
CoPHEE: Co-processor for
Partially Homomorphic Encrypted Execution

Mohammed Nabeel∗, Mohammed Ashraf∗, Eduardo Chielle∗, Nektarios G. Tsoutsos†, and Michail Maniatakos∗

∗Center for Cyber Security, New York University Abu Dhabi
†Electrical and Computer Engineering Department, University of Delaware

Abstract—The recent disclosure of the Spectre and Meltdown
side-channel vulnerabilities offers yet another example of modern
computer architectures prioritizing performance optimizations
over security and privacy. The devastating impact of data leakage,
however, emphasizes the need for new processor designs that
provide native support for data privacy using cryptography. In
this paper, we report on a year-long effort to design, implement,
fabricate, and validate CoPHEE: a novel co-processor design that
mitigates data leakage risks using partially homomorphic en-
crypted execution. ASIC designs for encrypted execution impose
unique challenges, such as the need for non-traditional arithmetic
units (modular inverse, greatest common divisor), very wide
datapaths (2048 bits), and the requirement for secure multiplexer
units enabling general-purpose execution on encrypted values.
Our fully-functional co-processor chip is fabricated in 65nm
CMOS technology, and communicates to a main processor via
UART. This paper offers an elaborate overview of all steps and
design techniques in the ASIC development process, ranging from
RTL design to fabrication and validation. We evaluate our co-
processor using data-oblivious C++ benchmarks, while our RTL
files are available in an open-source repository.

Index Terms—Data Privacy, Encrypted Execution, Partially-
Homomorphic Encryption, Hardware Root-of-Trust, ASIC.

I. INTRODUCTION

Cloud services have become popular as a robust form of out-
sourcing computation and storage. Third party cloud services
nowadays contain user sensitive information regarding health,
financial status, etc., in their databases. This process raises
concerns about the security and privacy of the outsourced data,
exacerbated by noteworthy compromises in recent years [1],
despite the investment of cloud service providers in security.
At the same time, more advanced threats, such as side channel
leakage [2] and hardware Trojans [3], introduce new attack
vectors against the privacy of outsourced computation.

Existing commercial cryptography solutions protect data
at rest, mitigating privacy issues with data transfer and data
storage. However, these solutions are not capable of manipu-
lating encrypted data, i.e., perform operations directly on the
encrypted domain. Even solutions in hardware, like Intel SGX,
require the data to be processed as plaintext, which renders the
entire microprocessor core and cache memories vulnerable to
hardware Trojans and side channel attacks [4], [5].

In recent years, homomorphic encryption schemes have
improved significantly. With the recent advancements in Fully
Homomorphic Encryption (FHE) [6], non-trivial data manip-
ulation directly in the encrypted domain became a reality,
albeit non-practical. FHE schemes use homomorphic Boolean

circuits and obtain the same result as if the data were ma-
nipulated in the open. Thus, no sensitive information is ever
decrypted for processing, mitigating privacy risks. Neverthe-
less, existing FHE cryptosystems are not yet practical [7],
since they incur excessive overheads in area and performance:
Area overheads are in the order of megabytes per ciphertext
[8], which prohibits efficient hardware implementations of
FHE schemes. Performance-wise, FHE cryptosystems need to
manipulate millions of bits to perform an operation [9], and
they further require frequent bootstrapping for noise reduction
[10]. Recent improvements in FHE reduced the bootstrapping
overhead down to milliseconds [11], allowing the execution
of dozens of gates in a second. This performance, however, is
still orders of magnitude slower than non-FHE cryptosystems.

Partially Homomorphic Encryption (PHE) schemes offer a
more practical and efficient alternative to FHE. These asym-
metric cryptosystems support a single homomorphic operation
(i.e., addition or multiplication), which can be applied for
unlimited times without any need for noise reduction or
bootstrapping. In modern PHE cryptosystems like Paillier [12]
and RSA [13], the modular multiplication of ciphertexts is
homomorphic to plaintext addition and multiplication respec-
tively. Hence, since there exist very efficient instantiations of
modular multipliers (e.g., [14]), our thesis is that any PHE-
based algorithm that manipulates encrypted values natively can
benefit from dedicated hardware units.

Since PHE schemes support only one homomorphic oper-
ation, they do not immediately offer the computational com-
pleteness of FHE schemes, given that universal computation
requires two orthogonal operations (i.e., both addition and
multiplication) [15]. In PHE-protected algorithms, however,
this limitation only affects any runtime decisions controlled
by encrypted values, and can be mitigated using a secure
multiplexer as part of the root of trust. For example, Cryptoleq
is a One Instruction Set Computer (OISC) architecture that
supports universal computation of PHE-protected algorithms
with practical overheads [16]. Internally, Cryptoleq is based
on the Turing-complete Subleq abstract machine [17], and
implements the Paillier cryptosystem along with a secure mul-
tiplexer that is obfuscated in software using single-instruction
self-modifying code. As a protection mechanism, however,
Cryptoleq’s software obfuscation does not offer the same
flexibility and guarantees as secure hardware units, since
strong obfuscator programs do not generally exist (i.e., there
are functions that cannot be obfuscated) [18].

Contributions: To address the performance and universality
limitations while executing PHE-based algorithms, this work
develops a novel Co-processor for Partially Homomorphic
Encrypted Execution (CoPHEE), which targets the Paillier
encryption scheme. Our processor is instantiated using 2048-
bit encrypted operands and can be readily used to accel-
erate a broad range of secure applications, such as voting
protocols, threshold cryptosystems, watermarking and secret
sharing schemes, as well as server-aided polynomial evaluation
protocols [12]. Towards that end, we develop special arithmetic
units for modular multiplication (ModMul), exponentiation
(ModExp), inversion (ModInv) and greatest common divisor
(GCD). Likewise, to extend support for ciphertext-based con-
trol flow decisions in PHE-protected algorithms, we adopt
Cryptoleq’s blueprint and instantiate a secure multiplexer in
trusted hardware, effectively minimizing the required trust
surface to a single operation. Since CoPHEE operates directly
on encrypted data, any observable difference in the execution
flow would reveal side-channel information about the value of
the corresponding control ciphertexts; therefore, the encrypted
algorithms accepted by CoPHEE must have constant-time
execution paths and predefined termination conditions.

Our CoPHEE chip has been fabricated at Global Foundries
with 65nm CMOS technology and, to the best of our knowl-
edge, it is the first of its kind to be fabricated. This paper
presents a comprehensive chronicle from the initial design
to post-silicon validation, and discusses implementation chal-
lenges and lessons learned, serving as a baseline for future
work towards the design of homomorphic processors.

II. PRELIMINARIES

A. Homomorphic Encryption and the Paillier Cryptosystem

Homomorphic encryption is a special form of encryption
that allows meaningful manipulations directly on encrypted
data. This property enables outsourcing to a third party the
evaluation of a function that hides its inputs using encryption.
Formally, if Enc denotes encryption, Dec denotes decryption,
and f() is a regular function applied on plaintext values a, b,
then homomorphic encryption supports the following property: � �

f(a, b) = Dec g(Enc(a), Enc(b)) , (1)

where g() is the homomorphic counterpart of f() that oper-
ates on encrypted values Enc(a), Enc(b). For example, the
Paillier cryptosystem [12] defines the encryption of value a as

2Enc(a, r) = rn(n + 1)a mod M , where M = n , n = pq is
the product of two primes p, q, and r is a random value. In Pail-
lier, the supported f(a, b) is the modular addition a + b mod √
M , and its homomorphic counterpart g() is the modular

multiplication of encrypted values Enc(a) · Enc(b) mod M .
Generally, each homomorphic cryptosystem supports spe-

cific functions f , and their counterparts g: PHE cryptosystems
support only one f (e.g., either addition or multiplication),
while FHE cryptosystems support two orthogonal functions
f1, f2 (e.g., both addition and multiplication) that form a

functionally complete set of operations. Nevertheless, the cor-
responding g functions of PHE are significantly more efficient
that the g1, g2 functions of FHE, so FHE remains prohibitive
for practical applications [7].

B. Cryptoleq’s Secure Multiplexer for Universal Computation

The homomorphic operation of Paillier enables the im-
plementation of single-instruction abstract machines that can
execute algorithms with runtime decisions that are not con-
trolled by encrypted values [16]. In this case, to also support
ciphertext-based runtime decisions, it is possible to extend the
homomorphic properties of Paillier using a secure multiplexer.
The latter operates within a root-of-trust and selects between
two ciphertexts Y, Z using a cryptographic predicate P over a
third ciphertext X . To support universal computation on Pail-
lier ciphertexts, the aforementioned blueprint was introduced
in Cryptoleq as function G, where the sign of Dec(X) is
the predicate for selecting between Z = Enc(0) (i.e., the
homomorphic identity element) and its second input Y : � �

G(X, Y) = P(X) · Y + 1 − P(X) · Enc(0), (2)

where P(X) = 0 if Dec(X) ≤ 0, otherwise P(X) = 1. In
this case, P(X) can be computed efficiently using modular
exponentiation of X to a private parameter FKF [16].

C. Threat Model with Hardware Root-of-Trust

The Paillier cryptosystem offers provable security guaran-
tees against Chosen-Plaintext Attacks, based on the hardness
of decisional composite residuosity problem (DCRP) [12].
According to DCRP, for a given integer x and composite
n = pq, it is hard to decide whether there exists an integer y

nsuch that x ≡ y mod n2, without knowing the factors of n.
Inheriting the security guarantees of DCRP, our threat model
assumes that it is intractable to recover any value protected
using Paillier when the bitsize of n is sufficiently large (i.e.,
at least 1024 bits). In addition, our threat model assumes the
existence of a secure multiplexer in trusted hardware (i.e.,
CoPHEE is our root-of-trust), which protects exponentiations
to FKF and cannot be tampered with by adversaries.

III. COPHEE DESIGN FLOW OVERVIEW

The main objective of the CoPHEE co-processor is native
support for modular operations over integers of size up to 2048
bits, which is essential for accelerating PHE cryptosystems
such as Paillier. Our modular operations comprise multi-
plication, exponentiation and inversion. Moreover, our chip
implements secure multiplexing, computes the GCD of 2048-
bit integers, generates truly random numbers, and features
a UART interface to communicate with the main processor.
CoPHEE is implemented using commercial tools and industry
standard Netlist–to–GDSII design flow, and is fabricated at
Global Foundries with a 65nm technology node. Specifically,
we used the Multi-Project Wafer (MPW) fabrication service
from MOSIS, with a die area of 9mm2 and a target frequency
of 100 Mhz (constrained by the maximum speed of the
provided IO pads). To avoid complex integration of on-chip

TABLE I: IO pin description of CoPHEE TABLE II: Subset of CoPHEE Configuration Registers

IO Pin Direction Description

VDDIO in 3.3V voltage supply for IO pads
VDDC in 1.2V voltage supply for the core logic
VSS in ground supply for IO pads and core logic
nRESET in active low reset
Clk in clock input (max. frequency: 100 Mhz)
RX in UART receive line from host
TX out UART transmit line to host
HostIRQ out interrupt to the host processor
GPIO out for post-silicon debugging

Fig. 1: Bus architecture diagram of CoPHEE. Resets and clock
are connected to all blocks (their connections are not shown).

clock sources and minimize the risk of non-working silicon,
CoPHEE uses an externally supplied clock. Moreover, our chip
has two voltage supplies, namely 3.3 V (IO pads) and 1.2 V
(logic core), and uses a Dual In-line Package (DIP).

A. External Interfaces

In Table I we present the main IO pins of CoPHEE and
how they interface with the host computer. Using the receiver
line RX of the UART interface, the host computer can program
the value of each operand and then trigger a desired operation
(e.g., modular multiplication). As soon as the trigger bit in
the CoPHEE configuration registers is set through UART,
the requested operation starts executing on the co-processor.
When the operation terminates, CoPHEE sets the interrupt
line HostIRQ to signal the host that the requested output is
ready. After receiving this interrupt, the host processor reads
the computed result via UART using the transmitter line TX
and clears the interrupt HostIRQ. Moreover, CoPHEE also
features GPIO to assist debugging and post-silicon validation.

B. Internal Data Flow

In Fig. 1 we present the internal bus architecture diagram
of CoPHEE that is based on a single-master two-slave system,

Register Name Description Bit
Size

UARTMTX_PAD_CTL IO Pad control for UART TX 32
UARTMRX_PAD_CTL IO Pad control for UART RX 32
HOSTIRQ_PAD_CTL IO pad control for Host Interrupt 32
GPIO0_PAD_CTL IO pad control for GPIO 32
UARTM_BAUD_CTL Baud control for UART 32
UARTM_CTL UART control (parity, polarity, etc.) 32
CLEQCTL2 Log2 of N 32
SIGNATURE Stores Chip ID 32
CLCTLP Trigger bits for modular blocks 32
CLCTL Control bits 32
CLSTATUS Flag bits (busy, inverse error, etc.) 32
N Modulus N 1024
NSQ Square of N 2048
ARGA Argument A for modular blocks 2048
ARGB Argument B for modular blocks 2048
ARGC Argument C for modular blocks 2048
RAND0 Random number 0 for secure mux 1024
RAND1 Random number 1 for secure mux 1024
MUL_RES Result register for multiplication 2048
EXP_RES Result register for exponentiation 2048
INV_RES Result register for inversion 2048
DBG_REG Debug register 2048

where the master communicates to the slaves using a 32-bit
AHB-Lite bus protocol. Our goal is to make the AHB-Lite
design parameterizable to facilitate the addition of masters or
slaves to the bus. In CoPHEE, the UART is the only master on
the bus, while the configuration registers unit and the GPIO
are slaves. The configuration registers unit comprises special
registers for the Paillier key, public modulus and encrypted
operands, as well as registers for triggering operations, storing
computed results and operation status. Likewise, the GPIO can
provide status information during testing (e.g., one can blink
an LED through GPIO to signal an error).

Table II shows a representative subset of the 39 Configu-
ration Registers in CoPHEE. Our configuration registers map
to the 0x4002_0000 – 0x4002_FFFF memory range, while the
GPIO maps to the 0x4003_0000 – 0x4003_FFFF range. In our
design, the memory base address follows the ARM Cortex M
series memory map convention for peripheral addresses.

C. Design Blocks

CoPHEE implements a set of modular arithmetic accelera-
tion blocks, namely: (1) an interleaved modular multiplication
unit, (2) a modular exponentiation unit based on Montgomery
multiplication [19], and (3) a modular inversion unit based
on the binary extended GCD algorithm, which outputs the
GCD of its inputs along with the modular inverse of its first
input using the second input as the modulus. The design
details of these blocks, as well as the design of our secure
multiplexer and true random number generator (TRNG) blocks
are presented in this section.

1) Modular Multiplication: Our chip implements an in-
terleaved modular multiplier for integers up to 2048 bits
[19]. This multiplier is more efficient compared to other
complicated algorithms (such as Montgomery multiplication),
when the two inputs are multiplied only once. Conversely,
transforming the inputs to a different multiplication domain

Fig. 2: Modular exponentiation block

(e.g., the Montgomery domain) offers better amortized perfor-
mance only when multiple multiplications are cascaded (e.g.,
as in modular exponentiations).

2) Modular Exponentiation: For modular exponentiation,
CoPHEE implements a Montgomery multiplier that offers sig-
nificant advantages in terms of modular reductions [19]. Con-
trary to the modular reductions in interleaved multipliers that
are implemented using subtractions, the Montgomery multipli-
cation requires merely a bitwise right-shift operation, which
is more efficient. Nevertheless, the Montgomery algorithm
requires that its operands undergo an additional transformation
to the Montgomery domain before multiplications can be
applied. Specifically, if N is the bit width of an odd modulus
M , each operand should be multiplied with 2N (i.e., bitwise
shift-left) and reduced modulo M . Likewise, the final result is
transformed to an ordinary integer using multiplication with
the inverse of 2N modulo M . Due to these transformations,
the Montgomery algorithm is beneficial only when several
multiplications are performed within the Montgomery domain,
which is the case of modular exponentiation.

Our modular exponentiation operates in three stages and
the corresponding CoPHEE block is illustrated in Fig. 2.
The first stage transforms the exponentiation base X to the
Montgomery domain (i.e., multiplication with 2N mod M),
while the second stage uses the bits of exponent E to perform
right to left binary exponentiation by squaring [19]. Our chip
implements a controller that determines which operands enter
our Montgomery multiplier by scanning the bits of E (from
LSB to MSB). Specifically, the controller executes repeated
squaring (in the Montgomery domain) of base X for each bit
of E, while if the exponent bit equals 1, the corresponding
square is also multiplied with X . The third stage transforms
the result from the Montgomery domain to an ordinary integer
by triggering a final Montgomery multiplication with 1 (i.e.,
a multiplication with the inverse of 2N modulo M).

3) Modular Inversion: The modular inverse of an integer
X over a modulus M exists when GCD(X, M) equals 1, and
it can be efficiently computed using the binary extended GCD
algorithm (Algorithm 1) [19]. Specifically, on input X and

M , the binary extended GCD computes values A, B and G =
GCD(X, M) that satisfy the equation A · X + B · M = G (3)
(i.e., Bézout’s identity); if G equals 1 then A = X−1 mod M .
CoPHEE implements a modular inversion block that receives
inputs X , M from the host processor and starts computing
X−1 mod M as soon as its En input is toggled.

Internally, our modular inversion block creates two in-
stances of Equation 3: Xg = Ax · X + Bx · M (4), and
Yg = Ay · X + By · M (5), and initializes the variables
{Ax, Bx, Ay, By} to {1, 0, 0, 1} so that the initial values of
{Xg, Yg} are {X, M} (line 3 in Algorithm 1). Then, our
modular inversion block iterates the following three steps:

1) While both Xg and Yg are even, divide them by 2 and
multiply the GCD G by 2.

2) If only one of them is divisible by 2, their corresponding
equation is divided by 2. In this case, if any of the
coefficients in the equation is not divisible by 2, add
X · Y − X · Y to the right side of the equation and
restructure it in the form A · X + B · Y (lines 14 and 22
of Algorithm 1). Then, both coefficients become divisible
by 2.

3) When both Xg and Yg are not divisible by 2, check if
Xg is greater than Yg . If so, the Equation 4 is updated
by subtracting itself from the Equation 5. Otherwise,
the Equation 5 is updated by subtracting itself from the
Equation 4.

As soon as Xg equals Yg , the algorithm terminates and the
Done output is set to high for one clock cycle. If the output
G (i.e., the GCD of {X, M}) is equal to 1, then the output
INV contains the desired value X−1 mod M .

4) True Random Number Generation: The TRNG design in
CoPHEE is based on a bi-stable circuit [20], and as illustrated
in Fig. 3c, we employ 16 individual TRNG blocks spread
across our chip. This TRNG design improves randomness by
exploiting the inherent process variations of the fabricated
chip, and our random number stream is generated by XORing
the outputs of all 16 TRNG blocks [20]. Moreover, we remove
any potential 0/1 bias (“deskewing”) by post-processing the
random number stream using a von Neumann extractor. Since
we desire our random numbers to be co-prime with the (odd)
public modulus, we fix the LSB of each random number to
1; if the GCD of the random number and the modulus is not
1, the random number is incremented by 2 until the GCD
becomes 1. To calculate a new random number, an explicit
request to the TRNG block is required.

5) Secure Multiplexer: The secure multiplexer of CoPHEE
adopts Cryptoleq’s blueprint and implements a state machine
that employs all the aforementioned design blocks, as illus-
trated in Algorithm 2. Specifically, our secure multiplexer
receives: (a) two encrypted inputs X, Y , (b) a function of the
private (decryption) key FKF , and (c) two random numbers
RAND0 and RAND1. Our state machine computes the
modular exponentiation XFKF (line 6) and checks the sign
of the result (line 8); if this sign is less than or equal to
zero, our secure multiplexer outputs an encryption of the value
0, otherwise it outputs a random re-encryption of encrypted

Algorithm 1: Binary Extended GCD
1 INPUT: X[N-1 :0], M[N-1 :0], En, Clk;
2 OUTPUT: G[N-1 :0], INV[N-1 :0] Done;
3 G = Not(X[0] | Y [0]); Xg = X; Yg = M ; Ax = 1; Bx =

0; Ay = 0; By = 1;
4 if En == 1 @ Positive edge of Clk then
5 while Xg [0] == Yg [0] == 0 @ Positive edge of Clk do
6 Xg = X � 1; Yg = Y � 1; G = 2 ∗ G;
7 end
8 while Xg ! = Yg do
9 while Xg [0] == 0 @ Positive edge of Clk do

10 Xg = Xg � 1;
11 if Ax[0] == Bx[0] == 0 then
12 Ax = Ax � 1; Bx = Bx � 1;
13 else
14 Ax = (Ax + Y) � 1;

Bx = (Bx − X) � 1;
15 end
16 end
17 while Yg [0] == 0 @ Positive edge of Clk do
18 Yg = Yg � 1;
19 if Ay[0] == By [0] == 0 then
20 Ay = Ay � 1; By = By � 1;
21 else
22 Ay = (Ay + Y) � 1;

By = (By − X) � 1;
23 end
24 end
25 if Xg > Yg then
26 Xg = Xg − Yg ; Ax = Ax − Ay ;

Bx = Bx − By ;
27 else
28 Yg = Yg − Xg ; Ay = Ay − Ax; By = By − Bx;
29 end
30 G = Xg � G; INV = Ax; Done = 1;
31 end
32 end

input Y . We remark that these outputs are computationally
indistinguishable.

In each invocation of our secure multiplexer, our TRNG
generates two fresh random numbers to ensure that consecutive
invocations cannot repeat the same encrypted outputs. The lat-
ter prevents side-channel attacks that infer ciphertext informa-
tion by comparing the inputs and outputs. Nevertheless, since
generating new random numbers using a TRNG can incur high
overheads, it is also possible to generate one truly random
(seed) number and then compute a sequence of additional
pseudorandom values using modular squaring. We remark that
modular squaring of a (random) number is essentially Rabin’s
one-way function, since ‘factoring’ and ‘computing square
roots’ have equivalent computational complexity when the
prime decomposition of the modulus is unknown [21].

6) Auxiliary Communication & Control Blocks: To support
communication and control, CoPHEE incorporates the follow-
ing auxiliary blocks: (1) UART master (used to interface with
the external host computer), (2) configuration registers unit
(used to store the operands, modulus and results), (3) GPIO
(used to assist debugging during post-silicon validation), and
(4) AHB bus interconnect (used to transfer data inside the
chip). In our chip, the UART is the master, while the con-

Algorithm 2: Secure Multiplexer
1 INPUT: X[N-1 :0], Y[N-1 :0], FKF[N-1 :0], RAND0[N-1

:0], RAND1[N-1 :0], M[N-1 :0] En, Clk;
2 OUTPUT: R[N-1 :0];
3 if En == 1 @ Positive edge of Clk then
4 RAND0 = Modular Exponentiation of RAND0 with √

exponent M ;
5 RAND1 = Modular Exponentiation of RAND1 with √

exponent M ;
6 D = Modular Exponentiation of X with exponent F KF ;
7 end
8 if D <= 0 then
9 R = Modular multiplication of RAND0 and RAND1 ;

10 else
11 R = Modular multiplication of RAND0 and Y;
12 end

figuration registers unit and GPIOs are the slaves. Moreover,
our configuration registers unit consists of 39 registers, with
their size varying from 32-bit to 2048-bit. All registers are
byte-addressable. Some registers are readable and writable
(e.g., operands, modulus), some are readable-only (e.g., result),
while others are writable-only (e.g., operation trigger).

D. Pre-Silicon Verification

We verified the functionality of our RTL design using
both simulation and FPGA-based validation. The simulation
was performed using Synopsys VCS at the top-level and
block-level using random inputs (since the 2048-bit operand
range cannot be exhaustively tested). Moreover, for our FPGA
design, we implemented a scaled-down version of CoPHEE as
the 2048-bit data width of the original design was incompatible
with the available resources of our FPGAs. Specifically, the
maximum data width that could be loaded on a Digilent Nexys
4 was 256 bits (running at 25 MHz), while a 512-bit version
of the co-processor exceeds the capacity of the significantly
larger Kintex-7 and Virtex-5 FPGA boards.

E. Synthesis

The CoPHEE RTL code is synthesized using a 65nm stan-
dard cell library from Global Foundries and a clock constraint
of 100 Mhz. As the UART and GPIOs are the only interfaces
of CoPHEE (i.e., both are asynchronous), there is no specific
IO timing constraint. Following common practices, the stan-
dard cell library used for synthesis was the one characterized
for the worst voltage (1.08V), temperature (125C), resistance,
and capacitance. Synthesizing with such a library ensures that
we can achieve the target frequency.

For synthesis, we used the Synopsys Design Compiler (DC),
while for post-synthesis and formal verification we used the
Cadence Conformal, and we were able to ensure that the RTL
code and the synthesized netlist are functionally equivalent.
In Table III we presents the area and timing estimations of
the major CoPHEE blocks after synthesis. The largest design
is the binary extended GCD, followed by the configuration
registers that store a total of 2.73 KB. As expected, the
modular multiplier and the modular exponentiation unit are

http:squaring.We

TABLE III: Post-synthesis area and timing estimations

Blocks Area (um2)
Worst path
delay (ns)

Configuration registers 512,724 4.770
Binary extended GCD 548,454 9.433
Interleaved mod. multiplier 315,487 9.374
Modular exponentiation 304,064 9.389
AHB bus 1,261 4.850
UART master 3,466 4.930
TRNG 28,658 NA

TABLE IV: Layout physical parameters

Parameter Value

IU (Initial Utilization) 36 %
FU (Final Utilization) 47 %
MA (Macro Area) 20 um
HIO (IO PAD Height) 120 u
CIO (Core to IO spacing) 110 u
A (Aspect ratio) 1
RCA (Required std cell Area) 21956692.52 um
CW (Core Width) 2340 u
CH (Core Height) 2340 u
DW (Die Width) 2800 u
DH (Die Height) 2800 u

roughly the same size, and the rest of the modules occupy
significantly less area.

IV. PHYSICAL DESIGN

The CoPHEE chip was fabricated using the Multi Project
Wafer (MPW) program of MOSIS, and the 5_02_00_00_LB
metal layer stack; specifically, the metal and via layers are
M1, V1, M2, V2, M3, V3, M4, V4, M5, WT, BA, WA, BB,
VV, and LB. These layers have preferred routing direction
(horizontal or vertical), and this stack offers enough signal
routing resources in first 5 metal layers, so the top two are
used mostly for power/ground and clock structure. The layer
LB was only used for the IO pads, and the external bonding
to the chip during packaging was done using these LB cups
on the pads. The GF-PDK for the 65LPE process provided us
all the technology-related files, and we used the physical and
timing libraries for standard cells from ARM, while ARAGIO
provided the IO Pad libraries. Our chip was implemented flat,
without any physical hierarchy.

A. Place and Route

1) Die size estimation: In Table IV we show the physical
parameters with respect to our layout after multiple iterations.
The minimum chip size supported by Global Foundries for
65LPE through MOSIS is 9mm2. Since this is more than the
estimated die size of our chip, we utilize the entire area.

2) Floor Planning: Our layout outline along with IO pad
placement adheres to the IO pad placement guidelines from
Global Foundries. We have a total of 27 IO pads, where
8 of them are for VDD/VSS core power/ground supply, 8
DVDD/DVSS are for IO power/ground, while the remaining
11 are signal pads. One supply and one ground pad would
be sufficient, but we utilize the empty spaces in the IO
pad ring to improve the power structure robustness. The

empty spaces between the pads are filled with filler pads to
maintain continuity of the internal power/ground and other
special signals, while ENDCAPs and well tie cells were also
distributed in the core region as per the foundry requirements.
Finally, the quality of the input netlist we checked using Zero
Interconnect Delay analysis.

3) Power Planning: We created a core power ring illus-
trated with the red and white lines around the core in Fig.
3a, which are located in metal layers BA (red vertical) and
BB (white horizontal). The thick white and red lines connect
the ring to the pads, and we have power straps created in
layers BA, BB, M5 and M4. The mesh structure inside the
core region in Fig. 3a shows the power straps distribution: our
PG rails are in M1 and are connected to the power straps in
M4 through power via stack from M4. We remark that the M4
strap runs vertically (preferred routing direction is vertical) and
vias can be dropped on every intersection with horizontal M1
rails.

4) Placement And Optimization: Prior to the standard cell
placement, we grouped and distributed our TRNG modules
using bounds/regions in the chip to leverage on-chip variation
(bound is a feature used to restrict placement of specific cells
according to the user specification). We note that the standard
cells in the TRNG modules were not allowed to be optimized.
In Fig. 3c we illustrate the TRNG module distribution, where
the red highlighted standard cell groups compose our TRNG
modules. After fixing these groups in position, the rest of
the standard cells went through placement and optimization.
Our design was then analyzed for timing, congestion, area
and power, passing all requirements. We also enabled high
threshold voltage (HVT) and regular threshold voltage cells
(RVT) during optimization: HVT are low-leakage high-delay
cells, while RVT are medium-leakage medium-delay cells.
We remark that LVT (low threshold) cells, which are high-
leakage low-delay cells, were used only in the final timing
closure. This approach allows us to limit the power leakage
in accordance to standard practices.

In Fig. 3b we illustrate the distribution of the main modules
in our design after placement. Notably, the GCD module
consumes the largest portion of the design and is confined to
the right side of the chip, while the modular multiplication and
exponentiation units are the second and third largest. We also
performed a trial placement run by creating specific regions
in the chip for these modules, where each region restricted
the placement of a module to a specified location of the
chip. Nevertheless, since the timing results did not show any
improvement compared to the placement without regions, this
trial was discarded.

5) Clock Tree Synthesis: For the implementation of
our chip, we performed Clock-Tree Synthesis (CTS)
using the BUFH_X4M_A9TR, BUFH_X5M_A9TR,
BUFH_X6M_A9TR, and BUFH_X9M_A9TR buffers, as well as
the INV_X4M_A9TR, INV_X5M_A9TR, INV_X6M_A9TR,
and INV_X9M_A9TR inverters from the ARM standard cell
library. The middle part of the name indicates the driving
strength of the cell (e.g., X9M). This list of buffers comprises

http:largest.We
http:specification).We
http:fromM4.We

TABLE V: Post-CTS statistics TABLE VII: Redundant via statistics

Parameter Value

clock name HCLK
CTS synthesis corner slow
Number of levels 45
Number of Sinks 67628
Number of clock tree buffers 9921
Global Skew 162 ps
Longest Insertion delay 2.410 ns
Shortest Insertion delay 2.248 ns
Standard cell utilization 43.63 %

TABLE VI: Design statistics through PnR

Parameter Initial Place CTS Route

of Standard cells 693333 775548 784795 786526
of Sequential cells 67628 67628 67628 67628
of Combinational cells 625708 707923 717170 718901
of Buffer/Inverter cells 91139 707923 175163 176894
Standard Cell Utilization 35.45 % 43.44 % 46.35 % 46.56 %
of Signal nets 695425 777637 771789 773520
HVT cells 100 % 55.8 % 67.7 % 67.8 %
RVT cells 0 % 44.2 % 32.3 % 32.2 %
Total wire length (µm) NA NA 1242079 46668040

RVT cells of medium driving strength that allow reduced
On Chip Variation (OCV), a robust clock network, and less
power consumption.

A Non-Default Rule (NDR) of double width and double
spacing was also created and assigned to the clock trunk nets
(all the clock nets are trunk nets, except for those connected to
sinks directly). Our clock nets were routed using metal layers
M4, M5, BA, and BB, and assigned as soft fixed, which ensures
that the clock network remains intact during signal routing
(i.e., changes are restricted). In addition, we applied a multi-
corner optimization to fix design rule violations, as well as
setup and hold timing closure, and achieved a skew of 162 ps
with nominal count of clock buffers/inverters. Our post-CTS
statistics are presented in Table V.

6) Signal Routing and Optimization: In Table VII we
present the percentage of redundant vias for various via layers.
We were able to achieve more than 75% conversion of single
to multi-cuts for the lower via layers V1, V2, V3, V4, yet
a lower percentage was achieved for higher layers. Likewise,
in Table VI we present design statistics over various stages
in the Place & Route (PnR). We remark that the standard
cell count increases as the design moves from initial to final
routing stages, primarily due to the buffers/inverters inserted
in the design to fix design rule violations, clock tree synthesis
and timing issues. Our design started with 100% HVT cells
and ended up with 67.8%, as HVT cells were swapped with
RVT cells to address timing and DRV fixes. The total wire
length under ‘CTS’ corresponds to the clock net only, while
under ‘Route’ corresponds to all nets (Table VI).

B. Sign-Off Analysis

1) Static Timing Analysis: For our timing analysis, we used
an uncertainty of 200ps for setup, and 50ps for hold, as
recommended by Global Foundries. Our design was further

Layer # of multi-cut
vias # of total vias % of

multi-cut vias
V1 2003289 2579845 77.65
V2 2129266 246275 86.46
V3 688693 869281 79.23
V4 417410 544818 76.61
WT 76473 134395 56.90
WA 59085 100430 58.83

analyzed for design rule violations, such as the maximum
transition, capacitance, and fanout. The few violations we
identified after the initial Static timing analysis (STA) were
fixed using Engineering Change Order (ECO).

2) Physical Verification: In this step, we verify the fi-
nal layout against foundry manufacturing rules and insert
dummy metal/poly fills using the Calibre software to meet the
foundry’s density requirements. The fill GDS obtained from
Calibre is merged with the design GDS in our layout tool
(Virtuoso), generating a final design ready for Design Rule
Check (DRC) and Layout Versus Schematic (LVS) analysis.
We used the Cadence PVS tool to run DRC, LVS, and Antenna
checks, and fixed any violations before re-running the checks
to ensure a clean GDS for our tapeout. Fig. 4a shows the
design layout from Virtuoso after the “streamIn” process (i.e.,
merging of the primitive GDS with the design GDS) and the
addition of a “seal ring” as per foundry guidelines (shown
as thin lines running around the chip boundary with diagonal
routing around corners).

3) Rail Analysis: For our rail analysis, we used Synopsys
primeRail and imported the Milkyway database and signal
parasitics. The analysis did not raise any static or dynamic
violations, which is attributed to the robust power structure of
CoPHEE; the worst static and dynamic drop was 10.6 mV and
24 mV, respectively. In Fig. 4b we present the static effective
rail voltage drop, where most of our power pads are located
at the left of the chip, so the highest static drop appears on
the right side (red color). Likewise, in Fig. 4c we show the
dynamic rail voltage drop, which appears specific to a limited
number of gates (red spots).

C. Post-Silicon Validation

CoPHEE was packaged in a 28 pin DIP, and was connected
to a breadboard for silicon bring up and testing. For interfacing
with a host computer, we used a UMFT230XA development
board that features an FTDI chip for USB-to-UART conver-
sion. The UMFT230XA board can provide a 3.3V supply for
the IO pad of CoPHEE, as well as a clock output (used as the
clock source of the chip). Moreover, the required 1.2V supply
was generated using a DC-DC adjustable step-down module
that converts the 5V source of the UMFT230XA board. In
addition, an Arduino was responsible for receiving interrupt
signals from CoPHEE and for transmitting these events to the
host computer. Our post-silicon validation setup is shown in
Fig. 5.

Our post-silicon validation confirmed that the fabricated
chip is fully functional, with a discovered bug in the “debug

(a) (b) (c)

Fig. 3: Place & Route output: (a) Power network; (b) Placement distribution (binary extended GCD: red; interleaved modular
multiplier: green; modular exponentiation: blue; other modules: purple); (c) TRNG distribution (red).

Fig. 5: Photo of CoPHEE experimental setup.

read” path that reads random numbers and tests their random-
ness. Specifically, there was a hard-coded bit-width value in
the read path of the configuration registers, which prevents
us from reading the debug register (last register in the path).
Interestingly, this bug escaped our FPGA-based validation, as

(a) (b) (c)

Fig. 4: SignOff results: (a) Chip GDS view from Virtuoso; (b) Chip static rail drop; (c) Chip dynamic rail drop.

the latter was performed on the scaled-down version where
the 256 bit-width was incorrectly hard-coded.

V. EXPERIMENTAL RESULTS

In this section, we quantify the performance of CoPHEE by
executing C++ benchmarks and compare it against emulation
of PHE operations on a general-purpose x86 architecture.
We selected six data-oblivious benchmarks from the TER-
Minator suite [22] that are classified into two categories:
(1) kernel benchmarks, which stress arithmetic and logical
operations, such as Bubble Sort (BS), Matrix Multiplication
(MM), Insertion Sort (IS) and Sieve of Eratosthenes (SoE),
and (2) microbenchmarks, such as the multiplicative-intensive
Factorial (FAC) and the addition-intensive Fibonacci (FIB). In
our experiments, we used a 2.7 GHz Intel i7-7500U with 8GB
RAM, running Ubuntu 16.04.5 LTS with GCC 8.1.0 and GMP
6.1.1, while our CoPHEE chip was running at 100 MHz.

Fig. 6 summarizes the performance benefits of CoPHEE
using the aforementioned benchmarks, normalized to the ex-
ecution time of the benchmarks running on an x86 processor
using GMP for emulating the homomorphic operations. In
particular, we employ CoPHEE on two different scenarios: (1)
as a hardware root-of-trust, where only the secure multiplexer
is utilized, and (2) as a cryptographic accelerator, where

Fig. 6: CoPHEE performance acceleration when it is used: (a)
as a hardware root-of-trust only (‘trust’), and (b) both as an
accelerator and root-of-trust (‘all’). Performance is normalized
to the x86-only execution.

all PHE operations are offloaded to the co-processor. Using
CoPHEE as a root-of-trust only, the load on the x86 host is
reduced by the speed-up offered by the hardware encrypted
multiplexer. Since the secure multiplexer requires computa-
tionally intensive modular exponentiations, offloading it to an
ASIC accelerator significantly improves its performance. In
this case, the execution time on the x86 host is attributed to the
large number of modular multiplications and inverses executed
in software using the GMP library.

Conversely, when CoPHEE acts as accelerator for all ho-
momorphic operations (label ‘all’ in Fig. 6), we observe an
average of two orders of magnitude improvement in execution
time compared to x86 using GMP. In this scenario, the main
CPU only executes setting-up operations, such as creating
objects, moving data, processing integers, etc. The two orders
of magnitude improvement is obtained by the first prototype
of CoPHEE running at 100MHz. Extrapolating from this
result, we expect one more order of magnitude improvement,
assuming that the next iteration of the co-processor operates
in the GHz range.

Fast communication between the main CPU and CoPHEE
is essential in order to unlock the power of CoPHEE. In the
first fabricated prototype, UART requires 1.68E-03 seconds to
complete a transaction between the main CPU and CoPHEE,
assuming the transfer of three 2048-bit operands (two source
operands, one result) and the transfer of the 32 trigger bits.
A faster off-chip communication protocol, such as InterChip
USB, would accelerate communication by approximately two
orders of magnitude (≈1.29E-05 seconds per operation, as-
suming 480 Mbits/s transfer rates). Apparently, the fastest way
to move data between the main CPU/memory and CoPHEE
would be a system-on-chip approach where CoPHEE is also
located on the same bus. Assuming a 32-bit ARM architecture,
on-chip communication on AHB-Lite would further accelerate
communication by 3-4 orders of magnitude (≈9.65E-08 sec-
onds per operation). Thus, the selection of the communication
protocol and potential integration of CoPHEE depends on the
requirements of the deployed application.

VI. RELATED WORK

Following Gentry’s discovery of FHE [6] and its time-
intensive CPU-based implementation [23], the research com-
munity focused on hardware approaches to speed up the homo-
morphic computation. Wang et al. [24] proposed accelerating
the million-bit modular multiplications required in Gentry’s
cryptosystem, using Strassen’s Fast Fourier Transform (FFT)
followed by a Barrett modular reduction, both implemented
on an NVIDIA C2050 GPU. Experimental results show a
performance improvement of about 7× compared to existing
CPU-based implementations.

Recently, several FPGA-based accelerators for FHE opera-
tions have also been proposed. Cousins et al. [25] use a Xilinx
Virtex-7 to implement a co-processor targeting lattice-based
homomorphic encryption schemes. Their co-processor accel-
erates bottleneck operations such as the forward and inverse
Chinese Remainder Transform (CRT), as well as more efficient
operations such as ring addition, subtraction and multiplica-
tion. This approach achieves 2 orders of magnitude speedup
compared to a reference CPU-based implementation of the
López-Alt, Tromer and Vaikuntanathan (LTV) cryptosystem
[26], where either PCI-E or Ethernet was used to communicate
with a host computer. Likewise, Ozturk et al. [27] propose
an LVT-based accelerator for homomorphic evaluations by
computing high degree polynomial multiplications (214 and
215 degree polynomials) using a Virtex-7 FPGA. In their
approach, the host CPU uses PCI-E to communicate with the
accelerator, and their multiplier is 102× faster compared to
a CPU-based implementation, which corresponds to a 28.5×
homomorphic evaluation speedup for the AES block cipher.
Moreover, recent work was focused on FFT acceleration for
cryptosystems based on Ring Learning With Errors [28]–
[30], while Migliore et al. [31] investigate the benefits of
the Karatsuba algorithm compared to FFT for FHE operations
in the Fan-Vercauteren scheme, and report 23% performance
increase for one half logic utilization in the FPGA.

Encrypted processors using PHE schemes have also been
proposed: HEROIC [32] implements a single instruction com-
puter with support for both subtraction-oriented and addition-
oriented encrypted computation, using deterministic encryp-
tion and without any shared keys. In HEROIC, addition uses
the homomorphic properties of the Paillier, subtraction uses
the modular inverse of the operand, while branching employs
a lookup table as a sign oracle; the processor has been
implemented in a VM and on a Kintex-7 FPGA. Similarly,
CryptoBlaze [33] is a multi-instruction CPU that is based
on MicroBlaze and implements the Paillier cryptosystem to
operate on encrypted data. This processor implements eight
instructions operating on encrypted data, including eadd and
esub for homomorphic addition and subtraction, as well as
ebrzpos and ebrneg for branching on a non-negative number or
a negative number, respectively. Branching is not executed by
CryptoBlaze, however, and a request is sent to a host computer
to interactively compute the outcome. The CryptoBlaze CPU
is implemented on a Virtex-6 FPGA communicating with a

host processor through a 32-bit AXI bus, and offers a 10×
speedup compared to HEROIC. Nevertheless, since branch
decisions are offloaded to the host, the expensive modular
exponentiations used to decrypt control ciphertexts do not
benefit from CryptoBlaze’s acceleration, and since all decision
outcomes are received in the clear through the AXI bus, side-
channel information about ciphertexts can be leaked outside
the root-of-trust.

VII. CONCLUSIONS AND FUTURE WORK

In this work we present a year-long effort to design, imple-
ment, fabricate, and validate CoPHEE: a general-purpose co-
processor that computes on partially homomorphic encrypted
data. The arithmetic units for modular multiplication, exponen-
tiation, inversion, and GCD that have been implemented in this
work accelerate the computation of very wide datapaths, while
our secure multiplexer and true random number generator
enable universal computation in the encrypted domain. To the
best of our knowledge, CoPHEE is the first academic effort
towards constructing a fast and reliable processor capable of
processing encrypted data. This paper presents all required
steps for a fully functional silicon, from the RTL design
to fabrication and validation. Given the silicon, future work
will explore side-channel analysis and information extraction
through power, timing, and electromagnetic emissions.

RESOURCES

RTL files and a form to request CoPHEE (in a 80-pin pack-
age) are available at https://github.com/momalab/CoPHEE.

REFERENCES

[1] C. Barron, H. Yu, and J. Zhan, “Cloud computing security case studies
and research,” in World Congress on Engineering, 2013, pp. 1287–1291.

[2] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-VM side
channels and their use to extract private keys,” in Computer and
Communications Security (CCS), 2012, pp. 305–316.

[3] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor,
“Hardware trojans: Lessons learned after one decade of research,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 22, no. 1, p. 6, 2016.

[4] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch
side-channel attacks: Bypassing SMAP and kernel ASLR,” in Computer
and Communications Security (CCS). ACM, 2016, pp. 368–379.

[5] N. G. Tsoutsos and M. Maniatakos, “Fabrication attacks: Zero-overhead
malicious modifications enabling modern microprocessor privilege es-
calation,” IEEE Transactions on Emerging Topics in Computing, vol. 2,
no. 1, pp. 81–93, 2014.

[6] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in ACM
Symposium on Theory of Computing, 2009, pp. 169–178.

[7] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can homomorphic en-
cryption be practical?” in Cloud Computing Security Workshop. ACM,
2011, pp. 113–124.

[8] M. Varia, S. Yakoubov, and Y. Yang, “HEtest: A Homomorphic Encryp-
tion Testing Framework,” in Financial Cryptography and Data Security.
Springer, 2015, pp. 213–230.

[9] Y. Doröz, E. Öztürk, and B. Sunar, “A million-bit multiplier architecture
for fully homomorphic encryption,” Microprocessors and Microsystems,
vol. 38, no. 8, pp. 766–775, 2014.

[10] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homo-
morphic encryption without bootstrapping,” in Innovations in Theoreti-
cal Computer Science Conference, 2012, pp. 309–325.

[11] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene, “Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds,” in
Asiacrypt, 2016, cryptology ePrint Archive, Report 2016/870 https://
eprint.iacr.org/2016/870.

[12] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Advances in cryptology–EUROCRYPT’99. Springer,
1999, pp. 223–238.

[13] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and
privacy homomorphisms,” Foundations of secure computation, vol. 4,
no. 11, pp. 169–180, 1978.

[14] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of computation, vol. 44, no. 170, pp. 519–521, 1985.

[15] R. Rojas, “Conditional branching is not necessary for universal com-
putation in von Neumann computers,” Journal of Universal Computer
Science, vol. 2, no. 11, pp. 756–768, 1996.

[16] O. Mazonka, N. G. Tsoutsos, and M. Maniatakos, “Cryptoleq: A hetero-
geneous abstract machine for encrypted and unencrypted computation,”
IEEE Transactions on Information Forensics and Security, vol. 11, no. 9,
pp. 2123–2138, 2016.

[17] O. Mazonka and A. Kolodin, “A simple multi-processor computer based
on subleq,” arXiv preprint arXiv:1106.2593, 2011.

[18] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang, “On the (im) possibility of obfuscating programs,” in
Advances in Cryptology–CRYPTO 2001, 2001, pp. 1–18.

[19] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. CRC press, 1996.

[20] M. Epstein, L. Hars, R. Krasinski, M. Rosner, and H. Zheng, “Design
and implementation of a true random number generator based on digital
circuit artifacts,” in International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 2003, pp. 152–165.

[21] M. O. Rabin, “Digitalized signatures and public-key functions as in-
tractable as factorization,” MIT Laboratory of Computer Science, Tech.
Rep. MIT/LCS/TR-212, 1979.

[22] D. Mouris, N. G. Tsoutsos, and M. Maniatakos, “Terminator suite:
Benchmarking privacy-preserving architectures,” IEEE Computer Archi-
tecture Letters, vol. 17, no. 2, pp. 122–125, 2018.

[23] C. Gentry and S. Halevi, “Implementing gentry’s fully-homomorphic
encryption scheme,” in EUROCRYPT, 2010, pp. 129–148.

[24] W. Wang, Y. Hu, and L. Chen, “Accelerating fully homomorphic encryp-
tion using GPU,” in High Performance Extreme Computing (HPEC),
2012, pp. 1–5.

[25] D. B. Cousins, K. Rohloff, and D. Sumorok, “Designing an FPGA-
accelerated homomorphic encryption co-processor,” IEEE Transactions
on Emerging Topics in Computing, vol. 5, no. 2, pp. 193–206, 2016.

[26] A. Lopez-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption,”
Cryptology ePrint Archive, Report 2013/094, 2013, https://eprint.iacr.
org/2013/094.

[27] E. Öztürk, Y. Doröz, E. Savaş, and B. Sunar, “A custom accelerator for
homomorphic encryption applications,” IEEE Transactions on Comput-
ers, vol. 66, no. 1, pp. 3–16, 2016.

[28] S. S. Roy, K. Järvinen, F. Vercauteren, V. Dimitrov, and I. Verbauwhede,
“Modular hardware architecture for somewhat homomorphic function
evaluation,” in Cryptographic Hardware and Embedded Systems CHES,
vol. 9293, 2015, pp. 164–184.

[29] A. Cilardo and D. Argenziano, “Securing the cloud with reconfigurable
computing: An fpga accelerator for homomorphic encryption,” in De-
sign, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2016.

[30] A. Mkhinini, P. Maistri, R. Leveugle, and R. Tourki, “Hls design of
a hardware accelerator for homomorphic encryption,” in Design and
Diagnostics of Electronic Circuits & Systems (DDECS), vol. 9293.
IEEE, 2017.

[31] V. Migliore, M. M. Real, V. Lapotre, A. Tisserand, C. Fontaine, and
G. Gogniat, “Hardware/software co-design of an accelerator for fv
homomorphic encryption scheme using karatsuba algorithm,” IEEE
Transactions on Computers, vol. 67, no. 3, pp. 335–347, 2016.

[32] N. G. Tsoutsos and M. Maniatakos, “The HEROIC framework: En-
crypted computation without shared keys,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
no. 6, pp. 875–888, 2015.

[33] F. Irena, D. Murphy, and S. Parameswaran, “CryptoBlaze: A partially
homomorphic processor with multiple instructions and non-deterministic
encryption support,” in Asia and South Pacific Design Automation
Conference (ASP-DAC), 2018.

https://github.com/momalab/CoPHEE
https://eprint.iacr.org/2016/870
https://eprint.iacr.org/2016/870
https://eprint.iacr.org/2013/094
https://eprint.iacr.org/2013/094
http:domain.To

	Introduction
	Preliminaries
	Homomorphic Encryption and the Paillier Cryptosystem
	Cryptoleq's Secure Multiplexer for Universal Computation
	Threat Model with Hardware Root-of-Trust

	CoPHEE Design Flow Overview
	External Interfaces
	Internal Data Flow
	Design Blocks
	Modular Multiplication
	Modular Exponentiation
	Modular Inversion
	True Random Number Generation
	Secure Multiplexer
	Auxiliary Communication & Control Blocks

	Pre-Silicon Verification
	Synthesis

	Physical Design
	Place and Route
	Die size estimation
	Floor Planning
	Power Planning
	Placement And Optimization
	Clock Tree Synthesis
	Signal Routing and Optimization

	Sign-Off Analysis
	Static Timing Analysis
	Physical Verification
	Rail Analysis

	Post-Silicon Validation

	Experimental Results
	Related Work
	Conclusions and Future Work
	References

