
Mimic Martingales in Sequential Auctions 

Matt Van Essen and John Wooders

May 2023 
Working Paper # 0091 

 

New York University Abu Dhabi, Saadiyat Island P.O Box 129188, Abu Dhabi, UAE 

http://nyuad.nyu.edu/en/academics/academic-divisions/social-science.html 

Division of Social Science Working Paper Series 



Mimic Martingales in Sequential Auctions

Matt Van Essen∗ John Wooders†

May 28, 2023

Abstract

In the equilibrium of a game, no player has an incentive to uni-

laterally deviate from equilibrium play. At the same time, players

may have no positive incentive to follow equilibrium when every other

player follows equilibrium, e.g., as in a mixed-strategy Nash equilib-

rium. This paper concerns the incentives of players to follow equilib-

rium in sequential auctions and bargaining games in which winning

bids/compensations are disclosed. It shows for theses games that a

player obtains his equilibrium payoff for a large class of strategies

different from his equilibrium strategy. These deviations from equi-

librium, while costless to the player, harm the seller in an auction.

These results suggest that it may be diffi cult for players to learn to

play equilibrium and, if reached, for play to remain at equilibrium.

For the auction designer, disclosing winning bids may be harmful to

the seller.
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1 Introduction

A dealer flips over cards in a standard well-shuffl ed deck, one-

by-one, starting from the top. Before turning over each card, he

ask you whether you want to bet that the card is red. If you bet,

then you win $1 if the card is red, you lose $1 if it is black, and

the game ends. If you choose not to bet, then the dealer will show

you the card, discard it, and go to the next card. You must bet

once. If you have not bet prior to the last card remaining in the

deck, then you are obligated to bet that the last card is red.1 —

Polya’s Red or Black Game

Should you play this game? Sure! The game is fair —You can always bet

immediately and receive fair odds. Can you find a betting strategy that does

better than zero in expectation? Can you find a betting strategy that does

worse? Interestingly, the answer to both of these questions is “no.”Since the

fraction of red cards in the deck as cards are turned over forms a martingale,

it turns out that any betting strategy you follow is optimal and provides you

with an expected payoff of zero.2

This paper is about incentives to play equilibrium in sequential auctions

and sequential bargaining games. While, by definition, no bidder has a prof-

itable unilateral deviation in an equilibrium, this does not imply a bidder is

made worse offby deviating. We show a robust feature of sequential auctions

is that bidders have weak incentives to play equilibrium when every other

bidder plays equilibrium. We establish, in particular, that there is a Red

or Black game embedded in the equilibrium of common sequential auctions,

and we identity a large class of non-equilibrium strategies that all yield the

1This game is a simple variant of Polya’s Urn Problem where marbles are taken from

an urn without replacement. See Fuller (1968).
2An introduction to martingales is provided in the next section.
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same expected payoff to a bidder as his equilibrium strategy.

We first study the sequential Dutch auction of K units in which each

bidder demands a single unit. In the auction, units are sold one at a time,

with the winning bid revealed at each round. Proposition 1 identifies the

unique symmetric equilibrium in increasing and differentiable strategies, both

when units sold are homogeneous (as most commonly studied) and when they

are heterogenous.

In a sequential Dutch auction there are many ways in which a bidder

might deviate from equilibrium. We focus on a class of deviations that we

call “mimic”deviations. Consider a bidder at round t for which the price

has reached his equilibrium bid. If he obeys equilibrium, then he purchases

a unit at that price and he exits the auction. Suppose instead that he does

not purchase a unit, he observes the winning bid at round t, and he bids

optimally at round t + 1. We show that the optimal bid at round t + 1 is

to bid as through his value were the value of the round t winner, i.e., he

“mimics” the round t + 1 equilibrium bid of the prior-round winner. We

call this a 1-round mimic deviation. Mimic deviations can be of any length

— in an m-round mimic deviation the bidder does not purchase a unit at

rounds t through t+m− 1, and in round t+m he mimics the round t+m

bid of the prior round winner. Proposition 2 shows that, when units are

homogeneous, then the sequence of payoffs obtained from mimic deviations

of different lengths forms a martingale. An immediate consequence of this

result is that a bidder obtains his equilibrium expected payoff by following

any mimic deviation. When units are heterogeneous, the sequence of payoffs

obtained from mimic deviations of different lengths forms a supermartingale,

i.e., expected payoffs decline.

Sequential first and second-price sealed-bid auctions of homogenous units

share the feature that bidders have a wide variety of non-equilibrium strate-

gies which yield their equilibrium payoff. Mimic deviations in sequential
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sealed-bid auctions have a slightly different structure. Consider again a bid-

der in round t. In an m-round mimic deviation, the bidder refrains from

bidding until round t + m. In round t + m, if the value of the prior-round

winner is below his own value then, as before, he mimics the round t + m

equilibrium bid of the prior-round winner. Otherwise, he bids according to

equilibrium. Proposition 3 shows that sequence of payoffs obtained from

mimic deviations of different lengths in a sequential first-price sealed-bid

auction forms a martingale.

Players also have flat incentives to play equilibrium in sequential bargain-

ing games. Consider, for example, the problem of dissolving a partnership

or allocating an item among the members of a bidding ring. A bargaining

game has to determine which partner or ring member wins the partnership

or item, and how much compensation the winner pays to each of the other

partners or ring members. Van Essen and Wooders (2016) study a sequential

compensation auction for dissolving partnerships. Proposition 4 shows that

the sequence of payoffs obtained by mimic deviations in this auction forms a

martingale.

Our results thus establish that sequences of mimic deviations in common

multi-unit auctions or in dynamic bargaining problems yield martingales in

payoffs. A powerful result, known as the Martingale Stopping Theorem, al-

lows us to substantially expand the set of strategic deviations that are costless

to a bidder.3 It tells us that any rule that a bidder uses to start, continue, or

stop a mimic deviation yields the same expected payoff to the bidder. The

bidder’s decision might be randomized or it might depend on the history of

prices realized in prior rounds of a multi-unit auction or the compensations

paid to exiting partners in an auction for dissolving partnerships.

3Ross (1996) is a standard reference on stochastic processes. Chapter 6 in this text

presents results concerning martingales. The Martingale Stopping Theorem (p. 300), in

particular, plays a central role in our strategic interpretation of the martingale results.
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In the Online Appendix, we study more complex generalized mimic devi-

ations in sequential Dutch auctions in which a bidder, rather than withdraw-

ing entirely from the auction in a round, shades his bid below its equilibrium

value. We show that a sequence of generalized mimic deviations of this kind

also yields a martingale.4 Taken together, our results establish that bid-

ders have flat incentives to play equilibrium in sequential auctions, when the

winning bid at each round is disclosed.

Related Literature

Flat Payoffs and the “Metric Wars”

Equilibrium in auctions and games is often characterized by the solution

to a system of first order conditions, with each player’s payoff flat at their

(unique) best response bid/action. The shape of payoffs in the neighbor-

hood of equilibrium is important since it affects the incentives of players to

learn and play equilibrium. In the early experimental auction literature, this

issue lead to a controversy known as the “metrics wars.” Harrison (1989)

argued that the deviations from Bayes Nash equilibrium risk-neutral bidding

reported by Cox, Smith, andWalker (1983) were inconsequential in monetary

terms, with subjects forgoing in expectation merely pennies relative to their

equilibrium earnings, and thus these deviations did not warrant rejection of

the risk-neutral bidding model. Kagel and Roth (1992) provides evidence

supporting this view, showing for first-price sealed-bid auctions that the dif-

ference of observed and equilibrium bids, as a proportion of equilibrium bids,

is far larger for bidders with low values, whose payoffs are less sensitive to

their bids given their low probability of winning in equilibrium.5

4We study mimic deviations in which a bidder withdraws from bidding for one or more

rounds, rather than these more general deviations, in order to simplify the exposition.
5See Table 1 of Kagel and Roth (1992), which reports data from Dyer, Kagel, and

Levin (1989) and Battalio, Kogut, and Meyer (1990).
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Our results show that payoffs in sequential auctions are not just flat at

a bidder’s equilibrium bid, but are in fact constant for all bids less than the

equilibrium bid, so long as the bidder bids optimally at subsequent rounds.

In this respect, equilibrium resembles mixed-strategy Nash equilibrium in

normal form games, which has the property that a player’s payoff is constant

for all strategies which have the same support as the player’s equilibrium

mixture. In a mixed-strategy Nash equilibrium, a player has no positive

incentive to mix in the equilibrium proportions. And, indeed, mixed-strategy

Nash equilibrium tends to perform poorly in laboratory tests: subjects fail to

mix in the equilibrium proportions and they exhibit serial correlation in their

action choices.6 Likewise, for the same reasons we might expect equilibrium

to perform poorly in sequential auctions.

Price Transparency

When selling multiple units of a good via auction the seller has several de-

cisions to make: What auction format to use? Should there be a reservation

price? And, if the seller chooses a sequential auction, then what informa-

tion should be revealed after each unit is sold? Cason, Kannan, and Siebert

(2011) studies, both theoretically and experimentally, the consequences of

disclosing only the winning bid versus disclosing all bids.7 Bergemann and

Horner (2018) considers an infinite sequence of first-price sealed-bid auctions

in which each bidder’s private value is constant across auctions. It char-

acterizes equilibrium for three information disclosure regimes: no bids are

observed, all bids are observed, and only the winner’s bid is observed. Both

papers concern how the information disclosure regime affects equilibrium

bidding.

6See Chapter 3 of Camerer (2003) for a very nice survey of the experimental literature

on mixed-strategy equilibrium.
7They consider a two-round first-price sealed-bid procurement auction. Each bidder is

privately informed of his cost of supplying a unit, and this cost is the same at each round.
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The present paper studies equilibrium in sequential auctions when bidders

have single-unit demands and winning bids are disclosed. Unlike the papers

above, equilibrium bids in a sequential first-price sealed-bid auction are the

same, whether or not the winning bid is disclosed at the end of each round.

The disclosure rule, however, affects the bidders’incentives to follow equilib-

rium: If the winning bid is not disclosed, then a bidder who deviates from

equilibrium obtains less than his equilibrium payoff. In the present paper we

show that if the winning bid is disclosed, then a bidder has a wide class of

deviations from equilibrium for which he obtains his equilibrium payoff. Such

deviations, while harmless to the deviating bidder, reduce seller revenue. To

our knowledge, this consideration in auction design has not been studied.

Martingales in Sequential Auctions

In an independent private values setting, where multiple identical items

are sold sequentially and bidders have unit demands, Weber (1983) estab-

lished that the sequence of equilibrium prices in sequential first and second-

price sealed-bid auctions is a martingale (also see Milgrom andWeber (2000)).

In other words, conditional on the price of the last unit sold (and all prior

prices), the expected equilibrium price of the next unit equals the price of

the last unit —on average, prices have no drift, either up or down. This result

obtains when all bidders play equilibrium.

In this paper, by contrast, we consider the payoff consequences to a single

bidder who deviates from equilibrium in a sequential auction, and examine

the sequence of random payoffs the bidder could obtain by different length

mimic deviations. In the standard selling environment, the sequence of devi-

ation payoffs obtained in the sequential Dutch auction is a supermartingale

when units are heterogeneous and a martingale when units are homogeneous.

The same approach extends to bargaining games as well: the sequence of

mimic deviations in the dynamic partnership dissolution auction forms a

martingale. The key strategic implication of these martingale results is a
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player’s incentives to follow equilibrium are flat.

Declining Price Anomaly

The “no-drift”feature of equilibrium prices in first and second-price se-

quential auctions is testable, but empirical studies tend to reject this hypoth-

esis. Ashenfelter (1989) and McAfee and Vincent (1993), for example, find

that prices decline in sequential auctions of homogenous lots of wine. This

empirical regularity is known as the declining price anomaly.

Several models have been proposed to explain the anomaly. McAffee

and Vincent (1993), Mezzeti (2011), and Hu and Zou (2015) examine the

role of risk aversion in creating declining prices. Ghosh and Liu (2021) pro-

vide an explanation based on ambiguity aversion. One can show that when

units are heterogeneous and bidders are risk neutral, then equilibrium prices

in sequential Dutch auctions form a supermartingale —i.e., they decline in

expectation.

2 Martingales —A Primer

In this section we provide basic definitions and results for martingales that

are used in the paper. We illustrate the main ideas using the Red or Black

game.

A stochastic process is a sequence of random variables. We will be inter-

ested in a type of stochastic processes known as a martingale.

Definition: Suppose {Πt}Tt=1 is a stochastic process. Then {Πt}Tt=1 forms a

martingale if E [|Πt|] <∞ for all t, and

E [Πt+1|Π1, . . . ,Πt] = Πt.

Example 0 shows that the sequence W1, . . . ,W52 of proportions of red

cards in the Red or Black game is a martingale.
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Example 0: In the Red or Black game, letWt be the proportion of red cards

at time t before the t-th card is flipped. This defines a sequence of random

variables, i.e., a stochastic process, W1, . . . ,W52, where W1 = 1/2. We show

that the sequence W1, . . . ,W52 is a martingale, i.e., for each t ∈ {1, . . . , 51},
we have

E [Wt+1|W1, . . . ,Wt] = Wt.

Let wt denote a realization of Wt, where wt = r/(r + b) and r is the

number of red cards and b is the number of black cards before the t-th card

is flipped. Then

Wt+1 =


r−1
r−1+b

if Wt = r
r+b

and a red card is drawn at time t

r
r+b−1

if Wt = r
r+b

and a black card is drawn at time t,

and so the distribution of Wt+1 is determined by the realized value of Wt,

i.e.,

E [Wt+1|W1, . . . ,Wt] = E [Wt+1|Wt] .

The expected proportion of red cards before the t+1-st card is flipped, given

that Wt = wt, is

E [Wt+1|Wt = wt] =

(
r − 1

r + b− 1

)(
r

r + b

)
+

(
r

r + b− 1

)(
b

r + b

)
=

r

r + b
= wt,

and so

E [Wt+1|W1, . . . ,Wt] = E [Wt+1|Wt] = Wt.

This establishes that the sequence of proportions of red cards forms a mar-

tingale. 4

Definition: The positive integer-valued random variable S is said to be a

random time for the process {Πt}Tt=1 if the event {S = t} is determined by
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Π1, . . . , Πt. Furthermore, if
∑T

t=1 Pr({S = t}) = 1, then we say S defines a

stopping time.

In the paper we will exploit the Martingale Stopping Theorem which, for

completeness, we state now.

Martingale Stopping Theorem: Let {Πt}Tt=1 be a martingale and suppose

S is a stopping time for this process. Then E[ΠS] = E[Π1].

A betting strategy σ in the Red or Black game identifies a probability of

betting at each t as a function of the history of cards flipped. More formally,

betting strategy is a sequence {σt}51
t=1 such that σt : {r, b}t−1 →4{bet, wait}

for each t, and σ52(◦) = bet. A betting strategy σ identifies a stopping time.

We are interested in the probability of winning as a function of σ. Let

W σ be the random variable which is the fraction of red cards at the time the

player bets/stops, when following σ. Since W1, . . . ,W52 is a martingale and

the rules of the game require that the player bet once, then the Martingale

Stopping Theorem implies that E[W σ] = W1 = 1/2 for any betting strategy

σ. Thus any betting strategy leads to a 1/2 probability of winning (and an

expected payoff of zero).

The lesson of this example is that we don’t need to spend any time learn-

ing a good way to play the Red or Black game. Every betting strategy is

optimal! While this is good news for the gambler, it is concerning from a

forecaster’s viewpoint since it tells us that there is no reason for us to expect

the play of one type of betting strategy over another. We shall see that there

is a Red or Black game embedded in the equilibrium of common sequential

auctions. In particular, there are many bidding strategies which give a bidder

his equilibrium payoff.
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3 Mimic Martingales in Sequential Auctions

We study sequential first-price and second-price auctions with N risk-neutral

bidders, each with unit demand, and K units, where K < N . Bidders’val-

ues are independently and identically distributed according to cumulative

distribution function F with support [0, x̄], where x̄ < ∞ and f ≡ F ′ is

continuous and positive on [0, x̄]. A bidder with value x has utility αix for

unit i, where αi is the “inherent”value of unit i. Order the units so that

α1 ≥ . . . ≥ αK . This setting includes the special cases when units are homo-

geneous, i.e., α1 = · · · = αK = 1, and when units are fully heterogeneous,

i.e., α1 > α2 > · · · > αK . Auctions of the later kind arise when there is

a common ranking by the bidders of the items for sale. For example, when

allocating priority service all the bidders prefer higher priority, being served

sooner rather than later; when selling ad positions on a webpage, all the

advertisers prefer their ads to appear higher on the webpage than lower.

Let X1, . . . , XN be N independent draws from F , and let the order statis-

tics Z(N)
1 , . . . , Z

(N)
N be a rearrangement of the Xi’s such that Z

(N)
1 ≤ Z

(N)
2 ≤

. . . ≤ Z
(N)
N . We write z(N)

j for the realized value of Z(N)
j , sometimes suppress-

ing N if it is obvious from the context.

We consider first the sequential Dutch auction in which units are sold

one at a time, from best (unit 1) to worst (unit K). In the t-th round of the

auction, the price descends continuously from αtx̄. At any time, a bidder

can accept the price. If a bidder accepts a price pt, then he wins unit t, he

pays pt, and he exits the auction. The auction begins for the best remaining

unit, and proceeds in this fashion until all the units are sold. A bidder with

value x who wins at round t obtains a payoff of αtx − pt. The sale price at
each round is observed by all bidders.8 When units are homogenous, then

8This auction is ancient. A description of the basic rules of the auction appears in

Herodotus’Histories (430 BC) as a method for the determination of dowries.
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the auction reduces to the standard sequential Dutch auction.

Proposition 1 provides the risk neutral equilibrium bidding strategies for

the sequential Dutch auction. When units are homogenous, the equilibrium

bid function is well known, e.g., page 291 of Krishna (2010).

Proposition 1: The unique symmetric equilibrium in increasing and dif-

ferentiable bidding strategies for the sequential Dutch auction is given by

β(x) = (βt(x))Kt=1 where, for each t = 1, . . . , K, we have

βt(x) = E
[
(αt − αt+1)Z

(N−1)
N−t + βt+1(Z

(N−1)
N−t )|Z(N−1)

N−t < x < Z
(N−1)
N−t+1

]
,

and where βK+1(x) ≡ 0 and αK+1 ≡ 0. Equivalently,

βt(x) =
K∑
j=t

E
[
(αj − αj+1)Z

(N−1)
N−j |Z

(N−1)
N−t < x < Z

(N−1)
N−t+1

]
.

Note that β is also the equilibrium of the first-price sealed-bid auction

since the auction is strategically equivalent to the sequential Dutch auction.

Mimic Deviations in The Sequential Dutch Auction

Consider a bidder with value x, in round t < K, at the moment the

price reaches his equilibrium bid. The bidder has a choice. If he plays

equilibrium and accepts the price, then he wins an item and obtains a payoff

of Πt(x) = αtx− βt(x).

The bidder can instead deviate from equilibrium. We consider the specific

deviation in which the bidder does not accept the price, he observes the

m prices realized in rounds t, . . . , t + m − 1, for m ≤ K − t, and then

he bids optimally at round t + m. Since the equilibrium bid function is

increasing, from the price pt = βt(Z
(N−1)
N−t ) he infers the value z(N−1)

N−t of the

bidder winning in the t-th round, and so on, until, from the price pt+m−1 =

βt+m−1(Z
(N−1)
N−(t+m−1)) he infers z

(N−1)
N−(t+m−1). The deviating bidder’s optimal

bid at round t + m is βt+m(z
(N−1)
N−(t+m−1)), i.e., he mimics the round t + m
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equilibrium bid of the previous-round’s winner. We call such a deviation an

“m-round mimic”deviation.9 By following this deviation he wins an item

and obtains a payoff of αt+mx− βt+m(z
(N−1)
N−(t+m−1)).

Let Πm
t (x) denote the random variable representing the payoff at round t

to a bidder with value x from am-round mimic deviation that starts at round

t, where Π0
t (x) ≡ Πt(x) is the bidder’s equilibrium payoff. The sequence of

random variables Πm
t (x), form ∈ {0, . . . , K−t}, defines a stochastic process.

Proposition 2 states that when units are homogenous, then the stochastic

process {Πm
t (x)}K−tm=0 is a martingale.

Proposition 2: In a sequential Dutch auction of K homogeneous units, for

any t ≤ K the stochastic process {Πm
t (x)}K−tm=0 generated by a sequence of

m-round mimic deviations by a bidder with value x is a martingale.

An implication of Proposition 2 is that a bidder has many non-equilibrium

strategies which achieve his equilibrium payoff, when every other bidder fol-

lows equilibrium. In particular, E[Π0
t (x)] = E[Π1

t (x)] = · · · = E[ΠK−t
t (x)].

Example 1 illustrates this result.

Example 1: Consider a sequential Dutch auction of K = 2 homogeneous

units with N = 3 bidders. Values are distributed U [0, 1]. The equilibrium

bidding strategy is

β1(x) =
1

3
x

and

β2(x) =
1

2
x.

Suppose Bidder 1’s value is x and the price reaches 1
3
x (and so Bidder 1 has

9In fact, to execute the m-round mimic deviation the bidder only needs to infer

z
(N−1)
N−(t+m−1) from pt+m−1. However, more complicated deviations, that we describe later,

may condition on the whole sequence of prices.
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the highest value, i.e., Z(3)
3 = x). If he accepts the price, then his payoff is

x− 1

3
x =

2

3
x.

If, instead, he follows a 1-round mimic deviation then he observes Z(3)
2 and

he bids β2(Z
(3)
2 ) at round 2. His expected payoff is

E

[
x− 1

2
Z

(3)
2 |Z

(3)
3 = x

]
= x− 1

2
E
[
Z

(3)
2 |Z

(3)
3 = x

]
=

2

3
x.

This is the same as his actual payoff to playing equilibrium at round 1. 4

While a mimic deviation has no effect on the payoff of the deviating

bidder, it has consequences for the seller and the other bidders. Following

Example 1, suppose Bidder 1 has value x and the price reaches x/3. If Bidder

1 obeys equilibrium, then the sales price at round 1 is x/3 and at round 2 is

z
(3)
2 /2. If instead Bidder 1 executes a 1-round mimic deviation, then the sale

price at round 1 is only z(3)
2 /3. At round 2, Bidder 1 mimics the bidder with

value z(3)
2 , and he wins a unit at price z(3)

2 /2. The mimic deviation, which is

costless in expectation for Bidder 1, reduces seller revenue in the first round

and has no effect on revenue in the second round. The bidder with value z(3)
2

is better off since he buys a unit at price z(3)
2 /3 rather than z(3)

2 /2.

If units are heterogenous, then mimic deviations do not generate a mar-

tingale, as the next example shows.

Example 2: Consider a sequential Dutch auction of K = 2 heterogeneous

units, where α1 > α2, with N = 4 bidders. Values are distributed U [0, 1].

By Proposition 1, the equilibrium bidding strategy is

β1(x) = E
[
(α1 − α2)Z

(N−1)
N−1 |Z

(N−1)
N−1 < x

]
+ E

[
α2Z

(N−1)
N−2 |Z

(N−1)
N−1 < x

]
=

3

4
(α1 − α2)x+

1

2
α2x,

and

β2(x) = E
[
α2Z

(N−1)
N−2 |Z

(N−1)
N−2 < x < Z

(N−1)
N−1

]
=

2

3
α2x.
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Suppose Bidder 1’s value is x > 0 and the price reaches β1(x) (and so Z(4)
4 =

x). If he accepts the price, then his payoff is

α1x−
3

4
(α1 − α2)x− 1

2
α2x =

1

4
(α1 + α2)x.

If, instead, he follows a 1-round mimic deviation, then he observes Z(4)
3 and

he bids β2(Z
(4)
3 ) = 2

3
α2Z

(4)
3 at round 2. His expected payoff is

E

[
α2x−

2

3
α2Z

(4)
3 |Z

(4)
4 = x

]
= α2x− α2

2

3
(
3

4
x) =

1

2
α2x.

Since α1 > α2, then 1
4

(α1 + α2)x > 1
2
α2x and so the 1-round mimic deviation

lowers the bidder’s expected payoff. 4

Remark 1: Suppose that there are H high-quality units and L low-quality

units, where α1 = . . . = αH > αH+1 = . . . = αH+L and H + L = K. Then

a bidder will have a mimic deviation at every round t except for t = H and

t = H + L, i.e., for every round except at rounds where the last unit of a

given quality is sold.

Mimic Deviations in Sealed Bid Auctions

Sequential first and second-price sealed-bid auctions also have the prop-

erty that sequences of mimic deviations generate martingales in payoffs.

Mimic deviations in these auctions have a different structure than in the

sequential Dutch auction. Let β be the equilibrium bid function in a sequen-

tial sealed-bid auction, either first or second price. A bidder with value x

makes an m-round mimic deviation at round t by bidding zero at rounds

t through t + m − 1. From the prices pt, . . . , pt+m−1 he infers the values

z
(N−1)
N−t , . . . , z

(N−1)
N−(t+m−1). There are two cases that govern his optimal bid at

round t+m: If the inferred value at round t+m− 1 is smaller than his own,

i.e., if x > z
(N−1)
N−(t+m−1), then at round t+m the deviating bidder mimics the

round t+m bid of the previous round winner, i.e., he bids βt+m(z
(N−1)
N−(t+m−1)).
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In this case he wins a unit. Otherwise, if x < z
(N−1)
N−(t+m−1), then at round

t + m the bidder makes his equilibrium bid βt+m(x) and he continues to

follow equilibrium thereafter. Let {Πm
t (x)}K−tm=0 be the sequence of payoffs

obtained by mimic deviations of length m ∈ {0, . . . , K − t}.
Proposition 3 establishes that stochastic process {Πm

t (x)}K−tm=0 is a mar-

tingale.

Proposition 3: In a sequential first-price or second-price sealed-bid auction

of K homogeneous units, for any t ≤ K the stochastic process {Πm
t (x)}K−tm=0

generated by a sequence of m-round mimic deviations by a bidder with value

x is a martingale.

The proof of Proposition 3 is provided in the Appendix.10 The following

example illustrates a mimic deviation in a sequential first-price sealed-bid

auction of two homogeneous units.

Example 3: Consider a sequential first-price sealed-bid auction with K =

2. Let β1 and β2 denote, respectively, the round 1 and 2 equilibrium bid

functions. The equilibrium expected payoff of a bidder with value x is

Π0
1(x) = (x− β1(x)) Pr(x > Z

(N−1)
N−1 ) + (x− β2(x)) Pr(Z

(N−1)
N−1 > x > Z

(N−1)
N−2 ).

Define Π1
1(x, Z

(N−1)
N−1 ) to be the payoff of a 1-round mimic deviation to a

bidder with value x when the highest value of a rival bidder is Z(N−1)
N−1 . In

the deviation, the bidder bids zero in round 1. If the bidder has the highest

value, then he mimics the bidder with value Z(N−1)
N−1 in round 2, and he wins

at round 2. If the bidder doesn’t have the highest value then he bids β2(x) in

round 2. He wins a unit if he has the second-highest value, i.e., if x = Z
(N)
N−1,

10Mimic deviations in the sequential English auction are the same as in the second-price

sealed-bid auction, and a sequence of mimic deviations generates a martingale.
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and otherwise he obtains a payoff of zero. Thus we have

Π1
1(x, Z

(N−1)
N−1 ) =


0 - if x < Z

(N−1)
N−2

x− β2(x) - if Z(N−1)
N−2 < x < Z

(N−1)
N−1

x− β2(Z
(N−1)
N−1 ) - if Z(N−1)

N−1 < x.

The expected payoff of a 1-round mimic deviation is E[Π1
1(x, Z

(N−1)
N−1 )]

= E[x− β2(Z
(N−1)
N−1 )|x > Z

(N−1)
N−1 ] Pr(x > Z

(N−1)
N−1 ) + (x− β2(x)) Pr(Z

(N−1)
N−1 > x > Z

(N−1)
N−2 )

= E[x− β2(Z
(N)
N−1)|x = Z

(N)
N ] Pr(x > Z

(N−1)
N−1 ) + (x− β2(x)) Pr(Z

(N−1)
N−1 > x > Z

(N−1)
N−2 )

= Π0
1(x),

where the last equality follows from E[β2(Z
(N)
N−1)|x = Z

(N)
N ] = β1(x) by We-

ber’s Martingale Theorem.11 Thus, at the beginning of round 1, the expected

payoff from following equilibrium, Π0
1(x), is equal to the expected payoff of

a 1-round mimic deviation. 4

4 Mimic Martingales in Sequential Bargain-

ing

The results in the prior section established that a bidder in a sequential

auction has many strategies which yield his equilibrium payoff when all the

other bidders follow equilibrium. This is not unique to selling mechanisms.

Consider, for example, dissolving a partnership of N risk neutral partners.

The problem is to allocate ownership of the firm to a single partner and

to determine the compensation paid to each of the others.12 As before,

11Weber’s Margingale Theorem says that under equilibrium play the expected price in

round 2, conditional on the price at round 1, is equal to the round 1 price.
12A similar allocation problem arises in sequential knock-out auctions used by bidding

rings. See Graham, Marshall, and Richard (1990).
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values for the firm are independently and identically distributed according

to cumulative distribution function F with support [0, x̄], where x̄ <∞ and

f ≡ F ′ is continuous and positive on [0, x̄].

The partnership is dissolved via a compensation auction. In the auction,

the price, starting from zero, rises continuously. Partners (hereafter bidders)

may drop out at any point. A bidder who drops out, surrenders his claim

to the firm and, in return, receives compensation from the (eventual) winner

equal to the difference between the price at which he drops and the price

at which the prior bidder dropped. The auction ends when exactly one

bidder remains. That bidder wins the firm and pays the other bidders their

compensation. Thus in an auction with N bidders, if {pt}N−1
t=1 is the sequence

of dropout prices, then the compensation of the t-th bidder to drop is pt−pt−1,

where p0 = 0, and the winner’s total payment is pN−1 = ΣN−1
t=1 (pt − pt−1).

The unique symmetric equilibrium in increasing and differentiable strate-

gies for the compensation auction is given, for t = 1, . . . , N − 1, by13

βt(x; pt−1) =
N − t

N − t+ 1
pt−1 +

1

N − t+ 1
E
[
Z

(N)
N−1|Z

(N)
t > x > Z

(N)
t−1

]
.

In what follows, we describe mimic deviations in the compensation auction,

and we show that if a bidder makes a mimic deviation then he obtains his

equilibrium expected payoff. Bidders have flat incentives to follow equilib-

rium.

Mimic Deviations in the Compensation Auction

Consider a bidder with value x in round t at the moment the price reaches

his equilibrium bid. If he plays equilibrium and accepts the price, then he

obtains a payoff of Πt(x; pt−1) = βt(x; pt−1)−pt−1 and exits the auction. The

bidder can instead remain in the auction, observe the m drop out prices in

rounds t, . . . , t+m−1, and then bid optimally at round t+m. In particular,

13See Van Essen and Wooders (2016, Proposition 2).
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he observes pt = βt(Z
(N)
t+1 ; pt−1), . . . , pt+m−1 = βt+m−1(Z

(N)
t+m; pt+m−2), from

which he infers the values z(N)
t+1 , . . . , z

(N)
t+m. The deviating bidder’s optimal bid

at round t + m is to mimic the round t + m equilibrium bid of the bidder

with the highest inferred value, i.e., to bid βt+m(z
(N)
t+m; pt+m−1). We again call

such a deviation an m-round mimic deviation.

For each m, let Πm
t (x; pt−1) be the random variable which is the bidder’s

payoff from them-round mimic deviation in the compensation auction, where

Π0
t (x; pt−1) is his payoff if he obeys β, evaluated at the moment he drops out.

Proposition 4: In the compensation auction for dissolving a partnership,

for any t < N − 1, the stochastic process {Πm
t (x; pt−1)}N−1−t

m=0 generated by a

sequence of m-round mimic deviations by a bidder with value x is a martin-

gale.

Example 4A illustrates Proposition 4.

Example 4A: Suppose N = 4 and values are distributed U [0, 1]. The

equilibrium bid functions are

β1(x) =
1

10
x+

3

20
,

β2(x; p1) =
1

6
x+

1

6
+

2

3
p1,

β3(x; p2) =
1

3
x+

1

6
+

1

2
p2.

Consider a bidder with type x = 1/2 when, in round 1, the bid has reached

his equilibrium drop-out price of β1(1/2) = 1/5. The bidder knows he has

the lowest type (i.e., Z(4)
1 = 1/2) and, if he obeys β, he obtains a payoff

Π0
1 (1/2) = 1/5.

If he follows a 1-round mimic deviation, then he remains in the auction

until the bidder with the next lowest value drops at price p1 = β1(Z
(4)
2 ). He

infers Z(4)
2 from p1 and then in round 2 he bids as if his value were Z

(4)
2 , i.e.,
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he drops at the price β2(Z
(4)
2 ; β1(Z

(4)
2 )). The payoff from this deviation is the

random variable

Π1
1(Z

(4)
2 ) = β2(Z

(4)
2 ; β1(Z

(4)
2 ))− β1(Z

(4)
2 )

=
1

6
Z

(4)
2 +

1

6
− 1

3

(
1

10
Z

(4)
2 +

3

20

)
=

2

15
Z

(4)
2 +

7

60
.

The bidder’s expected payoff from the deviation is14

E

[
Π1

1(Z
(4)
2 )

∣∣∣∣Z(4)
1 =

1

2

]
=

2

15
E

[
Z

(4)
2

∣∣∣∣Z(4)
1 =

1

2

]
+

7

60
=

1

5
= Π0

1 (1/2) .

In other words, conditional on receiving compensation in round 1, the bid-

der obtains the same expected payoff from the 1-round mimic deviation as

obtained from equilibrium.

Last, if he follows a 2-round mimic deviation, the bidder waits two rounds,

he infers the second and third lowest values Z(4)
2 and Z(4)

3 , respectively, from

the drop prices in rounds 1 and 2, and he then mimics a bidder with type

Z
(4)
3 in round 3, i.e., he drops at the price β3(Z

(4)
3 ; β2(Z

(4)
3 ; β1(Z

(4)
2 ))). The

payoff from this deviation is the random variable

Π2
1(Z

(4)
3 , Z

(4)
2 ) = β3(Z

(4)
3 ; β2(Z

(4)
3 ; β1(Z

(4)
2 )))− β2(Z

(4)
3 ; β1(Z

(4)
2 ))

=
1

3
Z

(4)
3 +

1

6
− 1

2

(
1

6
Z

(4)
3 +

1

6
+

2

3

(
1

10
Z

(4)
2 +

3

20

))
=

1

4
Z

(4)
3 −

1

30
Z

(4)
2 +

1

30
.

The bidder’s expected payoff from the 2-round mimic deviation, conditioning

on both Z(4)
1 and Z(4)

2 , is

E

[
Π2

1(Z
(4)
3 , Z

(4)
2 )

∣∣∣∣Z(4)
1 =

1

2
, Z

(4)
2 = z2

]
.

14For the calculations below we use that

E

[
Z
(4)
2 |Z

(4)
1 =

1

2

]
=

5

8
, E

[
Z
(4)
3 |Z

(4)
1 =

1

2

]
=

3

4
, and E

[
Z
(4)
4 |Z

(4)
1 =

1

2

]
=

7

8
.
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From the Markov property of order statistics, this is

E
[
Π2

1(Z
(4)
3 , Z

(4)
2 )
∣∣∣Z(4)

2 = z2

]
.

Direct calculation yields

E
[
Π2

1(Z
(4)
3 , Z

(4)
2 )|Z(4)

2 = z2

]
=

1

4
E
[
Z

(4)
3 |Z

(4)
2 = z2

]
− 1

30
z2 +

1

30

=
1

4

(
2

3
z2 +

1

3

)
− 1

30
z2 +

1

30

=
2

15
z2 +

7

60
= Π1

1(z2).

Thus, we have demonstrated that the sequence {Π0
1, Π1

1, Π2
1} forms a mar-

tingale. 4

Building on Example 4A, Example 4B computes the expected payoff of

a 1 round and 2 round mimic deviation.

Example 4B: Recall from Example 4A that the bidder’s expected payoff

from a 1-round mimic deviation in round 1 is

E

[
Π1

1(Z
(4)
2 )

∣∣∣∣Z(4)
1 =

1

2

]
=

1

5
.

Using the expression for Π2
1(Z

(4)
3 , Z

(4)
2 ) from Example 4A, the bidder’s ex-

pected payoff from a 2-round mimic deviation in round 1 is

E

[
Π2

1(Z
(4)
3 , Z

(4)
2 )

∣∣∣∣Z(4)
1 =

1

2

]
=

1

4

(
3

4

)
− 1

30

(
5

8

)
+

1

30
=

1

5
.

Thus, when the price reaches his equilibrium bid in round 1, a bidder with

value 1/2 is indifferent between playing equilibrium, playing a 1-round mimic

deviation, and playing a 2-round mimic deviation. 4

In the Red or Black game, the Martingale Stopping Theorem implies that

any betting strategy, including (possibly randomized) strategies that depend
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on the history of cards turned over, yields the same payoff as betting imme-

diately. An analogous result applies to sequential Dutch auctions, sequential

first- and second-price sealed-bid auctions, and the compensation auction. A

bidder is indifferent between equilibrium play, any mimic deviation, and any

history dependent strategy for choosing when to start, continue, and stop a

mimic deviation.

Example 4C shows an application of the Martingale Stopping Theorem

to the compensation auction.

Example 4C: For the compensation auction, consider a bidder with value

x when at round 1 the price reaches his equilibrium bid β1(x). If he follows

equilibrium, then he obtains compensation of β1(x). Proposition 4 and the

Martingale Stopping Theorem imply that, for arbitrary ε ≥ 0, he obtains his

equilibrium payoff from any deviation of the form:

Round 1: Never drop. Observe the Round 1 price p1. Then p1 = β1(Z
(4)
2 )

identifies Z(4)
2 .

Round 2: Drop at β2(Z
(4)
2 ; p1) if Z(4)

2 ≥ ε+x. Otherwise never drop, in which

case p2 = β2(Z
(4)
3 ; p1) identifies Z(4)

3 .

Round 3: Bid β3(Z
(4)
3 ; p2).

In this deviation, the stopping time depends on the history of prices. The

bidder never drops at round 1. At round 2, he (i) mimics the round 1 winner

if the round 1 winner’s value exceeds his own by ε, and (ii) he does not drop

otherwise. If he remains in the auction at round 3, then he mimics the round

2 winner.15 If x = 1/2, for example, then the expected payoff is 1/5 for any

ε. 4
15This deviation is formally described by the strategy β̂ where β̂1(x) = x̄. If β−11 (p1) < x

then β̂2(x; p1) = β2(x; p1) and β̂3(x; p1, p2) = β2(x; p1, p2). If β−11 (p1) ≥ x then

β̂2(x; p1) = β2(Z
(4)
2 ; p1) if Z

(4)
2 ≥ ε+x, where Z(4)2 = β−11 (p1), and β̂2(x; p1) = x̄ otherwise.

In round 3, β̂2(x; p1, p2) = β2(Z
(4)
3 ; p1, p2), where Z

(4)
3 = β−12 (p2; p1).
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A mimic deviation at round t of m rounds, where m ≤ N − 1 − t, has
the property that the bidder obtains compensation (rather than winning

the firm). Any deviation in which the bidder wins the firm with positive

probability will lower his expected payoff.

Example 4D: Continuing Example 4, suppose that when the price reaches

his equilibrium bid, instead of following a mimic deviation a bidder with type

x = 1/2 deviates by simply remaining in the auction until he wins the firm.

Then he obtains his value minus the price at which the third bidder drops.

The random payoff of this strategy is

1

2
− β3(Z

(4)
4 ; β2(Z

(4)
3 ; β1(Z

(4)
2 )))

=
1

2
−
[

1

3
Z

(4)
4 +

1

6
+

1

2

[
1

6
Z

(4)
3 +

1

6
+

2

3

[
1

10
Z

(4)
2 +

3

20

]]]
.

The expected payoffof this strategy, conditional on Z(4)
1 = 1/2, is only−7/40.

4

5 Discussion

We have studiedm-round mimic deviations in which a bidder withdraws from

the auction for m rounds, gathers information about his rivals’values, and

then bids optimally. We have shown that bidders obtain their equilibrium

payoffs from such deviations, and hence their payoffs are flat in equilibrium.

Applying the Martingale Stopping Theorem establishes that there is a large

class of strategies for which a bidder obtains his equilibrium payoff.

The family of strategies which yields a bidder his equilibrium payoff is

even larger. Consider, for example, a bidder with value x, at round t, in a

sequential Dutch auction at the moment the price reaches his equilibrium

bid. The bidder can deviate by shading his bid, bidding b′t = βt(λx) for some

λ < 1. There are two possible outcomes: He may observe a winning bid pt at
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round t, where pt = βt(y) > b′t, i.e., λx < y < x. In this case, at round t+ 1

he mimics the round t+ 1 equilibrium bid of the round t winner, i.e., he bids

βt+1(y). Alternatively, he may win at his bid b′t. We call such a deviation

a “generalized”mimic deviation. This deviation also yields the bidder his

equilibrium payoff. In the Online Appendix we show that such a sequence of

generalized mimic deviations yields a martingale in payoffs. Thus the set of

deviations which yields a bidder his equilibrium payoff is considerably larger

than the set obtained from standard mimic deviations.

6 Appendix

The joint density of Z(N)
1 , . . . , Z

(N)
N is

g
(N)
1,...,N(z1, . . . , zN) = N !

∏N

i=1
f(zi)

if z1 ≤ z2 ≤ . . . ≤ zN and is zero otherwise. The conditional order statistic

densities which appear in the proofs can all be derived from this expression.

Proof of Proposition 1: In the K-th round (i.e., the last round), given

the sales price pK−1 at the prior round, a bidder with value x can infer

Z
(N−1)
N−K+1 = zN−K+1. His expected payoff from bidding b is therefore

β−1K (b;pK−1)∫
0

[αKx− b] g(N−1)
N−K (zN−K |Z(N−1)

N−K+1 = zN−K+1)dzN−K .

Differentiating with respect to b yields

1

β′K(β−1
K (b; pK−1); pK−1)

[αKx− b] g(N−1)
N−K (β−1

K (b; pK−1)|Z(N−1)
N−K+1 = zN−K+1)

−G(N−1)
N−K (β−1

K (b; pK−1)|Z(N−1)
N−K+1 = zN−K+1) = 0.
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Evaluated at b = βK(x; pK−1) this expression becomes

1

β′K(x; pK−1)
[αKx− βK(x; pK−1)] g

(N−1)
N−K (x|Z(N−1)

N−K+1 = zN−K+1)

−G(N−1)
N−K (x|Z(N−1)

N−K+1 = zN−K+1) = 0.

Re-arranging

β′K(x; pK−1)G
(N−1)
N−K (x|Z(N−1)

N−K+1 = zN−K+1) + βK(x; pK−1)g
(N−1)
N−K (x|Z(N−1)

N−K+1 = zN−K+1)

= αKxg
(N−1)
N−K (x|Z(N−1)

N−K+1 = zN−K+1)

or

d

dx

(
βK(x; pK−1)G

(N−1)
N−K (x|Z(N−1)

N−K+1 = zN−K+1)
)

= αKxg
(N−1)
N−K (x|Z(N−1)

N−K+1 = zN−K+1).

From the Fundamental Theorem of Calculus,

βK(x;pK−1)G
(N−1)
N−K (x|Z(N−1)

N−K+1 = zN−k+1) =

∫ x

0

αKzg
(N−1)
N−K (z|Z(N−1)

N−K+1 = zN−k+1)dz+C,

where C is a constant. Since the LHS of the above equation equals zero when

x = 0, then C = 0. Hence

βK(x) =

∫ x
0
αKzg

(N−1)
N−K (z|Z(N−1)

N−K+1 = zN−K+1)dz

G
(N−1)
N−K (x|Z(N−1)

N−K+1 = zN−K+1)

=

∫ x
0
αKz(N −K)F (z)N−K−1f(z)dz

F (x)N−K

= E
[
αKZ

(N−1)
N−K |Z

(N−1)
N−K < x < Z

(N−1)
N−K+1

]
.

Likewise, given βt+1(x), the symmetric argument establishes that

βt(x) =

∫ x
0

[
(αt − αt+1) z + βt+1(z)

]
(N − t)F (z)N−t−1f(z)dz

F (x)N−t

= E
[
(αt − αt+1)Z

(N−1)
N−t + βt+1(Z

(N−1)
N−t )|Z(N−1)

N−t < x < Z
(N−1)
N−t+1

]
.
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We now show that βt(x) can be written as

βt(x) =

K∑
j=t

E
[
(αj − αj+1)Z

(N−1)
N−j |Z

(N−1)
N−t < x < Z

(N−1)
N−t+1

]
.

The proof is by induction. The claim is trivially true for t = K. Suppose

the claim is true for t+ 1, i.e.,

βt+1(x) =

K∑
j=t+1

E
[
(αj − αj+1)Z

(N−1)
N−j |Z

(N−1)
N−t−1 < x < Z

(N−1)
N−t

]
.

=
K∑

j=t+1

(αj − αj+1)

∫ x

0

q
(N − t− 1)!F (q)N−j−1f(q)[F (x)− F (q)]j−t−1

(N − j − 1)!(j − t− 1)!F (x)N−t−1
dq.

We can write βt(x) as

βt(x) =

∫ x
0

(αt − αt+1) z(N − t)F (z)N−t−1f(z)dz

F (x)N−t

+

∫ x
0
βt+1(z)(N − t)F (z)N−t−1f(z)dz

F (x)N−t

=

∫ x
0

(αt − αt+1) z(N − t)F (z)N−t−1f(z)dz

F (x)N−t

+
K∑

j=t+1

(αj − αj+1)

∫ x

0

∫ z

0

q
(N − t)!F (q)N−j−1f(q)[F (z)− F (q)]j−t−1f(z)

(N − j − 1)!(j − t− 1)!F (x)N−t
dqdz
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Changing the order of integration we have

βt(x) =

∫ x
0

(αt − αt+1) z(N − t)F (z)N−t−1f(z)dz

F (x)N−t

+
K∑

j=t+1

(αj − αj+1)

∫ x

0

∫ x

q

(N − t)!qF (q)N−j−1f(q)[F (z)− F (q)]j−t−1f(z)

(N − j − 1)!(j − t− 1)!F (x)N−t
dzdq

=

∫ x
0

(αt − αt+1) z(N − t)F (z)N−t−1f(z)dz

F (x)N−t

+
K∑

j=t+1

(αj − αj+1)

∫ x

0

(N − t)!qF (q)N−j−1f(q)[F (x)− F (q)]j−t

(N − j − 1)!(j − t)!F (x)N−t
dq

=
K∑
j=t

E
[
(αj − αj+1)Z

(N−1)
N−j |Z

(N−1)
N−t < x < Z

(N−1)
N−t+1

]
,

which establishes the result. �

Proof of Proposition 2: Consider a bidder with value x and suppose, in

round t, that the price reaches pt = βt(x). This bidder knows that he has the

t-th highest value, i.e., Z(N)
N−t+1 = zN−t+1 = x. We show that the expected

payoff of an m+ 1 round mimic deviation is the same as the realized payoff

of an m round mimic deviation, where t+m < K.

In an m-round mimic deviation, at round t + m he bids as though his

type is zN−(t+m)+1, he wins an item, and he pays

pt+m = βt+m(zN−(t+m)+1) = E
[
Z

(N−1)
N−K |Z

(N−1)
N−(t+m) < zN−(t+m)+1 < Z

(N−1)
N−(t+m−1)

]
.

In an m+ 1-round mimic deviation, he wins a unit and pays

βt+m+1(Z
(N)
N−(t+m+1)+1) = βt+m+1(Z

(N)
N−(t+m)).

The expected price is

E
[
βt+m+1(Z

(N)
N−(t+m))|Z

(N)
N−(t+m)+1 = zN−(t+m)+1

]
.

We next show that the expected price is βt+m(zN−(t+m)+1).
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From the equilibrium bid function, for any q we have

βt+m+1(q) = E
[
Z

(N−1)
N−K |Z

(N−1)
N−(t+m+1) < q < Z

(N−1)
N−(t+m)

]

=
q∫

0

z (N−(t+m)−1)!F (z)N−K−1f(z)[F (q)−F (z)]K−(t+m)−1

(N−K−1)!(K−(t+m)−1)!F (q)N−(t+m)−1
dz

Hence E
[
βt+m+1(Z

(N)
N−(t+m))|Z

(N)
N−(t+m)+1 = zN−(t+m)+1

]
is

zN−(t+m)+1∫
0

q∫
0

z
(N − (t+m)− 1)!F (z)N−K−1f(z) [F (q)− F (z)]K−(t+m)−1

(N −K − 1)! (K − (t+m)− 1)!F (q)N−(t+m)−1

×(N − (t+m))F (q)N−(t+m)−1f(q)

F (zN−(t+m)+1)N−(t+m)−1
dzdq,

which can be written as

zN−(t+m)+1∫
0

q∫
0

z
(N − (t+m))!F (z)N−K−1f(z) [F (q)− F (z)]K−(t+m)−1 f(q)

(N −K − 1)! (K − (t+m))!F (zN−(t+m)+1)N−(t+m)−1
dzdq.

Reversing the order of integration, this expectation becomes

zN−(t+m)+1∫
0

zN−(t+m)+1∫
z

z (N−(t+m))!F (z)N−K−1f(z)[F (q)−F (z)]K−(t+m)−1f(q)

(N−K−1)!(K−(t+m))!F (zN−(t+m)+1)N−(t+m)−1
dqdz

=
zN−(t+m)+1∫

0

z (N−(t+m))!
(N−K−1)!(K−(t+m))!

F (z)N−K−1f(z)[F (zN−(t+m)+1)−F (z)]
K−(t+m)

F (zN−(t+m)+1)N−(t+m)−1
dz

= E
[
Z

(N−1)
N−K |Z

(N−1)
N−(t+m) < zN−(t+m)+1 < Z

(N−1)
N−(t+m−1)

]

= βt+m(zN−(t+m)+1),

which establishes the result. This implies the sequence of prices associated

with a sequence of mimic deviations is a martingale. Since the payoff of
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a bidder with value x is his value minus the price he pays, it follows that

{Πm
t (x)}K−tm=0 is a martingale. �

Proof of Proposition 3: We provide the proof for the first-price sealed-bid

auction. The proof for the second-price auction is similar.

Consider an arbitrary bidder with value x, at a round t, who follows anm-

round mimic deviation, where t+m < K. In a sealed-bid auction this entails

bidding zero in rounds t, . . . , t + m − 1. In each round s the bidder infers

the winner’s value Z(N−1)
N−s = zN−s from the winner’s bid. At round t + m,

if zN−(t+m−1) < x then he mimics zN−(t+m−1) and bids βt+m(zN−(t+m−1)).

Otherwise he makes his equilibrium bid βt+m(x).

We establish the result by showing that the expected payoff of an m+ 1-

round mimic deviation is the same as the realized payoff of an m-round

mimic deviation. There are two cases to consider: (i) zN−(t+m−1) < x, and

(ii) zN−(t+m−1) ≥ x.

Case (i): At round t+m, he wins an item and he pays

βt+m(zN−(t+m−1)) = E
[
Z

(N−1)
N−K |Z

(N−1)
N−(t+m) < zN−(t+m−1) < Z

(N−1)
N−(t+m−1)

]
,

obtaining a payoffof x−βt+m(zN−(t+m−1)). Note that Z
(N−1)
N−(t+m−1) = zN−(t+m−1)

and zN−(t+m−1) < x implies Z(N)
N−(t+m−1) = Z

(N−1)
N−(t+m−1) = zN−(t+m−1) < x.

In an m + 1-round mimic deviation, he observes the next smallest value

Z
(N)
N−(t+m) and wins an item with a bid equal to βt+m+1(Z

(N)
N−(t+m)). The ex-

pected price at round t+m+ 1 is

E
[
βt+m+1(Z

(N)
N−(t+m))|Z

(N)
N−(t+m−1) = zN−(t+m−1)

]
= βt+m(zN−(t+m−1)),

where the equality was established in the proof of Proposition 2, and therefore

also obtains an expected payoff of x− βt+m(zN−(t+m−1)).

Case (ii): At round t+m he makes his equilibrium bid βt+m(x). This bid

is not guaranteed to win. Let

φk(x) = Pr(Z
(N−1)
N−k < x < Z

(N−1)
N−(k−1)|Z

(N−1)
N−(t+m−1) = zN−(t+m−1))
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denote the probability that the bidder has the highest value of the active

bidders in round k ≥ t + m, conditional on Z(N−1)
N−(t+m−1) = zN−(t+m−1) being

the winner’s value at round t+m−1. The deviating bidder’s expected payoff

from the m-round mimic deviation is

πt+m = (x− βt+m(x))φt+m(x) +
K∑

k=t+m+1

(x− βk(x))φk(x).

Now consider the payoff of an m + 1-round mimic deviation. In round

t + m of the deviation, he observes Z(N−1)
N−(t+m). If this value is smaller value

than x, then in round t + m + 1 he mimics the observed value Z(N−1)
N−(t+m)

and obtains a payoff of x − βt+m+1(Z
(N−1)
N−(t+m)). Otherwise, he continues to

play equilibrium. His random payoff from following an m + 1-round mimic

deviation is therefore

Πt+m+1 =


x− βt+m+1(Z

(N−1)
N−(t+m)) if Z(N−1)

N−(t+m) < x

x− βk(x) if Z(N−1)
N−k < x < Z

(N−1)
N−(k−1), for k = t+m+ 1, ..., K

0 otherwise.

Note that if Z(N−1)
N−(t+m) < x if and only if Z(N)

N−(t+m) < x = Z
(N)
N−(t+m−1). Hence,

his expected payoff is

E
[
x− βt+m+1(Z

(N−1)
N−(t+m))|Z

(N−1)
N−(t+m) < x

]
φt+m(x) +

K∑
k=t+m+1

(x− βk(x))φk(x)

= E
[
x− βt+m+1(Z

(N)
N−(t+m))|Z

(N)
N−(t+m)+1 = x

]
φt+m(x) +

K∑
k=t+m+1

(x− βk(x))φk(x).

Using again that

E
[
βt+m+1(Z

(N)
N−(t+m))|Z

(N)
N−(t+m−1) = x

]
= βt+m(x),

the expected payoff of the m+ 1-round mimic deviation can be written as

(x− βt+m(x))φt+m(x) +

K∑
k=t+m+1

(x− βk(x))φk(x),
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which is πt+m, as desired. �

Proof of Proposition 4: Consider a bidder with value x in round t at

the moment the price reaches his equilibrium bid. The bidder has the t-th

lowest value. Let m be such that t + m < N − 1. If the bidder follows

the m-round mimic deviation, then at round t + m the bidder (i) infers

Z
(N)
1 = z1, . . . , Z

(N)
t−1 = zt−1, (ii) he knows his own value x is the t-th lowest,

i.e., Z(N)
t = zt = x, and if m > 0, then (iii) he infers Z(N)

t+1 = zt+1, . . . , Z
(N)
t+m =

zt+m. Under the mimic deviation, he bids in round t + m as though his

type were zt+m and drops at price pt+m = βt+m(zt+m; pt+m−1). He obtains

compensation

πmt (zt+m) = pt+m − pt+m−1 =
E
[
Z

(N)
N−1|Z

(N)
t+m > zt+m > Z

(N)
t+m−1

]
− pt+m−1

N − (t+m) + 1
.

We show that the bidder obtains the same expected compensation if,

instead of dropping at round t+m at price pt+m, he follows the m+ 1-round

mimic deviation.16 In that case, he observes the rival with the next lowest

value drop in round t+m and infers his rivals’type to be Z(N)
t+m+1. In round

t + m + 1 he bids as though his own type is Z(N)
t+m+1 and therefore he is the

next bidder to drop since all bidders of type Z(N)
t+m+1 or lower have already

dropped. He obtains compensation

Πm+1
t (Z

(N)
t+m+1) = βt+m+1(Z

(N)
t+m+1; βt+m(Z

(N)
t+m+1; pt+m−1))−βt+m(Z

(N)
t+m+1; pt+m−1).

Using the equilibrium bid function given in Section 4, if q is the realized

value of Z(N)
t+m+1, then in round t+m+ 1 the bidder obtains compensation

πm+1
t (q) =

E
[
Z

(N)
N−1|Z

(N)
t+m+1 > q > Z

(N)
t+m

]
− βt+m(q; pt+m−1)

N − (t+m)
,

16Since t + m < N − 1 then t + m + 1 ≤ N − 1 and the bidder drops out rather than

winning.
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where

βt+m(q; pt+m−1) =
E
[
Z

(N)
N−1|Z

(N)
t+m > q > Z

(N)
t+m−1

]
N − (t+m) + 1

+
N − (t+m)

N − (t+m) + 1
pt+m−1.

Define

D(q) ≡ N − (t+m) + 1

N − (t+m)
E
[
Z

(N)
N−1|Z

(N)
t+m+1 > q > Z

(N)
t+m

]
− 1

N − (t+m)
E
[
Z

(N)
N−1|Z

(N)
t+m > q > Z

(N)
t+m−1

]
.

Then we can write

πm+1
t (q) =

D(q)− pt+m−1

N − (t+m) + 1
.

The term E[Z
(N)
N−1|Z

(N)
t+m+1 > q > Z

(N)
t+m] is∫ x̄

q

r
(N − (t+m))(N − (t+m)− 1)f(r)[1− F (r)][F (r)− F (q)]N−(t+m)−2

[1− F (q)]N−(t+m)
dr

and the term E[Z
(N)
N−1|Z

(N)
t+m > q > Z

(N)
t+m−1] is∫ x̄

q

r
(N − (t+m) + 1)(N − (t+m))f(r)[1− F (r)][F (r)− F (q)]N−(t+m)−1

[1− F (q)]N−(t+m)+1
dr.

Thus D(q) is∫ x̄

q

r
(N − (t+m) + 1) (N − (t+m)− 1)f(r)[1− F (r)][F (r)− F (q)]N−(t+m)−2

[1− F (q)]N−(t+m)
dr

−
∫ x̄

q

r
(N − (t+m) + 1)f(r)[1− F (r)][F (r)− F (q)]N−(t+m)−1

[1− F (q)]N−(t+m)+1
dr,

which can be written as∫ x̄

q

r (N − (t+m) + 1) f(r)[1− F (r)]

× [F (r)− F (q)]N−(t+m)−2 ((N − (t+m)− 1)[1− F (q)]− [F (r)− F (q)])

[1− F (q)]N−(t+m)+1
dr.
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Hence E[D(Z
(N)
t+m+1)|Z(N)

t+m = zt+m] equals∫ x̄

zt+m

∫ x̄

q

r (N − (t+m) + 1) f(r)[1− F (r)]

× [F (r)− F (q)]N−(t+m)−2 ((N − (t+m)− 1)[1− F (q)]− [F (r)− F (q)])

[1− F (q)]N−(t+m)+1

×(N − (t+m))f(q)[1− F (q)]N−(t+m)−1

[1− F (zt+m)]N−(t+m)
drdq.

Changing the order of integration, this can be rewritten as∫ x̄

zt+m

∫ r

zt+m

r (N − (t+m) + 1) f(r)[1− F (r)]

× [F (r)− F (q)]N−(t+m)−2 ((N − (t+m)− 1)[1− F (q)]− [F (r)− F (q)])

[1− F (q)]N−(t+m)+1

×(N − (t+m))f(q)[1− F (q)]N−(t+m)−1

[1− F (zt+m)]N−(t+m)
dqdr.

Simplifying further yields∫ x̄

zt+m

r (N − (t+m) + 1) (N − (t+m))f(r)[1− F (r)]

[1− F (zt+m)]N−(t+m)

×
∫ r

zt+m

[F (r)− F (q)]N−(t+m)−2f(q) ((N − (t+m)− 1)[1− F (q)]− [F (r)− F (q)])

[1− F (q)]2
dqdr.

The inner integral∫ r

zt+m

[F (r)− F (q)]N−(t+m)−2f(q) ((N − (t+m)− 1)[1− F (q)]− [F (r)− F (q)])

[1− F (q)]2
dq

simplifies to
[F (r)− F (zt+m)]N−(t+m)−1

1− F (zt+m)
.

Thus E[D(Z
(N)
t+m+1)|Z(N)

t+m = zt+m] equals∫ x̄

zt+m

r (N − (t+m) + 1) (N − (t+m))f(r)[1− F (r)][F (r)− F (zt+m)]N−(t+m)−1

[1− F (zt+m)]N−(t+m)+1
,
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i.e.,

E[D(Z
(N)
t+m+1)|Z(N)

t+m = zt+m] = E
[
Z

(N)
N−1|Z

(N)
t+m > zt+m > Z

(N)
t+m−1

]
.

Hence

E[Πm+1
t (Z

(N)
t+m+1)|Z(N)

t+m = zt+m] = 1
N−(t+m)+1

(
E
[
Z

(N)
N−1|Z

(N)
t+m > zt+m > Z

(N)
t+m−1

]
− pt+m−1

)
= πmt (zt+m).

This establishes that the sequence of mimic compensations {Πm
t (x; pt−1)}N−1−t

m=0

is a martingale. �

7 Online Appendix (not for publication)

Generalized Mimic Deviations - Example

We illustrate a generalized mimic deviation in a sequential first-price

sealed-bid auction with 3 bidders and 2 items. The extension to general

N and K is similar.

Consider the following parametric family of generalized mimic deviations.

Let λ ∈ [0, 1) be arbitrary. A bidder with value x deviates at round 1 with a

bid β1(λx). If the bidder does not win an item at round 1, then he observes

β1(Z
(2)
2 ) from which he infers Z(2)

2 . At round 2, he bids β2(x) if Z(2)
2 ≥ x and

he bids β2(Z
(2)
2 ) if Z(2)

2 < x.17

The payoff from a 0-round mimic deviation to a bidder with value x is

Π0
1,λ(x) = (x− β1(x)) Pr(x > Z

(2)
2 ) + (x− β2(x)) Pr(Z

(2)
1 < x < Z

(2)
2 ).

The payoff to a bidder with value x to a 1-round generalized mimic deviation

is
17If ε = 0, this mimic deviation coincides with the one in the paper.
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Π1
1,λ(x, Z

(2)
2 ) =


x− β1(λx) if Z(2)

2 < λx

x− β2(Z
(2)
2 ) if λx ≤ Z

(2)
2 < x

x− β2(x) if Z(2)
1 < x ≤ Z

(2)
2

0 otherwise

We show the sequence {Π0
1,λ,Π

1
1,λ} is a martingale.

The expected payoff of the 1-round generalized mimic deviation condi-

tional on x is

E
[
Π1

1,λ(x, Z
(2)
2 )|x

]
=

(x− β1(λx)) Pr(λx > Z
(2)
2 )

+E[x− β2(Z
(2)
2 )|x > Z

(2)
2 > λx] Pr(x > Z

(2)
2 > λx)

+(x− β2(x)) Pr(Z
(2)
2 > x > Z

(2)
1 ).

The difference Π0
1,λ(x)− E[Π1

1(x, Z
(2)
2 )|x] can be written as

(x− β1(x)) Pr(x > Z
(2)
2 )

−(x− β1(λx)) Pr(λx > Z
(2)
2 )

−E[x− β2(Z
(2)
2 )|x > Z

(2)
2 > λx] Pr(x > Z

(2)
2 > λx).

From the Law of Total Expectation, we have the identity

E[β2(Z
(2)
2 )|x > Z

(2)
2 ] Pr(x > Z

(2)
2 ) =

E[β2(Z
(2)
2 )|x > Z

(2)
2 > λx] Pr(x > Z

(2)
2 > λx)

+E[β2(Z
(2)
2 )|λx > Z

(2)
2 ] Pr(λx > Z

(2)
2 ).

Re-arranging the identity yields

E[β2(Z
(2)
2 )|x > Z

(2)
2 > λx] Pr(x > Z

(2)
2 > λx) =

E[β2(Z
(2)
2 )|x > Z

(2)
2 ] Pr(x > Z

(2)
2 )

−E[β2(Z
(2)
2 )|λx > Z

(2)
2 ] Pr(λx > Z

(2)
2 ).
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Using the properties of order statistics, we have

E[β2(Z
(2)
2 )|x > Z

(2)
2 ] = E[β2(Z

(3)
2 )|Z(3)

3 = x]

and

E[β2(Z
(2)
2 )|λx > Z

(2)
2 ] = E[β2(Z

(3)
2 )|Z(3)

3 = λx].

Finally, from the proof of Proposition 2 we have

E[β2(Z
(3)
2 )|Z(3)

3 = x] = β1(x)

and

E[β2(Z
(3)
2 )|Z(3)

3 = λx] = β1(λx).

Collecting all these facts, we can write the differenceΠ0
1,λ(x)−E[Π1

1,λ(x, Z
(2)
2 )|x]

as

(x− β1(x)) Pr(x > Z
(2)
2 )− (x− β1(λx)) Pr(λx > Z

(2)
2 )

−E[x− β2(Z
(2)
2 )|x > Z

(2)
2 > λx] Pr(x > Z

(2)
2 > λx)

=

−β1(x) Pr(x > Z
(2)
2 ) + β1(λx) Pr(λx > Z

(2)
2 )

+E[β2(Z
(2)
2 )|x > Z

(2)
2 ] Pr(x > Z

(2)
2 )− E[β2(Z

(2)
2 )|λx > Z

(2)
2 ] Pr(λx > Z

(2)
2 )

=

−β1(x) Pr(x > Z
(2)
2 ) + β1(λx)F

(2)
2 (λx)

+β1(x) Pr(x > Z
(2)
2 )− β1(λx)F

(2)
2 (λx)

= 0.

Hence the sequence {Π0
1,λ,Π

1
1,λ} is a martingale. �
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