L. integrable spacetime-filling D-branes (fully Neumann)

D-branes are associated with Dirac structures on Courant algebroid for
corresponding sigma—model (Zabzine '04; Asakawa, Sasa & Watamura '12)

Consider reduction of Born D-branes as reduction of Dirac structures,
using techniques of Courant algebroid reduction
(Bursztyn, Cavalcanti & Gualtieri '05; Zambon '07)



Dirac Reduction of Born D-Branes

For A = TF@{0} C TM, A’ spanned by Y +d(q*f) for projectable
Y e [(TM) and f € C*°(M), which are 'basic’

Hence large Courant algebroid TM reduces to standard Courant algebroid
TM through pullback diagram

(TFa{on*
ey M

|,

M—T o wm

For a Born D-brane Lp = TFpC TM, D = Lp @ Ann(Lp) isa
Dirac structure for large Courant algebroid TM such that D N A* still
spanned by Y +d(q*f)

Hence if Lp admits a sub-bundle spanned by projectable vector fields,
then D descends to a Dirac structure Dieg on M = M/F



Example: D-Branes on Doubled Nilmanifolds

> H = 3d Heisenberg group with Drinfel’d double T*H = HxR?,
basis {Z;, Z'}i=x,y,- of left-invariant vector fields on T(T*H)

> (M,K,n): M = T\ T"H for discrete cocompact subgroup I'n with
meZ, K(Z) = +Z K(Z') = —Z', and 1 induced from duality
pairing between Lie(H) and R?

» Nilmanifold: Principal T3-bundle M — N,, = nilmanifold of degree m
» [, = D3-brane filling N, Dirac structure TN, C TNy,

> Lp = Span(Z,Z,, ZZ) reduces to Dirac structure associated with
foliation of N, with T2 leaves wrapped by D2-branes
» T2 with H-flux: T3-fibration M — T3, m = DD class of gerbe on T3
B-transformation sends {Z;,Z'} — {Z/,7""}, K — K’
> Lp = Span(Z.,Z"”,Z'%) yields Dirac structure associated with

foliation of T° with S' leaves wrapped by D1-branes, T-dual to
DO0-branes on N, from reducing Born D-brane L_

» Hean = —2mdxAdy Adz, Hen(Z,Z),Z;) # 0 forbids D3-branes
wrapping T3 for m#0



