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Abstract—The recent disclosure of the Spectre and Meltdown 
side-channel vulnerabilities offers yet another example of modern 
computer architectures prioritizing performance optimizations 
over security and privacy. The devastating impact of data leakage, 
however, emphasizes the need for new processor designs that 
provide native support for data privacy using cryptography. In 
this paper, we report on a year-long effort to design, implement, 
fabricate, and validate CoPHEE: a novel co-processor design that 
mitigates data leakage risks using partially homomorphic en-
crypted execution. ASIC designs for encrypted execution impose 
unique challenges, such as the need for non-traditional arithmetic 
units (modular inverse, greatest common divisor), very wide 
datapaths (2048 bits), and the requirement for secure multiplexer 
units enabling general-purpose execution on encrypted values. 
Our fully-functional co-processor chip is fabricated in 65nm 
CMOS technology, and communicates to a main processor via 
UART. This paper offers an elaborate overview of all steps and 
design techniques in the ASIC development process, ranging from 
RTL design to fabrication and validation. We evaluate our co-
processor using data-oblivious C++ benchmarks, while our RTL 
files are available in an open-source repository. 

Index Terms—Data Privacy, Encrypted Execution, Partially-
Homomorphic Encryption, Hardware Root-of-Trust, ASIC. 

I. INTRODUCTION 

Cloud services have become popular as a robust form of out-
sourcing computation and storage. Third party cloud services 
nowadays contain user sensitive information regarding health, 
financial status, etc., in their databases. This process raises 
concerns about the security and privacy of the outsourced data, 
exacerbated by noteworthy compromises in recent years [1], 
despite the investment of cloud service providers in security. 
At the same time, more advanced threats, such as side channel 
leakage [2] and hardware Trojans [3], introduce new attack 
vectors against the privacy of outsourced computation. 

Existing commercial cryptography solutions protect data 
at rest, mitigating privacy issues with data transfer and data 
storage. However, these solutions are not capable of manipu-
lating encrypted data, i.e., perform operations directly on the 
encrypted domain. Even solutions in hardware, like Intel SGX, 
require the data to be processed as plaintext, which renders the 
entire microprocessor core and cache memories vulnerable to 
hardware Trojans and side channel attacks [4], [5]. 

In recent years, homomorphic encryption schemes have 
improved significantly. With the recent advancements in Fully 
Homomorphic Encryption (FHE) [6], non-trivial data manip-
ulation directly in the encrypted domain became a reality, 
albeit non-practical. FHE schemes use homomorphic Boolean 

circuits and obtain the same result as if the data were ma-
nipulated in the open. Thus, no sensitive information is ever 
decrypted for processing, mitigating privacy risks. Neverthe-
less, existing FHE cryptosystems are not yet practical [7], 
since they incur excessive overheads in area and performance: 
Area overheads are in the order of megabytes per ciphertext 
[8], which prohibits efficient hardware implementations of 
FHE schemes. Performance-wise, FHE cryptosystems need to 
manipulate millions of bits to perform an operation [9], and 
they further require frequent bootstrapping for noise reduction 
[10]. Recent improvements in FHE reduced the bootstrapping 
overhead down to milliseconds [11], allowing the execution 
of dozens of gates in a second. This performance, however, is 
still orders of magnitude slower than non-FHE cryptosystems. 

Partially Homomorphic Encryption (PHE) schemes offer a 
more practical and efficient alternative to FHE. These asym-
metric cryptosystems support a single homomorphic operation 
(i.e., addition or multiplication), which can be applied for 
unlimited times without any need for noise reduction or 
bootstrapping. In modern PHE cryptosystems like Paillier [12] 
and RSA [13], the modular multiplication of ciphertexts is 
homomorphic to plaintext addition and multiplication respec-
tively. Hence, since there exist very efficient instantiations of 
modular multipliers (e.g., [14]), our thesis is that any PHE-
based algorithm that manipulates encrypted values natively can 
benefit from dedicated hardware units. 

Since PHE schemes support only one homomorphic oper-
ation, they do not immediately offer the computational com-
pleteness of FHE schemes, given that universal computation 
requires two orthogonal operations (i.e., both addition and 
multiplication) [15]. In PHE-protected algorithms, however, 
this limitation only affects any runtime decisions controlled 
by encrypted values, and can be mitigated using a secure 
multiplexer as part of the root of trust. For example, Cryptoleq 
is a One Instruction Set Computer (OISC) architecture that 
supports universal computation of PHE-protected algorithms 
with practical overheads [16]. Internally, Cryptoleq is based 
on the Turing-complete Subleq abstract machine [17], and 
implements the Paillier cryptosystem along with a secure mul-
tiplexer that is obfuscated in software using single-instruction 
self-modifying code. As a protection mechanism, however, 
Cryptoleq’s software obfuscation does not offer the same 
flexibility and guarantees as secure hardware units, since 
strong obfuscator programs do not generally exist (i.e., there 
are functions that cannot be obfuscated) [18]. 



Contributions: To address the performance and universality 
limitations while executing PHE-based algorithms, this work 
develops a novel Co-processor for Partially Homomorphic 
Encrypted Execution (CoPHEE), which targets the Paillier 
encryption scheme. Our processor is instantiated using 2048-
bit encrypted operands and can be readily used to accel-
erate a broad range of secure applications, such as voting 
protocols, threshold cryptosystems, watermarking and secret 
sharing schemes, as well as server-aided polynomial evaluation 
protocols [12]. Towards that end, we develop special arithmetic 
units for modular multiplication (ModMul), exponentiation 
(ModExp), inversion (ModInv) and greatest common divisor 
(GCD). Likewise, to extend support for ciphertext-based con-
trol flow decisions in PHE-protected algorithms, we adopt 
Cryptoleq’s blueprint and instantiate a secure multiplexer in 
trusted hardware, effectively minimizing the required trust 
surface to a single operation. Since CoPHEE operates directly 
on encrypted data, any observable difference in the execution 
flow would reveal side-channel information about the value of 
the corresponding control ciphertexts; therefore, the encrypted 
algorithms accepted by CoPHEE must have constant-time 
execution paths and predefined termination conditions. 

Our CoPHEE chip has been fabricated at Global Foundries 
with 65nm CMOS technology and, to the best of our knowl-
edge, it is the first of its kind to be fabricated. This paper 
presents a comprehensive chronicle from the initial design 
to post-silicon validation, and discusses implementation chal-
lenges and lessons learned, serving as a baseline for future 
work towards the design of homomorphic processors. 

II. PRELIMINARIES 

A. Homomorphic Encryption and the Paillier Cryptosystem 

Homomorphic encryption is a special form of encryption 
that allows meaningful manipulations directly on encrypted 
data. This property enables outsourcing to a third party the 
evaluation of a function that hides its inputs using encryption. 
Formally, if Enc denotes encryption, Dec denotes decryption, 
and f() is a regular function applied on plaintext values a, b, 
then homomorphic encryption supports the following property: � � 

f(a, b) = Dec g(Enc(a), Enc(b)) , (1) 

where g() is the homomorphic counterpart of f() that oper-
ates on encrypted values Enc(a), Enc(b). For example, the 
Paillier cryptosystem [12] defines the encryption of value a as 

2Enc(a, r) = rn(n + 1)a mod M , where M = n , n = pq is 
the product of two primes p, q, and r is a random value. In Pail-
lier, the supported f(a, b) is the modular addition a + b mod √ 
M , and its homomorphic counterpart g() is the modular 

multiplication of encrypted values Enc(a) · Enc(b) mod M . 
Generally, each homomorphic cryptosystem supports spe-

cific functions f , and their counterparts g: PHE cryptosystems 
support only one f (e.g., either addition or multiplication), 
while FHE cryptosystems support two orthogonal functions 
f1, f2 (e.g., both addition and multiplication) that form a 

functionally complete set of operations. Nevertheless, the cor-
responding g functions of PHE are significantly more efficient 
that the g1, g2 functions of FHE, so FHE remains prohibitive 
for practical applications [7]. 

B. Cryptoleq’s Secure Multiplexer for Universal Computation 

The homomorphic operation of Paillier enables the im-
plementation of single-instruction abstract machines that can 
execute algorithms with runtime decisions that are not con-
trolled by encrypted values [16]. In this case, to also support 
ciphertext-based runtime decisions, it is possible to extend the 
homomorphic properties of Paillier using a secure multiplexer. 
The latter operates within a root-of-trust and selects between 
two ciphertexts Y, Z using a cryptographic predicate P over a 
third ciphertext X . To support universal computation on Pail-
lier ciphertexts, the aforementioned blueprint was introduced 
in Cryptoleq as function G, where the sign of Dec(X) is 
the predicate for selecting between Z = Enc(0) (i.e., the 
homomorphic identity element) and its second input Y : � � 

G(X, Y ) = P(X) · Y + 1 − P(X) · Enc(0), (2) 

where P(X) = 0 if Dec(X) ≤ 0, otherwise P(X) = 1. In 
this case, P(X) can be computed efficiently using modular 
exponentiation of X to a private parameter FKF [16]. 

C. Threat Model with Hardware Root-of-Trust 

The Paillier cryptosystem offers provable security guaran-
tees against Chosen-Plaintext Attacks, based on the hardness 
of decisional composite residuosity problem (DCRP) [12]. 
According to DCRP, for a given integer x and composite 
n = pq, it is hard to decide whether there exists an integer y 

nsuch that x ≡ y mod n2, without knowing the factors of n. 
Inheriting the security guarantees of DCRP, our threat model 
assumes that it is intractable to recover any value protected 
using Paillier when the bitsize of n is sufficiently large (i.e., 
at least 1024 bits). In addition, our threat model assumes the 
existence of a secure multiplexer in trusted hardware (i.e., 
CoPHEE is our root-of-trust), which protects exponentiations 
to FKF and cannot be tampered with by adversaries. 

III. COPHEE DESIGN FLOW OVERVIEW 

The main objective of the CoPHEE co-processor is native 
support for modular operations over integers of size up to 2048 
bits, which is essential for accelerating PHE cryptosystems 
such as Paillier. Our modular operations comprise multi-
plication, exponentiation and inversion. Moreover, our chip 
implements secure multiplexing, computes the GCD of 2048-
bit integers, generates truly random numbers, and features 
a UART interface to communicate with the main processor. 
CoPHEE is implemented using commercial tools and industry 
standard Netlist–to–GDSII design flow, and is fabricated at 
Global Foundries with a 65nm technology node. Specifically, 
we used the Multi-Project Wafer (MPW) fabrication service 
from MOSIS, with a die area of 9mm2 and a target frequency 
of 100 Mhz (constrained by the maximum speed of the 
provided IO pads). To avoid complex integration of on-chip 



TABLE I: IO pin description of CoPHEE TABLE II: Subset of CoPHEE Configuration Registers 

IO Pin Direction Description 

VDDIO in 3.3V voltage supply for IO pads 
VDDC in 1.2V voltage supply for the core logic 
VSS in ground supply for IO pads and core logic 
nRESET in active low reset 
Clk in clock input (max. frequency: 100 Mhz) 
RX in UART receive line from host 
TX out UART transmit line to host 
HostIRQ out interrupt to the host processor 
GPIO out for post-silicon debugging 

Fig. 1: Bus architecture diagram of CoPHEE. Resets and clock 
are connected to all blocks (their connections are not shown). 

clock sources and minimize the risk of non-working silicon, 
CoPHEE uses an externally supplied clock. Moreover, our chip 
has two voltage supplies, namely 3.3 V (IO pads) and 1.2 V 
(logic core), and uses a Dual In-line Package (DIP). 

A. External Interfaces 

In Table I we present the main IO pins of CoPHEE and 
how they interface with the host computer. Using the receiver 
line RX of the UART interface, the host computer can program 
the value of each operand and then trigger a desired operation 
(e.g., modular multiplication). As soon as the trigger bit in 
the CoPHEE configuration registers is set through UART, 
the requested operation starts executing on the co-processor. 
When the operation terminates, CoPHEE sets the interrupt 
line HostIRQ to signal the host that the requested output is 
ready. After receiving this interrupt, the host processor reads 
the computed result via UART using the transmitter line TX 
and clears the interrupt HostIRQ. Moreover, CoPHEE also 
features GPIO to assist debugging and post-silicon validation. 

B. Internal Data Flow 

In Fig. 1 we present the internal bus architecture diagram 
of CoPHEE that is based on a single-master two-slave system, 

Register Name Description Bit 
Size 

UARTMTX_PAD_CTL IO Pad control for UART TX 32 
UARTMRX_PAD_CTL IO Pad control for UART RX 32 
HOSTIRQ_PAD_CTL IO pad control for Host Interrupt 32 
GPIO0_PAD_CTL IO pad control for GPIO 32 
UARTM_BAUD_CTL Baud control for UART 32 
UARTM_CTL UART control (parity, polarity, etc.) 32 
CLEQCTL2 Log2 of N 32 
SIGNATURE Stores Chip ID 32 
CLCTLP Trigger bits for modular blocks 32 
CLCTL Control bits 32 
CLSTATUS Flag bits (busy, inverse error, etc.) 32 
N Modulus N 1024 
NSQ Square of N 2048 
ARGA Argument A for modular blocks 2048 
ARGB Argument B for modular blocks 2048 
ARGC Argument C for modular blocks 2048 
RAND0 Random number 0 for secure mux 1024 
RAND1 Random number 1 for secure mux 1024 
MUL_RES Result register for multiplication 2048 
EXP_RES Result register for exponentiation 2048 
INV_RES Result register for inversion 2048 
DBG_REG Debug register 2048 

where the master communicates to the slaves using a 32-bit 
AHB-Lite bus protocol. Our goal is to make the AHB-Lite 
design parameterizable to facilitate the addition of masters or 
slaves to the bus. In CoPHEE, the UART is the only master on 
the bus, while the configuration registers unit and the GPIO 
are slaves. The configuration registers unit comprises special 
registers for the Paillier key, public modulus and encrypted 
operands, as well as registers for triggering operations, storing 
computed results and operation status. Likewise, the GPIO can 
provide status information during testing (e.g., one can blink 
an LED through GPIO to signal an error). 

Table II shows a representative subset of the 39 Configu-
ration Registers in CoPHEE. Our configuration registers map 
to the 0x4002_0000 – 0x4002_FFFF memory range, while the 
GPIO maps to the 0x4003_0000 – 0x4003_FFFF range. In our 
design, the memory base address follows the ARM Cortex M 
series memory map convention for peripheral addresses. 

C. Design Blocks 

CoPHEE implements a set of modular arithmetic accelera-
tion blocks, namely: (1) an interleaved modular multiplication 
unit, (2) a modular exponentiation unit based on Montgomery 
multiplication [19], and (3) a modular inversion unit based 
on the binary extended GCD algorithm, which outputs the 
GCD of its inputs along with the modular inverse of its first 
input using the second input as the modulus. The design 
details of these blocks, as well as the design of our secure 
multiplexer and true random number generator (TRNG) blocks 
are presented in this section. 

1) Modular Multiplication: Our chip implements an in-
terleaved modular multiplier for integers up to 2048 bits 
[19]. This multiplier is more efficient compared to other 
complicated algorithms (such as Montgomery multiplication), 
when the two inputs are multiplied only once. Conversely, 
transforming the inputs to a different multiplication domain 



Fig. 2: Modular exponentiation block 

(e.g., the Montgomery domain) offers better amortized perfor-
mance only when multiple multiplications are cascaded (e.g., 
as in modular exponentiations). 

2) Modular Exponentiation: For modular exponentiation, 
CoPHEE implements a Montgomery multiplier that offers sig-
nificant advantages in terms of modular reductions [19]. Con-
trary to the modular reductions in interleaved multipliers that 
are implemented using subtractions, the Montgomery multipli-
cation requires merely a bitwise right-shift operation, which 
is more efficient. Nevertheless, the Montgomery algorithm 
requires that its operands undergo an additional transformation 
to the Montgomery domain before multiplications can be 
applied. Specifically, if N is the bit width of an odd modulus 
M , each operand should be multiplied with 2N (i.e., bitwise 
shift-left) and reduced modulo M . Likewise, the final result is 
transformed to an ordinary integer using multiplication with 
the inverse of 2N modulo M . Due to these transformations, 
the Montgomery algorithm is beneficial only when several 
multiplications are performed within the Montgomery domain, 
which is the case of modular exponentiation. 

Our modular exponentiation operates in three stages and 
the corresponding CoPHEE block is illustrated in Fig. 2. 
The first stage transforms the exponentiation base X to the 
Montgomery domain (i.e., multiplication with 2N mod M ), 
while the second stage uses the bits of exponent E to perform 
right to left binary exponentiation by squaring [19]. Our chip 
implements a controller that determines which operands enter 
our Montgomery multiplier by scanning the bits of E (from 
LSB to MSB). Specifically, the controller executes repeated 
squaring (in the Montgomery domain) of base X for each bit 
of E, while if the exponent bit equals 1, the corresponding 
square is also multiplied with X . The third stage transforms 
the result from the Montgomery domain to an ordinary integer 
by triggering a final Montgomery multiplication with 1 (i.e., 
a multiplication with the inverse of 2N modulo M ). 

3) Modular Inversion: The modular inverse of an integer 
X over a modulus M exists when GCD(X, M) equals 1, and 
it can be efficiently computed using the binary extended GCD 
algorithm (Algorithm 1) [19]. Specifically, on input X and 

M , the binary extended GCD computes values A, B and G = 
GCD(X, M) that satisfy the equation A · X + B · M = G (3) 
(i.e., Bézout’s identity); if G equals 1 then A = X−1 mod M . 
CoPHEE implements a modular inversion block that receives 
inputs X , M from the host processor and starts computing 
X−1 mod M as soon as its En input is toggled. 

Internally, our modular inversion block creates two in-
stances of Equation 3: Xg = Ax · X + Bx · M (4), and 
Yg = Ay · X + By · M (5), and initializes the variables 
{Ax, Bx, Ay, By} to {1, 0, 0, 1} so that the initial values of 
{Xg, Yg} are {X, M} (line 3 in Algorithm 1). Then, our 
modular inversion block iterates the following three steps: 

1) While both Xg and Yg are even, divide them by 2 and 
multiply the GCD G by 2. 

2) If only one of them is divisible by 2, their corresponding 
equation is divided by 2. In this case, if any of the 
coefficients in the equation is not divisible by 2, add 
X · Y − X · Y to the right side of the equation and 
restructure it in the form A · X + B · Y (lines 14 and 22 
of Algorithm 1). Then, both coefficients become divisible 
by 2. 

3) When both Xg and Yg are not divisible by 2, check if 
Xg is greater than Yg . If so, the Equation 4 is updated 
by subtracting itself from the Equation 5. Otherwise, 
the Equation 5 is updated by subtracting itself from the 
Equation 4. 

As soon as Xg equals Yg , the algorithm terminates and the 
Done output is set to high for one clock cycle. If the output 
G (i.e., the GCD of {X, M}) is equal to 1, then the output 
INV contains the desired value X−1 mod M . 

4) True Random Number Generation: The TRNG design in 
CoPHEE is based on a bi-stable circuit [20], and as illustrated 
in Fig. 3c, we employ 16 individual TRNG blocks spread 
across our chip. This TRNG design improves randomness by 
exploiting the inherent process variations of the fabricated 
chip, and our random number stream is generated by XORing 
the outputs of all 16 TRNG blocks [20]. Moreover, we remove 
any potential 0/1 bias (“deskewing”) by post-processing the 
random number stream using a von Neumann extractor. Since 
we desire our random numbers to be co-prime with the (odd) 
public modulus, we fix the LSB of each random number to 
1; if the GCD of the random number and the modulus is not 
1, the random number is incremented by 2 until the GCD 
becomes 1. To calculate a new random number, an explicit 
request to the TRNG block is required. 

5) Secure Multiplexer: The secure multiplexer of CoPHEE 
adopts Cryptoleq’s blueprint and implements a state machine 
that employs all the aforementioned design blocks, as illus-
trated in Algorithm 2. Specifically, our secure multiplexer 
receives: (a) two encrypted inputs X, Y , (b) a function of the 
private (decryption) key FKF , and (c) two random numbers 
RAND0 and RAND1. Our state machine computes the 
modular exponentiation XFKF (line 6) and checks the sign 
of the result (line 8); if this sign is less than or equal to 
zero, our secure multiplexer outputs an encryption of the value 
0, otherwise it outputs a random re-encryption of encrypted 



Algorithm 1: Binary Extended GCD 
1 INPUT: X[N-1 :0], M[N-1 :0], En, Clk; 
2 OUTPUT: G[N-1 :0], INV[N-1 :0] Done; 
3 G = Not(X[0] | Y [0]); Xg = X; Yg = M ; Ax = 1; Bx = 

0; Ay = 0; By = 1; 
4 if En == 1 @ Positive edge of Clk then 
5 while Xg [0] == Yg [0] == 0 @ Positive edge of Clk do 
6 Xg = X � 1; Yg = Y � 1; G = 2 ∗ G; 
7 end 
8 while Xg ! = Yg do 
9 while Xg [0] == 0 @ Positive edge of Clk do 

10 Xg = Xg � 1; 
11 if Ax[0] == Bx[0] == 0 then 
12 Ax = Ax � 1; Bx = Bx � 1; 
13 else 
14 Ax = (Ax + Y ) � 1; 

Bx = (Bx − X) � 1; 
15 end 
16 end 
17 while Yg [0] == 0 @ Positive edge of Clk do 
18 Yg = Yg � 1; 
19 if Ay[0] == By [0] == 0 then 
20 Ay = Ay � 1; By = By � 1; 
21 else 
22 Ay = (Ay + Y ) � 1; 

By = (By − X) � 1; 
23 end 
24 end 
25 if Xg > Yg then 
26 Xg = Xg − Yg ; Ax = Ax − Ay ; 

Bx = Bx − By ; 
27 else 
28 Yg = Yg − Xg ; Ay = Ay − Ax; By = By − Bx; 
29 end 
30 G = Xg � G; INV = Ax; Done = 1; 
31 end 
32 end 

input Y . We remark that these outputs are computationally 
indistinguishable. 

In each invocation of our secure multiplexer, our TRNG 
generates two fresh random numbers to ensure that consecutive 
invocations cannot repeat the same encrypted outputs. The lat-
ter prevents side-channel attacks that infer ciphertext informa-
tion by comparing the inputs and outputs. Nevertheless, since 
generating new random numbers using a TRNG can incur high 
overheads, it is also possible to generate one truly random 
(seed) number and then compute a sequence of additional 
pseudorandom values using modular squaring. We remark that 
modular squaring of a (random) number is essentially Rabin’s 
one-way function, since ‘factoring’ and ‘computing square 
roots’ have equivalent computational complexity when the 
prime decomposition of the modulus is unknown [21]. 

6) Auxiliary Communication & Control Blocks: To support 
communication and control, CoPHEE incorporates the follow-
ing auxiliary blocks: (1) UART master (used to interface with 
the external host computer), (2) configuration registers unit 
(used to store the operands, modulus and results), (3) GPIO 
(used to assist debugging during post-silicon validation), and 
(4) AHB bus interconnect (used to transfer data inside the 
chip). In our chip, the UART is the master, while the con-

Algorithm 2: Secure Multiplexer 
1 INPUT: X[N-1 :0], Y[N-1 :0], FKF[N-1 :0], RAND0[N-1 

:0], RAND1[N-1 :0], M[N-1 :0] En, Clk; 
2 OUTPUT: R[N-1 :0]; 
3 if En == 1 @ Positive edge of Clk then 
4 RAND0 = Modular Exponentiation of RAND0 with √ 

exponent M ; 
5 RAND1 = Modular Exponentiation of RAND1 with √ 

exponent M ; 
6 D = Modular Exponentiation of X with exponent F KF ; 
7 end 
8 if D <= 0 then 
9 R = Modular multiplication of RAND0 and RAND1 ; 

10 else 
11 R = Modular multiplication of RAND0 and Y; 
12 end 

figuration registers unit and GPIOs are the slaves. Moreover, 
our configuration registers unit consists of 39 registers, with 
their size varying from 32-bit to 2048-bit. All registers are 
byte-addressable. Some registers are readable and writable 
(e.g., operands, modulus), some are readable-only (e.g., result), 
while others are writable-only (e.g., operation trigger). 

D. Pre-Silicon Verification 

We verified the functionality of our RTL design using 
both simulation and FPGA-based validation. The simulation 
was performed using Synopsys VCS at the top-level and 
block-level using random inputs (since the 2048-bit operand 
range cannot be exhaustively tested). Moreover, for our FPGA 
design, we implemented a scaled-down version of CoPHEE as 
the 2048-bit data width of the original design was incompatible 
with the available resources of our FPGAs. Specifically, the 
maximum data width that could be loaded on a Digilent Nexys 
4 was 256 bits (running at 25 MHz), while a 512-bit version 
of the co-processor exceeds the capacity of the significantly 
larger Kintex-7 and Virtex-5 FPGA boards. 

E. Synthesis 

The CoPHEE RTL code is synthesized using a 65nm stan-
dard cell library from Global Foundries and a clock constraint 
of 100 Mhz. As the UART and GPIOs are the only interfaces 
of CoPHEE (i.e., both are asynchronous), there is no specific 
IO timing constraint. Following common practices, the stan-
dard cell library used for synthesis was the one characterized 
for the worst voltage (1.08V), temperature (125C), resistance, 
and capacitance. Synthesizing with such a library ensures that 
we can achieve the target frequency. 

For synthesis, we used the Synopsys Design Compiler (DC), 
while for post-synthesis and formal verification we used the 
Cadence Conformal, and we were able to ensure that the RTL 
code and the synthesized netlist are functionally equivalent. 
In Table III we presents the area and timing estimations of 
the major CoPHEE blocks after synthesis. The largest design 
is the binary extended GCD, followed by the configuration 
registers that store a total of 2.73 KB. As expected, the 
modular multiplier and the modular exponentiation unit are 
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TABLE III: Post-synthesis area and timing estimations 

Blocks Area (um2) 
Worst path 
delay (ns) 

Configuration registers 512,724 4.770 
Binary extended GCD 548,454 9.433 
Interleaved mod. multiplier 315,487 9.374 
Modular exponentiation 304,064 9.389 
AHB bus 1,261 4.850 
UART master 3,466 4.930 
TRNG 28,658 NA 

TABLE IV: Layout physical parameters 

Parameter Value 

IU (Initial Utilization) 36 % 
FU (Final Utilization) 47 % 
MA (Macro Area) 20 um
HIO (IO PAD Height) 120 u 
CIO (Core to IO spacing) 110 u 
A (Aspect ratio) 1 
RCA (Required std cell Area) 21956692.52 um
CW (Core Width) 2340 u 
CH (Core Height) 2340 u 
DW (Die Width) 2800 u 
DH (Die Height) 2800 u 

roughly the same size, and the rest of the modules occupy 
significantly less area. 

IV. PHYSICAL DESIGN 

The CoPHEE chip was fabricated using the Multi Project 
Wafer (MPW) program of MOSIS, and the 5_02_00_00_LB 
metal layer stack; specifically, the metal and via layers are 
M1, V1, M2, V2, M3, V3, M4, V4, M5, WT, BA, WA, BB, 
VV, and LB. These layers have preferred routing direction 
(horizontal or vertical), and this stack offers enough signal 
routing resources in first 5 metal layers, so the top two are 
used mostly for power/ground and clock structure. The layer 
LB was only used for the IO pads, and the external bonding 
to the chip during packaging was done using these LB cups 
on the pads. The GF-PDK for the 65LPE process provided us 
all the technology-related files, and we used the physical and 
timing libraries for standard cells from ARM, while ARAGIO 
provided the IO Pad libraries. Our chip was implemented flat, 
without any physical hierarchy. 

A. Place and Route 

1) Die size estimation: In Table IV we show the physical 
parameters with respect to our layout after multiple iterations. 
The minimum chip size supported by Global Foundries for 
65LPE through MOSIS is 9mm2. Since this is more than the 
estimated die size of our chip, we utilize the entire area. 

2) Floor Planning: Our layout outline along with IO pad 
placement adheres to the IO pad placement guidelines from 
Global Foundries. We have a total of 27 IO pads, where 
8 of them are for VDD/VSS core power/ground supply, 8 
DVDD/DVSS are for IO power/ground, while the remaining 
11 are signal pads. One supply and one ground pad would 
be sufficient, but we utilize the empty spaces in the IO 
pad ring to improve the power structure robustness. The 

empty spaces between the pads are filled with filler pads to 
maintain continuity of the internal power/ground and other 
special signals, while ENDCAPs and well tie cells were also 
distributed in the core region as per the foundry requirements. 
Finally, the quality of the input netlist we checked using Zero 
Interconnect Delay analysis. 

3) Power Planning: We created a core power ring illus-
trated with the red and white lines around the core in Fig. 
3a, which are located in metal layers BA (red vertical) and 
BB (white horizontal). The thick white and red lines connect 
the ring to the pads, and we have power straps created in 
layers BA, BB, M5 and M4. The mesh structure inside the 
core region in Fig. 3a shows the power straps distribution: our 
PG rails are in M1 and are connected to the power straps in 
M4 through power via stack from M4. We remark that the M4 
strap runs vertically (preferred routing direction is vertical) and 
vias can be dropped on every intersection with horizontal M1 
rails. 

4) Placement And Optimization: Prior to the standard cell 
placement, we grouped and distributed our TRNG modules 
using bounds/regions in the chip to leverage on-chip variation 
(bound is a feature used to restrict placement of specific cells 
according to the user specification). We note that the standard 
cells in the TRNG modules were not allowed to be optimized. 
In Fig. 3c we illustrate the TRNG module distribution, where 
the red highlighted standard cell groups compose our TRNG 
modules. After fixing these groups in position, the rest of 
the standard cells went through placement and optimization. 
Our design was then analyzed for timing, congestion, area 
and power, passing all requirements. We also enabled high 
threshold voltage (HVT) and regular threshold voltage cells 
(RVT) during optimization: HVT are low-leakage high-delay 
cells, while RVT are medium-leakage medium-delay cells. 
We remark that LVT (low threshold) cells, which are high-
leakage low-delay cells, were used only in the final timing 
closure. This approach allows us to limit the power leakage 
in accordance to standard practices. 

In Fig. 3b we illustrate the distribution of the main modules 
in our design after placement. Notably, the GCD module 
consumes the largest portion of the design and is confined to 
the right side of the chip, while the modular multiplication and 
exponentiation units are the second and third largest. We also 
performed a trial placement run by creating specific regions 
in the chip for these modules, where each region restricted 
the placement of a module to a specified location of the 
chip. Nevertheless, since the timing results did not show any 
improvement compared to the placement without regions, this 
trial was discarded. 

5) Clock Tree Synthesis: For the implementation of 
our chip, we performed Clock-Tree Synthesis (CTS) 
using the BUFH_X4M_A9TR, BUFH_X5M_A9TR, 
BUFH_X6M_A9TR, and BUFH_X9M_A9TR buffers, as well as 
the INV_X4M_A9TR, INV_X5M_A9TR, INV_X6M_A9TR, 
and INV_X9M_A9TR inverters from the ARM standard cell 
library. The middle part of the name indicates the driving 
strength of the cell (e.g., X9M). This list of buffers comprises 

http:largest.We
http:specification).We
http:fromM4.We


TABLE V: Post-CTS statistics TABLE VII: Redundant via statistics 

Parameter Value 

clock name HCLK 
CTS synthesis corner slow 
Number of levels 45 
Number of Sinks 67628 
Number of clock tree buffers 9921 
Global Skew 162 ps 
Longest Insertion delay 2.410 ns 
Shortest Insertion delay 2.248 ns 
Standard cell utilization 43.63 % 

TABLE VI: Design statistics through PnR 

Parameter Initial Place CTS Route 

# of Standard cells 693333 775548 784795 786526 
# of Sequential cells 67628 67628 67628 67628 
# of Combinational cells 625708 707923 717170 718901 
# of Buffer/Inverter cells 91139 707923 175163 176894 
Standard Cell Utilization 35.45 % 43.44 % 46.35 % 46.56 % 
# of Signal nets 695425 777637 771789 773520 
HVT cells 100 % 55.8 % 67.7 % 67.8 % 
RVT cells 0 % 44.2 % 32.3 % 32.2 % 
Total wire length (µm) NA NA 1242079 46668040 

RVT cells of medium driving strength that allow reduced 
On Chip Variation (OCV), a robust clock network, and less 
power consumption. 

A Non-Default Rule (NDR) of double width and double 
spacing was also created and assigned to the clock trunk nets 
(all the clock nets are trunk nets, except for those connected to 
sinks directly). Our clock nets were routed using metal layers 
M4, M5, BA, and BB, and assigned as soft fixed, which ensures 
that the clock network remains intact during signal routing 
(i.e., changes are restricted). In addition, we applied a multi-
corner optimization to fix design rule violations, as well as 
setup and hold timing closure, and achieved a skew of 162 ps 
with nominal count of clock buffers/inverters. Our post-CTS 
statistics are presented in Table V. 

6) Signal Routing and Optimization: In Table VII we 
present the percentage of redundant vias for various via layers. 
We were able to achieve more than 75% conversion of single 
to multi-cuts for the lower via layers V1, V2, V3, V4, yet 
a lower percentage was achieved for higher layers. Likewise, 
in Table VI we present design statistics over various stages 
in the Place & Route (PnR). We remark that the standard 
cell count increases as the design moves from initial to final 
routing stages, primarily due to the buffers/inverters inserted 
in the design to fix design rule violations, clock tree synthesis 
and timing issues. Our design started with 100% HVT cells 
and ended up with 67.8%, as HVT cells were swapped with 
RVT cells to address timing and DRV fixes. The total wire 
length under ‘CTS’ corresponds to the clock net only, while 
under ‘Route’ corresponds to all nets (Table VI). 

B. Sign-Off Analysis 

1) Static Timing Analysis: For our timing analysis, we used 
an uncertainty of 200ps for setup, and 50ps for hold, as 
recommended by Global Foundries. Our design was further 

Layer # of multi-cut 
vias # of total vias % of 

multi-cut vias 
V1 2003289 2579845 77.65 
V2 2129266 246275 86.46 
V3 688693 869281 79.23 
V4 417410 544818 76.61 
WT 76473 134395 56.90 
WA 59085 100430 58.83 

analyzed for design rule violations, such as the maximum 
transition, capacitance, and fanout. The few violations we 
identified after the initial Static timing analysis (STA) were 
fixed using Engineering Change Order (ECO). 

2) Physical Verification: In this step, we verify the fi-
nal layout against foundry manufacturing rules and insert 
dummy metal/poly fills using the Calibre software to meet the 
foundry’s density requirements. The fill GDS obtained from 
Calibre is merged with the design GDS in our layout tool 
(Virtuoso), generating a final design ready for Design Rule 
Check (DRC) and Layout Versus Schematic (LVS) analysis. 
We used the Cadence PVS tool to run DRC, LVS, and Antenna 
checks, and fixed any violations before re-running the checks 
to ensure a clean GDS for our tapeout. Fig. 4a shows the 
design layout from Virtuoso after the “streamIn” process (i.e., 
merging of the primitive GDS with the design GDS) and the 
addition of a “seal ring” as per foundry guidelines (shown 
as thin lines running around the chip boundary with diagonal 
routing around corners). 

3) Rail Analysis: For our rail analysis, we used Synopsys 
primeRail and imported the Milkyway database and signal 
parasitics. The analysis did not raise any static or dynamic 
violations, which is attributed to the robust power structure of 
CoPHEE; the worst static and dynamic drop was 10.6 mV and 
24 mV, respectively. In Fig. 4b we present the static effective 
rail voltage drop, where most of our power pads are located 
at the left of the chip, so the highest static drop appears on 
the right side (red color). Likewise, in Fig. 4c we show the 
dynamic rail voltage drop, which appears specific to a limited 
number of gates (red spots). 

C. Post-Silicon Validation 

CoPHEE was packaged in a 28 pin DIP, and was connected 
to a breadboard for silicon bring up and testing. For interfacing 
with a host computer, we used a UMFT230XA development 
board that features an FTDI chip for USB-to-UART conver-
sion. The UMFT230XA board can provide a 3.3V supply for 
the IO pad of CoPHEE, as well as a clock output (used as the 
clock source of the chip). Moreover, the required 1.2V supply 
was generated using a DC-DC adjustable step-down module 
that converts the 5V source of the UMFT230XA board. In 
addition, an Arduino was responsible for receiving interrupt 
signals from CoPHEE and for transmitting these events to the 
host computer. Our post-silicon validation setup is shown in 
Fig. 5. 

Our post-silicon validation confirmed that the fabricated 
chip is fully functional, with a discovered bug in the “debug 



(a) (b) (c) 

Fig. 3: Place & Route output: (a) Power network; (b) Placement distribution (binary extended GCD: red; interleaved modular 
multiplier: green; modular exponentiation: blue; other modules: purple); (c) TRNG distribution (red). 

Fig. 5: Photo of CoPHEE experimental setup. 

read” path that reads random numbers and tests their random-
ness. Specifically, there was a hard-coded bit-width value in 
the read path of the configuration registers, which prevents 
us from reading the debug register (last register in the path). 
Interestingly, this bug escaped our FPGA-based validation, as 

(a) (b) (c) 

Fig. 4: SignOff results: (a) Chip GDS view from Virtuoso; (b) Chip static rail drop; (c) Chip dynamic rail drop. 

the latter was performed on the scaled-down version where 
the 256 bit-width was incorrectly hard-coded. 

V. EXPERIMENTAL RESULTS 

In this section, we quantify the performance of CoPHEE by 
executing C++ benchmarks and compare it against emulation 
of PHE operations on a general-purpose x86 architecture. 
We selected six data-oblivious benchmarks from the TER-
Minator suite [22] that are classified into two categories: 
(1) kernel benchmarks, which stress arithmetic and logical 
operations, such as Bubble Sort (BS), Matrix Multiplication 
(MM), Insertion Sort (IS) and Sieve of Eratosthenes (SoE), 
and (2) microbenchmarks, such as the multiplicative-intensive 
Factorial (FAC) and the addition-intensive Fibonacci (FIB). In 
our experiments, we used a 2.7 GHz Intel i7-7500U with 8GB 
RAM, running Ubuntu 16.04.5 LTS with GCC 8.1.0 and GMP 
6.1.1, while our CoPHEE chip was running at 100 MHz. 

Fig. 6 summarizes the performance benefits of CoPHEE 
using the aforementioned benchmarks, normalized to the ex-
ecution time of the benchmarks running on an x86 processor 
using GMP for emulating the homomorphic operations. In 
particular, we employ CoPHEE on two different scenarios: (1) 
as a hardware root-of-trust, where only the secure multiplexer 
is utilized, and (2) as a cryptographic accelerator, where 



Fig. 6: CoPHEE performance acceleration when it is used: (a) 
as a hardware root-of-trust only (‘trust’), and (b) both as an 
accelerator and root-of-trust (‘all’). Performance is normalized 
to the x86-only execution. 

all PHE operations are offloaded to the co-processor. Using 
CoPHEE as a root-of-trust only, the load on the x86 host is 
reduced by the speed-up offered by the hardware encrypted 
multiplexer. Since the secure multiplexer requires computa-
tionally intensive modular exponentiations, offloading it to an 
ASIC accelerator significantly improves its performance. In 
this case, the execution time on the x86 host is attributed to the 
large number of modular multiplications and inverses executed 
in software using the GMP library. 

Conversely, when CoPHEE acts as accelerator for all ho-
momorphic operations (label ‘all’ in Fig. 6), we observe an 
average of two orders of magnitude improvement in execution 
time compared to x86 using GMP. In this scenario, the main 
CPU only executes setting-up operations, such as creating 
objects, moving data, processing integers, etc. The two orders 
of magnitude improvement is obtained by the first prototype 
of CoPHEE running at 100MHz. Extrapolating from this 
result, we expect one more order of magnitude improvement, 
assuming that the next iteration of the co-processor operates 
in the GHz range. 

Fast communication between the main CPU and CoPHEE 
is essential in order to unlock the power of CoPHEE. In the 
first fabricated prototype, UART requires 1.68E-03 seconds to 
complete a transaction between the main CPU and CoPHEE, 
assuming the transfer of three 2048-bit operands (two source 
operands, one result) and the transfer of the 32 trigger bits. 
A faster off-chip communication protocol, such as InterChip 
USB, would accelerate communication by approximately two 
orders of magnitude (≈1.29E-05 seconds per operation, as-
suming 480 Mbits/s transfer rates). Apparently, the fastest way 
to move data between the main CPU/memory and CoPHEE 
would be a system-on-chip approach where CoPHEE is also 
located on the same bus. Assuming a 32-bit ARM architecture, 
on-chip communication on AHB-Lite would further accelerate 
communication by 3-4 orders of magnitude (≈9.65E-08 sec-
onds per operation). Thus, the selection of the communication 
protocol and potential integration of CoPHEE depends on the 
requirements of the deployed application. 

VI. RELATED WORK 

Following Gentry’s discovery of FHE [6] and its time-
intensive CPU-based implementation [23], the research com-
munity focused on hardware approaches to speed up the homo-
morphic computation. Wang et al. [24] proposed accelerating 
the million-bit modular multiplications required in Gentry’s 
cryptosystem, using Strassen’s Fast Fourier Transform (FFT) 
followed by a Barrett modular reduction, both implemented 
on an NVIDIA C2050 GPU. Experimental results show a 
performance improvement of about 7× compared to existing 
CPU-based implementations. 

Recently, several FPGA-based accelerators for FHE opera-
tions have also been proposed. Cousins et al. [25] use a Xilinx 
Virtex-7 to implement a co-processor targeting lattice-based 
homomorphic encryption schemes. Their co-processor accel-
erates bottleneck operations such as the forward and inverse 
Chinese Remainder Transform (CRT), as well as more efficient 
operations such as ring addition, subtraction and multiplica-
tion. This approach achieves 2 orders of magnitude speedup 
compared to a reference CPU-based implementation of the 
López-Alt, Tromer and Vaikuntanathan (LTV) cryptosystem 
[26], where either PCI-E or Ethernet was used to communicate 
with a host computer. Likewise, Ozturk et al. [27] propose 
an LVT-based accelerator for homomorphic evaluations by 
computing high degree polynomial multiplications (214 and 
215 degree polynomials) using a Virtex-7 FPGA. In their 
approach, the host CPU uses PCI-E to communicate with the 
accelerator, and their multiplier is 102× faster compared to 
a CPU-based implementation, which corresponds to a 28.5× 
homomorphic evaluation speedup for the AES block cipher. 
Moreover, recent work was focused on FFT acceleration for 
cryptosystems based on Ring Learning With Errors [28]– 
[30], while Migliore et al. [31] investigate the benefits of 
the Karatsuba algorithm compared to FFT for FHE operations 
in the Fan-Vercauteren scheme, and report 23% performance 
increase for one half logic utilization in the FPGA. 

Encrypted processors using PHE schemes have also been 
proposed: HEROIC [32] implements a single instruction com-
puter with support for both subtraction-oriented and addition-
oriented encrypted computation, using deterministic encryp-
tion and without any shared keys. In HEROIC, addition uses 
the homomorphic properties of the Paillier, subtraction uses 
the modular inverse of the operand, while branching employs 
a lookup table as a sign oracle; the processor has been 
implemented in a VM and on a Kintex-7 FPGA. Similarly, 
CryptoBlaze [33] is a multi-instruction CPU that is based 
on MicroBlaze and implements the Paillier cryptosystem to 
operate on encrypted data. This processor implements eight 
instructions operating on encrypted data, including eadd and 
esub for homomorphic addition and subtraction, as well as 
ebrzpos and ebrneg for branching on a non-negative number or 
a negative number, respectively. Branching is not executed by 
CryptoBlaze, however, and a request is sent to a host computer 
to interactively compute the outcome. The CryptoBlaze CPU 
is implemented on a Virtex-6 FPGA communicating with a 



host processor through a 32-bit AXI bus, and offers a 10× 
speedup compared to HEROIC. Nevertheless, since branch 
decisions are offloaded to the host, the expensive modular 
exponentiations used to decrypt control ciphertexts do not 
benefit from CryptoBlaze’s acceleration, and since all decision 
outcomes are received in the clear through the AXI bus, side-
channel information about ciphertexts can be leaked outside 
the root-of-trust. 

VII. CONCLUSIONS AND FUTURE WORK 

In this work we present a year-long effort to design, imple-
ment, fabricate, and validate CoPHEE: a general-purpose co-
processor that computes on partially homomorphic encrypted 
data. The arithmetic units for modular multiplication, exponen-
tiation, inversion, and GCD that have been implemented in this 
work accelerate the computation of very wide datapaths, while 
our secure multiplexer and true random number generator 
enable universal computation in the encrypted domain. To the 
best of our knowledge, CoPHEE is the first academic effort 
towards constructing a fast and reliable processor capable of 
processing encrypted data. This paper presents all required 
steps for a fully functional silicon, from the RTL design 
to fabrication and validation. Given the silicon, future work 
will explore side-channel analysis and information extraction 
through power, timing, and electromagnetic emissions. 

RESOURCES 

RTL files and a form to request CoPHEE (in a 80-pin pack-
age) are available at https://github.com/momalab/CoPHEE. 
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