
 

Bounding Comparative Statics under Diagonal 
Dominance 

Jordan Norris, Charles Johnson and Ilya 
Spitkovsky  

January 2023 

 

Working Paper # 0082 

 

New York University Abu Dhabi, Saadiyat Island P.O Box 129188, Abu Dhabi, UAE 

http://nyuad.nyu.edu/en/academics/academic-divisions/social-science.html 

Division of Social Science Working Paper Series 



Bounding Comparative Statics

under Diagonal Dominance

J.J. Norris, C.R. Johnson, I.M. Spitkovsky∗

January, 2023

Abstract

A core purpose of economic modeling is to conduct comparative static analyzes.

Often one is interested in its qualitative features, such as if the effect of a shock is

positive or above one. Yet, except in highly-stylized models, the theoretically implied

relationships are intractable, and empirically demanding, requiring complete identi-

fication of the model. We derive new bounds on comparative statics that are more

tractable and feasible under partial identification. We require only that the Jacobian is

diagonally dominant — intuitively, there is limited feedback in the model. We demon-

strate application in two canonical models: a network game and a model of oligopoly

competition.
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1 Introduction

A core purpose of modeling in economics is to conduct comparative statics: the analysis of

the effect of an exogenous shock on an endogenous outcome. Except in highly stylized models

(an assumption becoming increasingly untenable in the age of big data), the equations linking

these variables are very complicated. Even when linearized in the outcome and shock, the

equations are generally highly non-linear in the other parameters of the model. Moreover,

even when the the shock and outcome of interest are confined to single node (a single agent,

location, market, etc), the comparative static depends on the properties, and responses, of

all other nodes in the model.

At least two important challenges arise from these features. First, being highly non-

linear, the qualitative properties of the comparative statics are hard to prove — such as

sufficient conditions for the effect to be positive or bounded below by some number.1 Second,

unless strong symmetry assumptions are imposed (such as assuming the nodes are linked

in a pairwise symmetric manner), quantifying a comparative static in the model is very

demanding empirically. When linearized, with N nodes there are N2 interactions, all possibly

distinct, and all possibly unobservable. An simple example demonstrating this that we

consider is an oligopoly game with N differentiated firms and linear demand (Pellegrino

(2019); Galeotti et al. (2022)). The effect of a firm’s cost shock to its own profits depends on

N2 distinct (and empirically unobservable) bilateral elasticities of substitution in an infinite-

order multivariate polynomial.

In this paper, we provide new results that allow progress on these challenges. We derive

new bounds on (linearized) comparative statics that, relative to the exact relationship, have

a simpler functional dependence on, and do not require as complete knowledge of, the under-

lying parameters of the model. This thus reduces the burden of each of the aforementioned

challenges. The trade-off of is that the comparative static is only partially identified — a

bound — and therefore its usefulness depends on the research question.

The comparative statics bounds we derive are valid in a wide range of models. For our

main results, the only substantive assumption imposed is that the Jacobian of the model is

diagonally dominant. This intuitively can be understood as implying that the endogenous

feedback in the system is greater within a node relative to between nodes (Arrow and Hahn

(1971) p.242). Diagonal dominance has a long history in economics in the study of compar-

ative statics McKenzie (1960); Hadar (1965); Fujimoto (1987); Christensen (2019), and is

often invoked in models to guarantee uniqueness or stability of equilibria Gale and Nikaido

1Qualitative properties have had historically large appeal in the literature Bassett et al. (1967); Milgrom
and Shannon (1994); Athey et al. (1998); Hale et al. (1999). This is because they can be robust to, or
agnostic about, specific (quantitative) model assumptions.
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(1965); Dixit (1986); Adão et al. (2019); Allen et al. (2022); Arrow and Hahn (1971) T.9.12

(p. 234).2 Relative to the literature, we take the same starting point (diagonal dominance)

but derive new implications (comparative statics bounds). The literature has only found

diagonal dominance to be helpful in determining the sign of a comparative static; we extend

this to show it can also be useful in bounding the magnitude.

In deriving these results, we make a technical contribution to the linear algebra literature.

Formally, we show that for any matrix that is diagonally dominant, the principal minors are

greater than the off-diagonal minors. Moreover, we show they are greater by a factor that

describes the degree of diagonal dominance in the matrix. This result can be understood as

a generalization of M-matrix theory Johnson (1982). We then show that when this result is

applied to comparative statics, with the Jacobian assumed to be diagonally dominant, one

is able to derive bounds on the comparative static expressions.

The simplification achieved by the comparative static bounds can be understood as fol-

lows. The comparative static describes the effect of a shock on a node to an outcome on that

or some other node (e.g. the effect of a firm’s productivity shock on another firm’s price). In

general, the outcomes of all nodes respond to this shock due to feedback in the system (e.g.

a firm changes its price in response to other firms’ changing their prices). The comparative

static captures the total effect of this feedback reverberation throughout the system. The

bilateral feedback between each pair of nodes is described mathematically by the Jacobian

matrix, and it turns out the total reverberation is appropriately represented by the inverse

of this Jacobian matrix (a Leontieff Inverse under certain assumptions, as in Carvalho and

Tahbaz-Salehi (2019)). Except when of size 2 × 2, inverse matrices are very complicated

objects: they are a highly non-linear aggregation of the elements in the (non-inverted) Ja-

cobian. In economics models, these matrices are massive under realistic heterogeneity (e.g.

equal to the number of firms in a marketplace).

The power of the comparative static bound derived in this paper is that it is a function

of the non-inverted Jacobian matrix only. There are two main implications of this that we

highlight. First, it generally has a much simpler dependence on the underlying parameters

of the model, relative to the exact expression for the comparative static. And, second, for a

comparative static between a single pair of nodes, it doesn’t require knowledge of all elements

of the Jacobian matrix, whereas the inverse of the Jacobian, and therefore exact expression

for the comparative static, does.

To understand how a bound is possible without inverting the matrix, consider the special

case where there is no feedback between nodes. The comparative static requires no matrix

2In Allen et al. (2022), this is implied in the case of a single type H = 1 under the generalized domain
and range (remark 1).
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inverse as there is no reverberation (e.g. a model with a single firm). Relative to this no

feedback-between-nodes case, the comparative static may be bigger or smaller depending

on whether the feedback configuration causes amplification or attenuation. The bound we

derive delivers the most conservative case: maximal attenuation. It turns out, under diagonal

dominance of the Jacobian, this case is calculable without inverting the Jacobian. We show

using simulations that the bound is tighter when there is less overall feedback in the system

— as this intuition would suggest.

We end the paper by presenting two examples to demonstrate application of these bounds

to comparative statics. A model of a network game, and an oligopoly pricing model — as

referenced above. In both we use standard assumptions from the literature. To highlight

just one result our tools imply. In the oligopoly model, we find that the effect of cost shock

to a firm on its quantity of production can be bounded above by (one half of) the inverse

of the (inverse) own-price effect of demand. This is a massive simplification relative to the

exact expression, which depends on all bilateral price effects between firms, in an infinite

polynomial.

The outline of this paper is as follows. In section 2, we outline the general framework.

In section 3, we present our new linear algebraic results on diagonal dominance. In section

4, we present the general implications of these for comparative statics. In section 5, we

demonstrate these results in various concrete models. In section 6, we conclude.

2 Model

Consider a system of i ∈ {1, ..., N} ≡ N nodes. The nodes may represent goods, countries,

agents, etc. Each node has an endogenous state yi ∈ R (e.g. the price of good i) and is

subject to an exogenous shock xi ∈ R (e.g. the productivity in producing good i). The state

of all nodes is determined jointly by the following equations of state

∀i ∈ {1, ..., N} : 0 = fi (y,x) (1)

where y = {yj}Nj=1 ,x = {xj}Nj=1. The function fi : R2N → R is assumed differentiable, and

is typically derived from the equilibrium conditions in the underlying economic model. For

a given vector of exogenous shocks, x, we denote a solution to equation (1) by y∗, where

the dependence on x is suppressed. In general the solution needn’t be unique. We refer to

the Jacobian matrix, ∇ij of this function as the partial derivate of fi with respect to the

endogenous variable yi, that is

∇ij =
∂fi (y,x)

∂yj
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where the dependence of ∇ on {y,x} is suppressed.

The key substantive assumption we make is that at a solution y∗, the Jacobian matrix

is diagonally dominant – assumption 1.3

Assumption 1. (Diagonal Dominance). At y∗, the Jacobian is strictly column diagonally

dominant,

∀i ∈ {1, ..., N} : |∇ii| >
∑
j∈N\i

|∇ji|

|x| is the absolute value of some x ∈ R. Although this is potentially restrictive, this

assumption has a long history in economics McKenzie (1960). In particular, in the charac-

terization of qualitative properties of comparative statics and in stability analyses (Hadar

(1965), Bassett et al. (1967), Dixit (1986), Hale et al. (1999)). It is well-known that as-

sumption 1 implies invertibility of the Jacobian, which therefore guarantees local uniqueness

(Mas-Colell et al. (1995), proposition 17.D.1). Moreover, if one further assumes that the

diagonal elements are all positive ( ∀i : ∇ii > 0), which combined with diagonal dominance

implies the Jacobian is a P-matrix, then global uniqueness is guaranteed within a closed rect-

angular region for which both of these assumptions hold (Gale and Nikaido (1965) theorem

4).4 The diagonal being positive is often implied by invoking the equilibrium to be stable

(Hahn (1982) theorem T.1.7).

Comparative statics of the system are considered by taking an infinitesimal perturbation

in x about a solution y∗. We only consider consider first order effects in this paper. Applying

the implicit function theorem to equation (1), we solve for the infinitesimal change in the

state as
∂yi
∂xj

= −
∑
k∈N

{
∇−1

}
ik
∇x
kj (2)

where ∇x
kj = ∂fk(y,x)

∂xj
we refer to as the direct effect matrix.5 Note in particular that the

comparative static ∂yi
∂xj

depends on the inverse of Jacobian. Intuitively, the matrix inverse

shows up in the comparative static as it appropriately aggregates all the endogenous feedback

in the system (a Leontieff Inverse under certain assumptions, as in Carvalho and Tahbaz-

Salehi (2019)). That is, the effect of a shock in j on outcome in i incorporates not only the

3Analogous results follow if one instead assumes row diagonal dominance. Though the results are more
limited in the case of non-local direct effects.

4Intuition for this result can be understood as follows. Multiple solutions to equation (1) can occur when
the gradient of function fi — the Jacobian — “changes sign”, thus allowing the function to cross zero at
multiple points. Diagonal dominance of the Jacobian essentially implies we can ignore the cross derivatives
in determining the sign. A positive diagonal of the Jacobian implies fi always moves in the same direction,
and thus does not change sign (whereas a negative diagonal means fi reverses direction and thus does change
sign). Hence the combination of these two is sufficient for a single crossing of fi at zero, and and thus a
unique solution.

5When y represents the price, ∇x is referred to as the price effect matrix Mas-Colell et al. (1995).
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direct effect of xj on yi, but also the indirect effect via the changes in states of all other

nodes. States in other nodes yj 6=i respond to a change in state yi, and this in turn causes yi

to change again. This feedback between nodes is precisely what the Jacobian describes.

Matrix inverses are generally very complicated (except under high symmetry or N = 2).

Moreover, even when one is interested in identifying the comparative static only between

a single pair of nodes, the inverse implies that complete identification of the entire N × N
Jacobian matrix is required. This makes the analysis of comparative statics challenging:

the former in determining its qualitative properties, and the latter in the empirical burden

required for identification.

In the next section, we derive new results that allow one to place bounds on the compar-

ative static under assumption 1. The key feature of these bounds is that they do not depend

on the inverse of the Jacobian, instead only in its non-inverted form. Thus, potentially

alleviating the two issues discussed above.

3 New Properties of Diagonally Dominant Matrices

In this section we present our new results on diagonal dominance. These results apply

generally, without the matrix needing to have the interpretation as a Jacobian. In order to

present these, we first need to define an object that describes the (inverse) intensity of the

diagonal dominance in the matrix, which we refer to as its“degree”, as it is a generalization of

the degree centrality (number of other nodes a node is connected to) of a node in a network

model.6 For any matrix ∇, define the degree of node i by

δi ≡
∑

j 6=i |∇ji|
|∇ii|

(3)

where δi ∈ [0, 1) under diagonal dominance of ∇ (assumption 1). Denote the maximal degree

by

δ∗ ≡ max
i
δi (4)

When δ∗ = 0, then ∇ is a diagonal matrix and therefore maximally diagonally dominant.

As we increase any δi up from 0, the intensity of diagonal dominance diminishes.

Under the model in section 2, δi can be understood as describing the magnitude of

feedback between nodes in the system. If δ∗ = 0, then the equation of state for some i,

fi, in equation (1) depends only on its own state yi. This is true for all equations of state,

6In section 5.1, we show that δi is proportional to the standard concept of degree in a canonical network
model. See equation (18).
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thus each yi is determined independently of one another, thus shutting down all endogenous

feedback between the nodes. As δi increases, the feedback between nodes increases.

Armed with this definition, we are now in a position to present the key novel linear

algebraic result. Let ∇−i,−j denote the (i, j) sub-matrix of ∇ (row i and column j removed),

and det∇ the determinant of Ω.

Theorem 1. (Minors of Diagonally Dominant Matrices). Suppose that ∇ is column diagonally

dominant, then

∀j, i 6= j : |det∇−j,−i| < δ∗ |det∇−i,−i| (5)

where δ∗ indicates the maximal degree of ∇ — equation (4).

Proof: see appendix A.1.

In words, for any diagonally dominant matrix, the principal minors of the matrix, |det∇−i,−i|,
are greater than the off-diagonal minors within the same column, |det∇−j,−i|.7 Moreover,

they are greater by a factor 1/δ∗ ≥ 1.

This proposition has a nice intuitive appeal because the transpose of the matrix of minors

is proportional to the inverse of the original matrix (in particular, {∇−1}ij = det∇−j,−i/ |det∇|).
Thus, if the original matrix is diagonally dominant, the theorem tells us the inverted ma-

trix satisfies a dual property: its diagonal elements are dominant of the (row) off-diagonal

elements. Note this condition on the inverse is weaker, as it is not sufficient for the inverse

to be diagonally dominant: |{∇−1}ii| is greater than
∣∣∣{∇−1}ij

∣∣∣, but not necessarily greater

than
∑

j 6=i

∣∣∣{∇−1}ij
∣∣∣.

Theorem 1 has interest in its own right, removed from its consequences for comparative

statics that we focus on. It can be understood as a significant extension of the well-known M-

matrix theory (Johnson (1982)). M-matrices are diagonally dominant with positive diagonal

elements, and negative off-diagonal elements (in terms of the model in section 2: only positive

feedback is permitted). Theorem 1 applies to matrices with elements of any sign, therefore

applies to a larger class of matrices.

Moreover, theorem 1 provides novel properties even for the class of M-matrices. It is

well-known that inverses of M-matrices have diagonal elements that are dominant of the

off-diagonal elements, but by the factor 1/δ∗ given in theorem 1 is hitherto not known.

Theorem 1 implies two important novel properties, as listed in corollary 1.

Corollary 1. (Properties of Diagonally Dominant Matrices). Suppose that ∇ is column di-

agonally dominant, then,

7A minor is the determinant of a sub-matrix, with a principal minor being of the sub-matrix along the
diagonal.
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i)

∀i, j 6= i :
∣∣∣{∇−1

}
ij

∣∣∣ < δ∗
∣∣{∇−1

}
ii

∣∣ (6)

ii)

∀i :
∣∣{∇−1

}
ii

∣∣ > 1

|∇ii|
· 1

1 + δiδ∗
(7)

where δi and δ∗ indicate the degree of ∇ — equations (3) and (4).
Proof: Part i) follows from the cofactor form of the inverse,

{
∇−1

}
ij

= det∇−j,−i/ |det∇|, and theorem

1. Part ii) follows from

|det∇| =

∣∣∣∣∣∣
N∑
j=1

(−1)
i+j ∇ijdet (∇−i,−j)

∣∣∣∣∣∣ ≤
N∑
j=1

|∇ij | δ∗ |det∇−i,−i| ≤ |∇ii| (1 + δiδ
∗) |det∇−i,−i|

where the first equality uses the Laplace formula for the determinant; the second (in)equality follows from

theorem 1; the third (in)equality uses the definition of degree, equation (3). Equation (7) follows from this

inequality and the cofactor form of the inverse,
{
∇−1

}
ii

= det∇−i,−i/ |det∇|.

Part i) follows immediately from equation (5) as the inverse is proportional to the trans-

posed matrix of minors.8 Part ii) follows from using the Laplace formula to write the determi-

nant |det∇| in terms of its minors. We can use theorem 1 to substitute out the non-principal

minors in this expression, leaving an upper bound on |det∇| in terms of only the principal

minor |det∇−i,−i|. Using the cofactor form of the inverse, {∇−1}ii = det∇−i,−i/ |det∇|, we

get a bound on the diagonal of the inverse.

4 Implications for Comparative Statics

We now apply the results of section 3 in order to derive bounds on the comparative statics,

equation (2). In order to present these results with the most clarity, we first detail the

implications under the simplification that ∇x
i,j 6=i = 0, which we refer to as local direct effects

only, and after go on to discuss our findings in the more general case.

4.1 Local Direct Effects Only

Assuming direct effects are local, i.e the direct effect matrix is a diagonal matrix ∀i, j 6=
i : ∇x

ij = 0, implies that a exogenous shock in node i, xi, only directly effects equation of

8Using a different method of proof, Fujimoto (1987) proved a weaker version of corollary 1.i): equation
(6) with δ∗ set to one. This also implies weaker versions — all with δ∗ set to one — of parts ii) of corollary
1, and of theorem 5. Though none of these are present in his paper.
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state i.9 Of course, there is still an indirect effect on other equations of state through the

endogenous feedback (which is described by the Jacobian). This assumption simplifies the

comparative static bounds and offers useful intuition before going to a more general case.

allowing for non-local direct effects.

Proposition 1. (Comparative Static under Local Direct Effects). Suppose assumption 1 holds,

and ∀i, j 6= i : ∇x
ij = 0, then ∀i

i) For the own-effect ∣∣∣∣∂yi∂xi

∣∣∣∣ ≥ |∇x
ii|

|∇ii|
· 1

1 + δiδ∗
(8)

ii) Moreover, if ∇ii < (>) 0, then

sgn

(
∂yi
∂xi

)
= + (−) sgn (∇x

ii) (9)

iii) For the spillover effect, ∀j 6= i

δ∗ ·
∣∣∣∣∇x

jj

∇x
ii

∣∣∣∣ ∣∣∣∣∂yi∂xi

∣∣∣∣ ≥ ∣∣∣∣ ∂yi∂xj

∣∣∣∣ (10)

Proof. First note that equation (2) and ∀i, j 6= i : ∇x
ij = 0 imply

∂yi
∂xj

=
{
∇−1

}
ij
∇x

jj (11)

Part i): Immediately follows from applying the bound from equation (7) to the absolute of equation (11)

under j = i. Part ii): sgn
(

∂yi

∂xi

)
= sgn

({
∇−1

}
ii

)
sgn (∇x

ii) = sgn (∇ii) sgn (∇x
ii) where the first equality

follows from applying the sign operator to equation (11) under j = i, and the second equality follows from

sgn
({
∇−1

}
ii

)
=

sgn (det∇ii)

sgn (det∇)
=

sgn
(∏

j∈N\i∇jj

)
sgn

(∏
j∈N ∇jj

) = sgn (∇ii)

the first equality is implied by the cofactor form of the inverse, the second equality applied lemma 1 to

both ∇ and its ith principal sub-matrix (which is also diagonally dominant). Part iii) for j 6= i:
∣∣∣ ∂yi

∂xj

∣∣∣ =∣∣∣{∇−1}
ij

∣∣∣ ∣∣∇x
jj

∣∣ ≤ δ∗
∣∣{∇−1}

ii

∣∣ ∣∣∇x
jj

∣∣ = δ∗
∣∣∣ ∂yi

∂xi

∣∣∣ |∇x
ii|
−1 ∣∣∇x

jj

∣∣ where the first equality follows from equation

(11). The second (in)equality follows from corollary 1.i). The third equality follows from using equation (11)

under j = i. Rearranging yields equation (10).

9An alternative interpretation is that dx̃k ≡
∑

j

∇x
kj

∇x
kk

dxj is itself the exogenous shock. For example, for

comparative statics with respect to market access Bartelme (2015), to average neighbor characteristics (see
Jackson and Zenou (2015) pg 123 for a discussion), or shift-share instruments Adão et al. (2019).
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where the sign operator sgn (a) returns the sign of scalar a, i.e. sgn (a) = ±1 if a ≷ 0.

We discuss each part of the proposition in turn.

Part i). This provides a lower bound on the absolute value of own-effect comparative

static: the effect of a shock to a node on the state of the same node, ∂yi
∂xi

. Importantly

note that this bound does not require a matrix inversion of the Jacobian to calculate, thus

providing potentially useful information.

Intuition into this bound can be understood as follows. Rewriting the bound, and in-

cluding an intermediate step

∣∣∣∣∂yi∂xi

∣∣∣∣ = |∇x
ii|
∣∣{∇−1

}
ii

∣∣ ≥ direct effect︷︸︸︷
|∇x

ii| ·
1

|∇ii|︸ ︷︷ ︸
zero feedback between nodes

·

attenuation︷ ︸︸ ︷
1

1 + δiδ∗

The first term is the direct effect of the shock, before the action of any feedback. The second

term is equivalent to the feedback in the special case where there is no feedback between

nodes. That is, a change in yi does not cause any endogenous response in outcomes in other

nodes, yj 6=i, only feedback within the node i on yi. In this special case, the Jacobian is a

diagonal matrix, and therefore its matrix inverse is simply the reciprocal of the diagonal

elements in the non-inverted matrix, {∇−1}ii = 1
∇ii

. This describes the feedback operating

within the same node only.

Once we bring back the feedback between nodes, the comparative static may be greater or

less than this special case depending on whether the feedback configuration — which depends

in particular on the sign of the elements ∇ij — causes amplification or attenuation relative

to this special case. Because nothing is assumed in proposition 1 about the Jacobian beyond

the degree, and therefore nothing about the sign, the bound must be valid in both cases of

amplification or attenuation. Thus, with equation (8) being a lower bound in absolute value,

it must reflect the most conservative case: the case with maximal attenuation, relative to the

special case of no feedback between nodes. The third term, (1 + δ∗δi)
−1 ∈ [0.5, 1], turns out

to be the factor that corresponds to this case. An interesting feature is that only information

on the own and maximal degree, δi and δ∗, is required to form this attenuation relative to

the no feedback between nodes case. Any further information about which nodes are linked

or to what extent, is not required.

To gain more understanding of this bound, we’ve used simulations to analyze how close

the bound is to the exact expression as a function of the maximal degree δ∗. Setting all direct

effects to be one, ∇x = I (identity matrix), for simplicity, we use 1
|∇ii| ·

1
1+δ∗δi

/ ∣∣∣ ∂yi∂xi

∣∣∣ ∈ (0, 1]
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as our measure of how tight the bound is (1 corresponds to maximally tight). The results

are in figure 1. We’ve randomly simulated many diagonally dominant Jacobians in N = 3

and binned them according to their maximal degree.10 In each bin, a box plot is presented

representing the distribution of tightness within the bin.

We see that as the maximal degree increases, the tightness of the bound in proposition 1

part i) tends to fall. This seems intuitively right. The bound does not use all the information

about the Jacobian, and therefore about the feedback in the system. This information loss

is greater the greater the feedback is — i.e. the higher δ∗ is — therefore the bound is

less tight the more feedback there is. This all said, although in the tails the bound tightness

decreases substantially (figure 1 suggests almost a one-to-one linear relationship), the median

reduction is much more modest, with the bound being about 70% of the exact expression

even at δ∗ = 0.95.

Finally, note that due to δi ∈ [0, 1), an even weaker bound on the comparative is implied

by proposition 1 part i) ∣∣∣∣∂yi∂xi

∣∣∣∣ ≥ |∇x
ii|

2 |∇ii|
(12)

That is, assuming nothing on the feedback between nodes other than that the Jacobian is

diagonally dominant, the local effect comparative static is bounded below by one half of the

local effect value in the case of zero feedback between nodes (all in absolute value).

This is a potentially powerful result in applications where complete knowledge of the

Jacobian is infeasible (which is common for example in network settings as bilateral network

data is costly to collect) or where one doesn’t wish to make strong symmetry assumptions

in the underlying model.

Part ii). Equation (9) provides the sign of the comparative static under the added

assumption that the sign of the corresponding ith diagonal element of the Jacobian is known.

When the ith diagonal is negative (positive), the sign of the comparative static ∂yi
∂xi

is the

same (opposite) sign as the direct effect, ∇x
ii.

Intuition regarding this is as follows. Part ii) tells us that the resulting endogenous change

in the state variable yi moves in the same direction as the shock xi if the feedback within

node i is negative, ∇ii < 0 (and under the assumption the Jacobian is diagonally dominant).

To understand why, consider an increase in xi and lets suppose the direct effect is positive,

∇x
ii > 0. Then, the direct effect of the shock causes fi to increase. In equilibrium, fi = 0,

thus, we require the states y to adjust endogenously such that fi ultimately falls back down.

10Specifically, ∇ij ∈ U [−1, 1] (uniform distribution) and then scaled so
∑

i∇ij ∼ U [0, 1]. We use N = 3
to provide maximal coverage of the simulations over the support of ∇.
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Ignoring the endogenous responses to yj 6=i for a moment. If ∇ii < 0, then an increase in yi,

and hence movement of yi in the same direction as xi, would bring fi back down, and thus

restore equilibrium. This is what equation (9) tells us: ∇ii < 0 implies yi moves in the same

direction as xi. But what about the effect of endogenous changes to yj 6=i? Diagonal domi-

nance effectively imposes that feedback from the node i onto itself has the greatest effect on

fi. In fact, so much so that its effect cannot be overturned by the feedback between nodes.

Thus we can effectively ignore the changes in yj 6=i when determining the sign of the change

in yi. The intuition above therefore continues to hold even when we allow for the resulting

endogenous changes in yj 6=i.

Part iii). Equation (10) implies that the magnitude of the spillover effects — the effect

of a shock to a node j 6= i on the state of node i, ∂yi
∂xj

— is bounded above by the own-effect

on node i, scaled by the ratio of the direct effects,
∣∣∣∇x

jj

∇x
ii

∣∣∣, and by the maximal degree, δ∗.

Intuition for this is as follows. Diagonal dominance of the Jacobian can be understood

as feedback between nodes being weaker than feedback within a node. One might intuitively

expect therefore, that if the local direct effects of the shock of the same across nodes, ∇x
jj =

∇x
ii, the effect on the outcome of node i from a shock to itself (own effect), ∂yi

∂xi
, to be greater

than the effect of a shock to some other node j (spillover effect), ∂yi
∂xj

. The reason being

because the feedback effect for the own effect will be greater than for the spillover effect.

This is exactly what equation (10) implies. In fact, it is even stronger: the spillover effect is

bounded above by the inverse of the maximal degree, 1/δ∗ ≥ 1, times the own-effect.

12



Figure 1: Tightness of the bound and Degree

Notes. The figure shows the tightness of the bound against with the degree, across many simulations. We
see that the bound tightness decreases as the degree increases.

4.2 Non-Local Direct Effects

Proposition 2 presents results in the more general case of non-local direct effects, ∃i, j 6=
i : ∇x

ij 6= 0. In doing so, we still need some restriction on this matrix, which is given by

equation (13), as described below.

Proposition 2. (Comparative Static under Non-Local Direct Effects). Suppose assumption 1

holds. For a given i and j, if ∣∣∇x
ij

∣∣ ≥ δ∗
∑
k 6=i

∣∣∇x
kj

∣∣ (13)

then ∣∣∣∣ ∂yi∂xj

∣∣∣∣ ≥
∣∣∇x

ij

∣∣− δ∗∑k 6=i

∣∣∇x
kj

∣∣
|∇ii| (1 + δiδ∗)

(14)

Moreover, if ∇ii < (>) 0, then

sign

(
∂yi
∂xj

)
= + (−) sign

(
∇x
ij

)
(15)
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Proof. Equation (14) follows from

∣∣∣∣ ∂yi∂xj

∣∣∣∣ =
∣∣{∇−1}

ii

∣∣ ∣∣∣∣∣∣∇x
ij +

∑
k 6=i

{
∇−1

}
ik

{∇−1}ii
∇x

kj

∣∣∣∣∣∣ ≥ ∣∣{∇−1}ii∣∣
∣∣∇x

ij

∣∣− δ∗∑
k 6=i

∣∣∇x
kj

∣∣
where the first equality follows from equation (2), the second (in)equality uses corollary 1.i) and equation

(13). Applying corollary 1.ii then yields equation (14). Equation (15) follows from

sign

(
∂yi
∂xj

)
= sign

({
∇−1

}
ii

)
sign

(
∇x

ij

)
sign

∣∣∇x
ij

∣∣+ sign
(
∇x

ij

)∑
k 6=i

{
∇−1

}
ik

{∇−1}ii
∇x

kj


Corollary 1.i) and equation (13) imply the final term is always positive. The remainder of the proof then

follows the proof of proposition 1.ii).

The proposition can be used to derive a bound between any two nodes i and j for which

the direct effects matrix, ∇x, satisfies equation (13). This restriction essentially ensures that

the direct effect of the shock from j onto i, ∇x
ij, is most “important” in determining the

overall effect of the shock from j onto i, i.e. the comparative static ∂yi
∂xj

. That is, the effect

on i stemming from direct effects on k 6= i, ∇x
kj, are sufficiently small. The less feedback

there is in the system — a smaller δ∗ — the less binding this condition is. This is because

the only way an effect from j onto k 6= i can affect the outcome in i is due to endogenous

feedback between nodes. Correspondingly, in the limit of no feedback between nodes, δ∗ = 0,

the restriction on ∇x — equation (13) — becomes vacuous. Note also that this restriction

is trivially satisfied for j = i when there are no direct effects between nodes, ∇x
i,j 6=i = 0 —

the case in proposition 2.

Under this restriction, the bound given by proposition 2 in equation (14) can essentially

be understood as the same bound in proposition 1 equation (8), but with an “effective” direct

effect of
∣∣∇x

ij

∣∣−δ∗∑k 6=i

∣∣∇x
kj

∣∣. This is the direct effect from j onto i,
∣∣∇x

ij

∣∣, net of the possible

effects on the outcome in i stemming from the direct effects onto k 6= i, δ∗
∑

k 6=i

∣∣∇x
kj

∣∣. The

δ∗ appears due to this term reflecting the endogenous feedback as discussed in the paragraph

above. Under some parameterizations, these direct effects via k 6= i may reinforce the effect

from j on i. However, because the proposition makes no assumption on the signs of the

interactions, the bound reflects the most conservative case and therefore these terms enter

with a minus sign.

Equation (15) is the same as equation (9) in proposition 1. That is to say, even once

we allow for non-local effects, assuming they satisfy equation (13), a sufficient condition

for the sign of the comparative static is the same as in the non-local direct effects case.

The intuition is similar to that described in section 4.1. Under the restriction that the
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corresponding direct effect is dominant — equation (13) — and that feedback is bounded

because of diagonal dominance, the direct effects on other nodes k 6= i, and the resulting

feedback from them, are not large enough to overturn the sign of the direct effect on i.

4.3 Summary

In both propositions 1 and 2, the message we deliver is the same. The comparative static

can be partially identified (i.e. a bound) without needing to invert the Jacobian.

This has two implications. The first is that the analytic form of the bound is simpler

than the exact expression, therefore providing a tool to derive qualitative properties of the

comparative static. The second is that all the information contained in the Jacobian is not

used in the bound — the starkest demonstration being equation (12). This therefore provides

a method of identification under incomplete information of the Jacobian.

In the next section, we provide applications demonstrating these implications.

5 Applications

5.1 Network Games

We first demonstrate our results in a standard network game with linear best replies (see e.g.

Ballester et al. (2006), Bramoullé et al. (2014)). We allow for either strategic complements

or substitutes.

Player i choses effort yi ∈ R to maximize a linear-quadratic utility function

ui = aiyi −
1

2
y2
i + φ

n∑
j=1

Gijyiyj

ai > 0 is the private benefit received by exerting effort; this will serve as the exogenous shock

we’ll take the comparative static with respect to. The quadratic term in effort of player i and

every other player j implies there is strategic interaction between players when maximizing

utility. Gij ∈ {0, 1} is the adjacency matrix, with value one if agents i and j are connected.

We assume Gii = 0 as standard (there is no interaction with oneself). φ ∈ R scales the

magnitude of strategic interaction, with φ > 0 indicating strategic complements, and φ < 0

strategic substitutes.

The first order condition of maxyi ui yields player i’s best reply

yi = ai + φ
n∑
j=1

Gijyj (16)
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The Nash equilibrium is the y such that all players’ best replies are satisfied. The best replies

correspond to the equations of state, equation (1)

fi (y, a) ≡ yi − ai − φ
n∑
j=1

Gijyj = 0

The Jacobian in this model is

∇ij ≡
∂fi
∂yj

= Iij − φGij

The Jacobian satisfies diagonal dominance (assumption 1) if

1 > |φ|
∑
j

Gij (17)

where we used
∑

j∈N\iGij =
∑

j Gij. By the Gershgorin Circle Theorem, equation (17)

implies 1 > |φ| |λmax (G)|, which is precisely the condition for equilibrium uniqueness in

Ballester et al. (2006) theorem 1 under strategic complements, and implied by the condition

in Bramoullé et al. (2014) section II under strategic substitutes.11

The degree of player i is

δi = |φ|
∑
j

Gij (18)

i.e. proportional to the number of players that i is connected to. This is precisely the

concept of “degree centrality” in the network science literature (see e.g. Bramoullé et al.

(2016) chapter 11).

The diagonal of the Jacobian is always positive ∀i : ∇ii = 1 > 0. The direct effects

matrix is

∇x
ij ≡

∂fi
∂aj

= −Iij

Thus, we are in the realm of local direct effects — proposition 1. The comparative statics

for the effect of an increase in private benefit ai on the effort of the same agent yi, is given

by
∂yi
∂ai

= −
{

(I − φG)−1}
ii

(19)

11Bramoullé et al. (2014) present the sufficient condition 1 > |φ| |λmin (G)|. Note that this is implied by
1 > |φ| |λmax (G)|.
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The bound implied by proposition 1 is

∂yi
∂ai
≥ 1

1 + |φ|2
(∑

j Gij

)
·
(∑

j Gi∗j

) (20)

≥ 1

2
(21)

where i∗ = arg maxi δi. Equation (20) is the signed bound implied by parts i) and ii) of

proposition 1. We see it only depends on φ and the number of network nodes — network

degree — i is connected to, and the maximal degree in the network.

These relationships permit partial identification of the comparative static (a bound) with

only partial information on the network: beyond φ and the degree centrality, information on

who is connected to whom is irrelevant. Moreover, they have considerably more tractable

functional form than the exact relationship in equation (19). This allows one to derive

qualitative properties of the comparative statics very simply. For example, if one wanted

to deduce a value of φ that guarantees ∂yi
∂ai
≥ x for some x > 0, equation (20) provides an

answer to this: |φ| ≥ 1−x
xδiδ∗

.

Equation (21) provides an even simpler, though weaker, bound from using equation

(17). This tells us that for any adjacency matrix subject to equation (17) (which, recall,

implies diagonal dominance of the Jacobian), the local effect comparative static, ∂yi
∂ai

, is

always bounded below be 1
2
. The intuition for this bound is as follows. With no feedback

between nodes ∀i, j : Gij = 0, the comparative static is ∂yi
∂ai

= 1. With network feedback, this

bound can be attenuated if there is negative feedback — referred to as strategic substitutes

in network model. Diagonal dominance places a bound on the amount of feedback generally,

and therefore also on the amount of attenuation possible. It implies that negative feedback

can only at most reduce the comparative static by half relative to the case of no feedback

between nodes.

5.2 Oligopoly

We next demonstrate our results in a canonical oligopoly model with differentiated products

Dixit (1986). We assume Cournot competition, and otherwise mostly follow the assumptions

version in Galeotti et al. (2022), as they permit rich heterogeneity in interdependence of

demand, and simplifying assumptions conducive for a clear exposition.12

There are N firms each producing one good. Firms engage in a Cournot competition,

12Galeotti et al. (2022) assumes Bertrand competition. We use Cournot as the inverse demand schedules
estimated in Pellegrino (2019) satisfy diagonal dominance.
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simultaneously choosing quantities q = {qi}i∈N . The profit function firm i faces is

πi (q, ci) = (pi − ci) qi (22)

The firm faces linear cost where ci is the (constant) marginal cost, and assumed exogenous.

We will consider comparative statics with respect to this. The firm chooses quantity qi to

maximizes profit subject to demand

max
qi

πi (q, ci) , s.t. pi = pDi (q) (23)

where pDi (q) is the (inverse) demand function faced by firm i. Following Galeotti et al.

(2022), we assume that demand is linear (sufficiently close to the equilibrium) and that the

own-price effect of demand is negative13

∀i :
∂pDi (q)

∂qi
< 0 (24)

Firm i’s optimal quantities are characterized by the first order conditions of equation

(23)
∂πi (q)

∂qi
= (pi − ci) +

∂pDi
∂qi

qi︸ ︷︷ ︸
≡fi(p,c)

= 0 (25)

Note that equation (24) implies the second order conditions (∂
2πi
∂2qi

= 2
∂pDi
∂qi

< 0) are satisfied.

Equation (25) corresponds to the equations of state in our framework, equation (1), with

q the endogenous state variable, and c the exogenous shock.

The Jacobian, accordingly, is

∇ij ≡
∂fi (p, c)

∂qj
=
∂pDi
∂qj

(1 + Iij)

The Jacobian satisfies diagonal dominance (assumption 1) if

∣∣∣∣∂pDi∂qi
∣∣∣∣ > 1

2

∑
j∈N\i

∣∣∣∣∣∂pDj∂qi
∣∣∣∣∣

That is, the own-price effect of (inverse) demand is sufficiently greater than the cross-price

13One could further assume demand to be consistent with a utility maximizing representative consumer
as in Galeotti et al. (2022), though we do not require this.
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effects of (inverse) demand. The direct effect matrix is

∇x
ij ≡

∂fi (p, c)

∂cj
= −Iij

and thus we are in the realm of proposition 1. Now to the comparative statics. Consider

the effect of a shock to firm i’s marginal cost on its own quantity produced. Using equation

(2), this is given by

∂qi
∂ci

=

{[
∂pD

∂q
� (11′ + I)

]−1
}
ii

(26)

where � is the Hadamard (element-wise) product, and 1is the vector of ones. Although the

comparative static only concerns the marginal cost and quantity of firm i, the comparative

static depends on the own- and cross-price effects of the (inverse) demand for all firms,

∀i, j :
∂pDj
∂qi

, due to the matrix inverse.

The reason for this, intuitively, is as follows. The change in firm i’s cost directly causes

firm i to update its quantity, qi. This change in quantity causes the residual demand facing

all other firms to change, and thus they each update their quantity produced. This update in

quantity likewise causes firm i to update its quantity, now for a second time. This happens

ad infinitum until a fixed point in quantity is arrived.14 The response in residual demand to

changes in quantity of other firms is precisely described by the price effects
∂qDj
∂pi

, and thus

the resulting change in the quantity of firm i after all rounds of updating depends on the

whole matrix of price effects.

The consequence is a demanding identification problem: we need to identify all N2 bilat-

eral price effects even if we are only interested in the effect of a cost shock on the quantity

of the same firm, ∂qi
∂ci

.15 Moreover, the dependence of this comparative static of this on, say,

the firm’s own-price effect,
∂pDi
∂qi

, is hard to discern due to the highly non-linear dependence

through the matrix inverse.

The results of this paper provide a tool to make progress on both these challenges.

Applying parts i) and ii) of proposition 1, and using that ∀i : δi ≤ 1, we find that

∂qi
∂ci
≤ − 1

2
∣∣∣∂pDi∂qi ∣∣∣

i.e. the change in output is partially identified with knowledge only of the own-(inverse)

price effect of demand,
∂pDi
∂qi

. Moreover, we know that for flatter own-price effects,
∣∣∣∂pDi∂qi ∣∣∣ ↓,

14Of course, there is no dynamics in the model, and instead this all happens simultaneously.
15The alternative method is some form of dimensionality reduction, such as parameterizing the elasticities

as function of K � N observable characteristics ( Berry (1994); Berry et al. (1995); Pellegrino (2019)).
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the fall in own output qi is expected to be greater. This dependence is hard to discern from

equation (26), yet implied immediately from the tools in the paper.

Finally, we can use the tools in this paper to bound other endogenous variables in the

model, for example the effect on profits of firm i.

∂πi
∂ci

=
∑
j

∂πi
∂qj

∂qj
∂ci

+
∂πi
∂ci

= qi
∑
j 6=i

∂pDi
∂qj

{
∇−1

}
ji
− qi

= −qi∇ii

{
∇−1

}
ii

≤ −qi
2

(27)

The first line is a total differentiation of profits, equation (22). The second line used ∂πi
∂qi

= 0

by the FOC, and inserted in the values of each remaining derivative. The third line used∑
j 6=i

∂pDi
∂qj
{∇−1}ji =

∑
j∇ij {∇−1}ji−∇ii {∇−1}ii = 1−∇ii {∇−1}ii. The fourth line applies

the result in corollary 1.ii) with δi ≤ 1 directly to bound, |{∇−1}ii| ≥
1
|∇ii|

1
1+δiδ∗

≥ 1
2|∇ii| .

Equation (27) is a very succinct result. We find that from an increase in marginal cost ci

the profits of the same firm will fall by at least qi/2 in absolute value. This can be understood

as follows. The total cost of the firm is ciqi, and thus increases proportionally by qi from an

increase in ci. The change in profits may be more or less than qi depending on what happens

to revenue piqi. Revenue will fall if the cost increase causes consumers to on net substitute

away from i to other firms’ goods — and the opposite if consumers substitute towards i.

Both substitution patterns are permissible as we’ve not assumed anything about the cross-

price effects ∂pD

∂q
other than diagonal dominance — in particular we’ve assumed nothing

about whether these are complements or substitutes. However, what diagonal dominance

does imply is that the (negative) own-price effects are sufficient great that any increase in

revenue due to cross-price effects between firms cannot raise profits more than half of the

direct effect on cost, ie qi/2. i.e. these cross-price effects are sufficiently weak relative to the

own-price effect that this bound is always guaranteed.

6 Conclusion

In this paper we revisit an old inquiry in economics: what can we deduce about comparative

statics while making as few assumptions as possible? This is often referred to as qualitative

or nonparametric economics Bassett et al. (1967), Hale et al. (1999). We offer new results

moving the frontier in this subject. In particular, we use the established condition of diagonal
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dominance of the Jacobian, and derive new implications from this. We show that this implies

useful properties on the inverse of the Jacobian that can be used to provide bounds on the

comparative statics.

The value of this result is that the bounds are simpler than that the exact relationship.

This bounds are identified using only a subset of the information in the Jacobian, there-

fore permitting partial identification of the comparative static when full knowledge of the

Jacobian is too costly or infeasible. Moreover, due to the tractability of the bounds, they

potentially permit easier characterization of the qualitative properties of the comparative

static, and therefore new insight into the underlying economic mechanisms.
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A Appendix

A.1 Proof Theorem 1

We will prove a slighter stronger result than written in theorem 1.

Theorem. (Minors of Weakly Diagonally Dominant Matrices) Suppose that the N ×N real

matrix, ∇, is weakly column diagonal dominant,

∀i ∈ {1, ..., N} : |∇ii| ≥
∑
j∈N\i

|∇ji| (28)

then,

∀j, i 6= j : |det∇−j,−i| ≤ δ∗ |det∇−i,−i| (29)

with the inequality being strict in the case of strict diagonal dominance (the case presented

in theorem 1).

Proof. Without loss of generality, suppose

∀i : ∇ii ≥ 0 (30)

This is because all the minors of

diag [sign (∇11) , · · · , sign (∇NN)]∇ (31)

in absolute value are equal to the ones of∇ and the matrix in equation (31) has a nonnegative

diagonal. Note that equation (30), combined with weak diagonal dominance, implies ∀i :

det∇−i,−i ≥ 0 (see the proof of proposition 4.1.ii).

It suffices to consider i = 1, i.e. to prove that

∀j 6= 1 : |det∇−j,−1| ≤ δ∗ |det∇−1,−1| (32)

Let Cr be the rth row of ∇ without the first entry

Cr = (∇r2, · · · ,∇rN) (33)

Case 1: det∇−j,−1 ≥ 0: using the notation from equation (33), we have

∇−j,−1 =
(
C ′1, · · ·C ′j−1, C

′
j+1, · · · , C ′N

)
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and

∇−1,−1 = (C ′2, · · · , C ′N)

where the prime indicates transpose. Therefore

|det∇−j,−1| ≤ δ∗ |det∇−1,−1|

is equivalent to

0 ≤ δ∗ det (C ′2, · · · , C ′N)− det
(
C ′1, · · ·C ′j−1, C

′
j+1, · · · , C ′N

)
= det

(
C ′2, · · ·C ′j−1, δ

∗Cj + (−1)j C1, C
′
j+1, · · · , C ′N

)
︸ ︷︷ ︸

≡M

(34)

Now, detM ≥ 0 is true, and thus equation (32) proved under this case, because M has

i) nonnegative diagonals and ii) is diagonally dominant (the combination implying M has

nonnegative determinant). To see both of these conditions are satisfied, let’s write out the

matrix

M =



∇2,2 · · · ∇j−1,2 δ∗∇j,2 + (−1)j∇1,2 ∇j+1,2 · · · ∇N,2

...
...

...
...

...
...

... δ∗∇jj + (−1)j∇1,j
...

...
...

...
...

...
...

∇2,N · · · δ∗∇j,N + (−1)j∇1,N · · · ∇N,N


We see that M has i) nonnegative diagonal because for rows ∀r ∈ N : ∇rr ≥ 0 by equation

(30) and

δ∗∇jj + (−1)j∇1,j ≥ δj∇jj + (−1)j∇1,j

≥
∑
i∈N\j

|∇ij|+ (−1)j∇1,j

≥
∑

i∈N\{1,j}

|∇ij|

≥ 0

using the definition of δ∗ and δi — equations (4) and (3). We see that ii) M is (row)
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diagonally dominant because (sufficient to show for the first row)

∇2,2︸︷︷︸
diagonal element

−

 ∑
i∈N\{1,2,j}

|∇i,2|+ δ∗∇j,2 + (−1)j∇1,2


︸ ︷︷ ︸

sum of off-diagonal elements

≥ ∇2,2 −
∑
i∈N\j

|∇i,2|

≥ 0

by diagonal dominance of ∇ — equation (28).

Case 2: det∇−j,−1 < 0: Note that

|det∇−j,−1| = − det∇−j,−1

= det
(
−C ′1, · · ·C ′j−1, C

′
j+1, · · · , C ′N

)
The argument will be the same as before except applied to the matrix

M̃ =
(
C ′2, · · ·C ′j−1, δ

∗Cj + (−1)j+1 C1, C
′
j+1, · · · , C ′N

)
Thus, equation (32) is implied under both cases and therefore generally. Therefore, the

theorem is proved.

A.2 Determinant Sign of Diagonally Dominant Matrices

Lemma 1. (Determinant Sign of Diagonally Dominant Matrices) Suppose that the N × N

real matrix, ∇, is column diagonal dominant,

∀i ∈ {1, ..., N} : |∇ii| >
∑
j∈N\i

|∇ji| (35)

then,

sgn (det∇) = sgn

(
N∏
i=1

∇ii

)
(36)

Proof. Define the matrix ∇̃ implicitly from

∇ = diag [sgn (∇11) , · · · , sgn (∇NN)]︸ ︷︷ ︸
≡Λ

∇̃ (37)

note that ∇̃ inherits diagonal dominance from ∇ because
∣∣∣∇̃ij

∣∣∣ = |∇ij|, and ∇̃ has non-

negative diagonals ∀i : ∇̃ii ≥ 0. Thus, by Horn and Johnson (2012) T.6.1.10, we know
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all eigenvalues of ∇̃ have positive real part. Therefore det ∇̃ > 0, and as we’ll use below,

sgn
{

det
{
∇̃
}}

= 1.

The matrix Λ defined in equation (37) is diagonal, therefore the determinant of Λ is equal

to the product of its diagonal entries.

Thus, taking the determinant of ∇ via equation (37),

det∇ = det {diag [sign (∇11) , · · · , sign (∇NN)]} · det
{
∇̃
}

=
N∏
i=1

sgn (∇ii) · det
{
∇̃
}

Now applying the sign operator

sgn (det∇) = sgn

{
N∏
i=1

sgn (∇ii)

}
· sgn

{
det
{
∇̃
}}

︸ ︷︷ ︸
=1

Thus, we have equation (37).
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