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Abstract

We consider an aggregative game in which agents have an imperfect knowledge about
the set of agents they are in competition with. We model this lack of knowledge through
a directed graph that we call the perception network. In this framework, a natural equi-
librium concept emerges, the Perception-Consistent Equilibrium (PCE). At a PCE, each
agent chooses an action level that maximizes her subjective perceived utility while the
action levels of all individuals must be consistent. We prove the existence of PCEs in
a large class of aggregative games. We also show that, at any PCE, the efforts are al-
ways ordered accordingly to some centrality measure in the perception network. For a
specific subclass of aggregative games, we decompose the network into communities and
completely characterize the PCEs by identifying which sets of agents are active, as well
as their effort level. We prove that, at the unique stable PCE, the agents’ action levels
are proportional to their eigenvector centrality in the perception network. We illustrate
our results with two well-known models: Tullock contest and Cournot competition.
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1 Introduction

Competition is a central notion in economics. Firms compete for consumers and market shares,

researchers compete for funds, etc. More generally, agents compete for scarce resources. The

standard way economists have viewed competition is that it is objective: agents know exactly

the set of agents they are in competition with. In this paper, we are interested in situations in

which competition may be subjective or perceived rather than objective. Indeed, in the real

world, agents may perceive other agents as competitors while the reverse is not necessarily

true. Therefore, even though competition is global, in many cases, agents may only care about

their local competitors.1

To model such situations, we study a standard aggregative game in which an agent’s

objective payoff depends on her own effort and on an aggregator of the effort of all agents

in the economy. However, each agent only perceives a subset of agents as competitors and

is not aware of the others. We model this through a perception network, which is naturally

directed and, generally, only weakly connected. We assume that agents behave with respect

to a perceived utility function in which the aggregate effort in the whole economy —which

is unknown—is replaced by a shifter of the total effort of the agents they are aware of. The

shifter therefore captures the misperception intensity of the aggregate effort. For example,

if we consider the standard Tullock contest game, each agent believes that she competes for

some (perceived) resource with the agents she is aware of, while, in reality, she competes for a

larger resource with the whole set of agents in the economy. Similarly, in the standard Cournot

oligopoly competition with homogenous products, each firm estimates that the product price

emerges from the quantity produced by her perceived competitors while, in reality, the price

is determined by the quantities produced by all firms in the network.

In this framework, a natural equilibrium concept emerges, the Perception-Consistent Equi-

librium (PCE). A PCE captures both the agents’ local sightedness—each agent chooses an

action level that maximizes her perceived utility—and the fact that the action levels of all

individuals in the network are consistent in equilibrium. Indeed, at a PCE, individual i’s

perceived subjective utility is equal to her objective payoff. First, we show that a PCE exists

for a large class of aggregative games, which we call competitive aggregative games. We also

show that, at any PCE, the agents’ efforts represent an ordinal centrality measure, a novel

notion introduced by Sadler (2021). Many well-known network centralities, such as degree,

eigenvector and Katz-Bonacich centrality, represent ordinal centralities. Our result is quite

general, since it holds whether or not the network is symmetric and whether or not it is a

game with strategic complements.
1In the Online Appendix A, we provide some simple descriptive evidence of 700 street-food vendors in

Kolkata (India) for whom competition is not always reciprocal and is perceived as local.
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For the remainder of the paper, we focus on a subclass of competitive aggregative games

by imposing additional structure on the payoff function. Two key applications that are part of

this subclass are Cournot competition and the Tullock contest. Our second contribution is to

show that, in this subclass of competitive aggregative games, perception-consistent equilibria

provide a behavioral foundation of the eigenvector centrality measure. More precisely, we

prove that in any weakly connected network and at any PCE, the effort level of each active

agent is proportional to her eigenvector centrality. This result is very general and holds beyond

strongly connected networks, for which eigenvector centrality is usually defined. Other papers

have provided a microfoundation of eigenvector centrality. For example, Golub and Jackson

(2010, 2012) develop models on DeGroot updating in which eigenvector centrality is the right

way to characterize an agent’s influence. However, this arises from a heuristic learning process

rather than behavior in a game. Banerjee et al. (2013) provide a microfoundation of eigenvector

centrality by showing that it is the limit of diffusion centrality.2 Our model is different in the

sense that it provides a behavioral foundation for eigenvector centrality measure based on

an aggregative game and PCE. Moreover, in all these models, the network is assumed to be

strongly connected and all agents exert strictly positive action in equilibrium. Our model

solves for a more general framework in which the network is weakly connected. At our unique

stable equilibrium, some agents may exert zero effort and the eigenvector centrality remains

well defined.

Focusing on the subclass of competitive aggregative games allows us to provide some

additional insights on the structure of the set of PCEs. We further explore the role of the

network’s architecture in determining who is active at a PCE. A typical PCE contains some

agents whose action level is zero. The additional restrictions introduced on the payoff function

allow us to decompose the network into communities and to tie these communities to the

extensive margin at a PCE. A community is a strongly connected component of the network.

Our third contribution, therefore, is to break down the network into communities where, in

each community, all agents are either active or inactive. We show that there are typically

multiple perception-consistent equilibria.

The multiplicity of perception-consistent equilibria is interesting as it underlines the be-

havioral richness of our equilibrium concept. Yet, multiplicity of equilibria may be seen as

a hurdle, since it clouds predictions on which PCE may be played. To address this issue,

we study the stability of the perception-consistent equilibria with respect to a very natural

dynamic. At each period of time, agents best replies to their perceived utility function ob-

served in the previous period and the efforts of their direct neighbors until an equilibrium is
2Some papers have also provided an axiomatic foundation of eigenvector centrality; see e.g., Palacios-Huerta

and Volij (2004); Dequiedt and Zenou (2017); Bloch et al. (2019).
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reached in which the perceived utility is equal to the objective utility. Our fourth contribution

is to provide a very simple and intuitive characterization of the stable PCE. We show that a

community is active at a stable PCE if it is “aware” of the largest and densest community in

the whole network. As we will see, this implies that there is always a unique stable PCE. In

this PCE, some agents are active, but typically not all of them.

Next, we conclude our study with some policy implications of our model. We first examine

the impact of adding a directed link between two agents. We show that the agent, who is

at the source of the link, is the one who obtains the highest benefit from the link addition.

Further, we show that adding a link may decrease the number of active agents in the network.

We then study the key-player policy (Ballester et al., 2010) and highlight another counter-

intuitive result. By removing an agent in the network, we may make several inactive agents

(for example, in terms of criminal effort) active. Finally, we show that, by merging two

different connected networks (i.e., social mixing), the total activity is higher than the sum of

total activity in each disconnected network.

Contribution to the literature

Our paper contributes to the games-on-network literature.3 In many situations in which

networks matter, agents make both binary decisions (extensive margin) and quantity decisions

(intensive margin). Consider, for example, crime. First, an individual has to decide whether

to become a criminal (active or not active); this is a binary decision (extensive margin). Then,

if she becomes a criminal, she must decide how many crimes to commit (intensive margin).

The literature on network games has mostly focused on the intensive margin by assuming that

actions are continuous (Jackson and Zenou, 2015). There are, however, some papers that have

considered network games with discrete actions (extensive margin); see, for example, Morris

(2000), Brock and Durlauf (2001), and Leister et al. (2021). We believe that this is the one of

the first papers4 to consider both extensive and intensive margins. We show that the extensive

margin (i.e., who is active in the network) is community based, that is, agents belonging to

the same community are either all active or all inactive, and depends on the density of the

community, whereas the intensive margin is individual based and solely determined by the

position in the network: the higher is the individual eigenvector centrality, the higher is the

effort of each agent.

As with our model, there are also network games that focus on imperfect information

about the network and introduce new equilibrium concepts related to our PCE. In particu-
3For overviews, see Jackson (2008), Jackson and Zenou (2015), Bramoullé et al. (2016), and Jackson et al.

(2017).
4Other papers (e.g., Calvó-Armengol and Zenou (2004); Bramoullé and Kranton (2007)) have considered

both but without being able to provide a general characterization of the equilibria. Moreover, these models
are usually plagued by multiple equilibria.
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lar, McBride (2006), Lipnowski and Sadler (2019) and Battigalli et al. (2020) consider self-

confirming and peer-confirming equilibria. Lipnowski and Sadler (2019) apply self-confirming

equilibria (SCE) and rationalizable SCE to games where feedback about the actions of others

is described by a network topology: agents observe only the actions of their peers (i.e., neigh-

bors), but their payoffs may depend on everybody’s actions and are not observed ex-post.

The main difference with our PCE is that Lipnowski and Sadler (2019) allow agents to make

conjecture about agents who are not their neighbors;5 in our model, we assume that agents

do not even know these agents exist. The peer-confirming equilbrium concept of Lipnowski

and Sadler (2019) is such that adding links in the network restricts the set of permissible

profiles/conjectures and thus the set of equilibria.6 This is not true in our model.7 Moreover,

our concept of perception-consistent equilibrium (PCE) is equivalent to a specific kind of the

self-confirming equilibrium (SCE) developed by Battigalli et al. (2020) when the game is writ-

ten in such a way that the feedback agents receive is made explicit. In fact, our equilibrium

concept (PCE) is a refinement of SCE whereby agents wrongly believe that they compete

locally rather than globally.

Our equilibrium characterization in terms of communities also relates to other network

models that partition agents into endogenous community structures, including risk sharing

(Ambrus et al., 2014), interaction between market and community (Gagnon and Goyal, 2017),

behavioral communities (Jackson and Storms, 2019), information resale and intermediation

(Manea, 2021), and technology adoption (Leister et al., 2021). However, the driving forces

and policy implications are very different. In particular, all these papers assume a perfect

knowledge of the network and use standard equilibrium concepts.

Our paper also contributes to the literature on aggregative games (Jensen, 2018). In this

literature, usually the network is not explicitly modeled and agents are assumed to know with

certainty their competitors. Tullock contest game is one of our applications; thus we also

contribute to the literature on conflicts,8 especially the more recent literature on conflicts

in networks.9 In this literature, the structure of local conflicts is modeled as a network in

which rivals invest in conflict-specific technology to attack their respective neighbors. This

literature assumes that the network is undirected (which is a particular case of our network)
5Indeed, a strong assumption that is implicit in the definition of peer-confirming equilibrium in Lipnowski

and Sadler (2019) is that players know the network structure.
6When the network is complete, the set of peer-confirming equilibria coincides with the set of Nash equilib-

ria. For the empty network, peer-confirming equilibria coincide with rationalizable equilibria. Increasing the
number of links reduces the number of equilibria. In contrast, the set of PCE may very well increase when
links are added.

7McBride (2006) applies self-confirming equilibrium (SCE) to games of network formation with asymmetric
information in which agents only observe the private information of other linked agents. We instead assume
that the network is exogenous and that actions are continuous.

8See Jensen (2016) for a recent overview.
9For overviews of this literature, see Kovenock and Roberson (2012) and Dziubiński et al. (2016).
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and that agents know the network, and solves the model using standard Nash equilibrium

concept. Further, these studies usually do not provide a general characterization of all possible

equilibria.

Finally, our model contributes to the general literature on competition in Industrial Orga-

nization (IO). We believe that this is the first model that introduces the concept of perceived

competition in this literature and models it through a network.

2 The model

2.1 Aggregative games

Consider a finite set of agents, denoted by N = {1, 2, · · · , n}. Agent i ∈ N exerts effort

xi ∈ R+ and x := (x1, x2, · · · , xn) denotes the action profile. We consider an aggregative

game (Jensen, 2018) in which every player i’s payoff is a function of the player’s own action xi
and the aggregate of all players’ actions X :=

∑
j∈N xj . Let πi : Rn+ → R be agent i’s payoff

function. It is given by:10

πi(x) = h(xi, X), (2)

where h : R+ × R+ → R is a continuously differentiable map on R+ × R++.

2.2 Perception Networks

We assume that agents are only partially aware of N , the actual set of agents they are in

competition with. For instance, if N = {1, 2, 3}, agent 1 may be aware of agents 2 and 3,

while agents 2 and 3 may only be aware of each other, but do not know the existence of agent

1. This assumption is captured by a directed network (N,G), where G is an n× n adjacency

matrix with entry gij ∈ {0, 1} with gij = 1 if and only if agent i is aware of agent j. Since the

network is directed gij = 1 does not necessary implies gji = 1. This network will be referred

to as the perception network and the neigborhood of agent i, Ni := {j ∈ N : gij = 1} as the

perception set of agent i or, equivalently, as i’s perceived neighborhood.

Agent i is said to be connected to j through a path if there is a sequence {j1, j2, · · · , jm} ⊆
N with j1 = i, jm = j and such that gj`j`+1

= 1 for each ` ∈ {1, ...,m − 1}. We use the

10We could generalize our utility function to

πi(x) = h (xi, g(x)) , with g(x) =
∑
i

φ(xi) (1)

and our main result (Theorem 1) will still be obtained. Observe that in (1), the aggregator g needs to be
additively separable and anonymous. Additive separability is the standard way of defining general aggregative
games (Jensen, 2010; Acemoglu and Jensen, 2013). We must add “anonymity”, which is very important to
define the notion of perceived utility and thus PCE.
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notation i⇒ j to indicate that such a path exists between i and j. A directed network (N,G)

is weakly connected if the underlying undirected graph (i.e., ignoring the directions of edges)

is connected. It is strongly connected if, for any pair of agents i, j ∈ N , there is a path from

i to j (i.e., i ⇒ j). Throughout the paper, we consider weakly connected networks satisfying

the no-isolation property, that is, for each i ∈ N , Ni 6= ∅ and there exists j such that i ∈ Nj .

Remark 1. All agents are ex-ante identical, i.e., hi(.) ≡ h(.) for all i ∈ N . Thus, the

perception sets are the only source of agents’ heterogeneity. This is because we want to examine

how the individual’s network position affects the effort and outcome of each agent. Note that

the perception network is necessarily unweighted, that is, gij ∈ {0, 1}, where gij = 1 means

that agent i perceives j a competitor while gij = 0 means that she does not perceive j as a

competitor.11

Agents correctly assume that the game is aggregative but only observe the aggregate effort

in their perceived neighborhood. This discrepency between the actual aggregate effort and

the perceived aggregate effort from agent i’s viewpoint is captured by a shifter Wi. In other

words, Wi represents the misperception intensity of the aggregate effort by agent i. Given an

effort profile x ∈ Rn+, we can write the perceived utility of agent i as12

ui(xi,x−i;Wi) = h

(
xi,

xi +
∑

j∈N gijxj

Wi

)
. (3)

From a dynamical viewpoint, the interpretation of this shifter is easier to understand

because agents repeatedly adjust their effort with the local information they have. In Section

3.5, we describe in detail this dynamic process.

2.3 Two important applications

Our aggregative game with utility function (2) is relatively general and can be applied to

many aggregative games such as Tullock contest games, Cournot competition, tournaments,

teamwork games, etc. (Alos-Ferrer and Ania, 2005; Jensen, 2010). Here we provide two main

applications: Tullock contest games and Cournot competition.

11This is an important remark because weakly connected networks are non-generic in the space of weighted
directed graphs. Thus, the case for studying them so carefully rests on links being binary rather than weighted.
In our case, it makes sense since the network only captures the “perception” that each agent has about agents.
It is not a “physical” network such as roads, freeways, bridges or a financial network where links are bank
loans.

12The perceived payoff is given by h(xi,+∞) if Wi = 0 and xi +
∑
j gijxj 6= 0.
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2.3.1 Linear (Tullock) contest games

There is a given resource, available in a fixed amount V ∈ R+ = [0,∞) to be shared between

n agents. Each agent i ∈ N exerts some effort xi ∈ R+ at marginal cost c > 0 and her share

of the resource V is given by the following proportional rule:

πi(x) = h(xi, X) :=


xi
X V − cxi if X > 0,

V
n if X = 0.

(4)

Equation (4) corresponds to the well-known “Tullock contest function” from the contest liter-

ature (Skaperdas, 1996; Kovenock and Roberson, 2012). One important difference is that we

do not interpret xi
X as the probability of agent i getting V , but as the fraction of resource V

that agent i can obtain, given her and the other agents’ effort choices.

The actual resources V available in the economy as well as the total efforts of the n agents

in the network are not observed by any agent in the network; agent i only observes
∑

j∈N gijxj ,

and acts as if she were competing in a Tullock contest with resources VWi to be shared only

with the agents in her perceived neighborhood. Thus, given Wi, the perceived utility of agent

i is equal to:

ui(xi,x−i;Wi) =


xi

xi+
∑
j∈N gijxj

WiV − cxi if xi +
∑

j∈N gijxj > 0,

1
1+|Ni|WiV if xi +

∑
j∈N gijxj = 0.

(5)

2.3.2 Cournot competition

Consider a standard homogeneous good Cournot oligopoly game on a network with n firms

competing in quantities. The profit function for each firm i is given by

πi(x) = (p− c)xi, where p = max {ᾱ−X, 0} (6)

We assume that α > c. In (6), xi denotes the quantity produced by firm i while p is the price

of the product. This means that the profit function of each firm i is still given by (2) but with

h(xi, X) = xi
(
(ᾱ−X)+ − c

)
.

Firms only observe the quantities produced by their neighbors. In other terms, firm i only

observes
∑

j gijxj . Given Wi, the perceived utility of firm i is then equal to:

ui(xi,x−i;Wi) =

(
ᾱ−

xi +
∑

j gijxj

Wi

)
+

xi − cxi (7)
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Indeed, firm i believes that the price is an affine transformation in the total demand, which

is correct. However, she does not observe the actual demand X, but only the demand in

her neighborhood, xi +
∑

j gijxj . When observing that the realized price she faces is not

her perceived price (the one she anticipated from observing the demand in her perceived

neighborhood), she does not know that it is because there are other firms producing the same

product in the network. Instead, she believes it is because the slope affecting the price is

incorrect.

Observe that, as in the standard Cournot model, there is precisely one price p for the

homogeneous good defined in (6), which is not subject to interpretation. This means that firms

do not “misperceive” the actual price, because they observe it. However, they “misperceive”

how this price emerges because they have a wrong perception of the slope affecting this price.

Remark 2. Our result can be extended to a Cournot model with a general non-linear demand

function, that is, p = (ᾱ− k (X))+. See the Online Appendix C.

2.4 Perception-Consistent Equilibrium

The critical assumption of our model is that, in order to choose an effort level, each individual

i considers the competition in her perceived neighborhood {i} ∪ Ni while, in reality, she is in

competition with all the agents in the network. The following equilibrium concept captures

this idea.

Definition 1. Given a perception network (N,G), a Perception-Consistent Equilibrium

(PCE) is a vector x∗ ∈ Rn+ 6= 0 such that,

(i) for each i ∈ N and each xi ∈ R+,

ui(x
∗
i ,x
∗
−i;Wi) ≥ ui(xi,x∗−i;Wi),

(ii) for each i ∈ N ,

Wi =
x∗i +

∑
j∈N gijx

∗
j

X∗
.

Condition (i) states that, given her perceived competitionand a vector of actions x, each

individual i chooses an effort that maximizes her perceived utility. Each agent i takes Wi as

given, and chooses the action xi that maximizes ui(xi,x−i,Wi). Note, however, the subtle

part of condition (i): taking Wi as given, each agent i is only best responding to the choice of

actions of agents in her perception set.

Condition (ii) is a consistency requirement imposed in equilibrium. Indeed, at a PCE, indi-

vidual i’s perceived utility has to be equal to her objective payoff function in the underlying
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aggregative game. This is why we call it a perception-consistent equilibrium.

Remark 3. Perception-consistent equilibria and Nash equilibria coincide if and only if the

network is complete, in which case the PCE is the Nash equilibrium of the aggregative game.

Indeed, a perception-consistent equilibrium of our aggregative game on a complete network

is simply a Nash equilibrium on the same game, since all agents observe the whole set of agents.

As soon as one link is missing, at least one agent is not aware of the existence of some other

agents and PCEs no longer coincide with Nash equilibria. Observe that the PCE is neither

a refinement of the concept of Nash equilibrium nor a superset (such as correlated equilibria

or the concept of peer-confirming equilibria defined in Lipnowski and Sadler (2019)). Rather,

it is the outcome of a decentralized optimization problem where each agent must choose the

action that maximizes their perceived utility and where each perceived utility must be ex-post

consistent with the realized outcome.

2.5 Perception-consistent equilibrium: An illustration

To understand our perception-consistent equilibrium concept (Definition 1), let us consider

the following two-part example in which we compare the set of perception-consistent equilibria

in two closely related networks for the linear (Tullock) contest games (Section 2.3.1) where the

utility of each agent i given by (5). This will be part of our leading examples in this paper.

Example 1. Consider the two networks displayed in Figure 1.

Consider an economy with six agents that are in competition for a fixed amount of resources

V . Each firm i chooses effort xi, and the resource V is distributed according to the sharing

rule (4). Suppose that the interactions are repeated every year and the perception sets are

as follows: N1 = {2, 3, 6}, N2 = {1, 3, 4, 6}, N3 = {1, 2}, N4 = {5, 6}, N5 = {4, 6}, N6 =

{4, 5}. The corresponding directed network is depicted in Figure 1(a). At the end of a year,

V is shared according to this rule and all firms observe the efforts of those in their perception

set. To keep things simple, suppose that all firms initially choose the same effort and hence

earns each V/6. From the viewpoint of firms 4, 5, and 6, which believe that they are only

in competition with each other, V/6 corresponds to the total resource V/2, shared between

them. On the other hand, firm 2 obtains the same share, V/6, but has a different perception,

since she is aware that she is competing with firms 1, 3, 4, and 6. Hence, she believes that

the total resource is 5V/6 and that it is shared between 5 firms. As a result, the following

year, firm 2 will make more effort than firms 4, 5, 6, since she thinks that there is more total

resources (5V/6 > V/2). This pattern continues and reinforces itself over time, so that firms

1 and 2 make more and more effort, which induces firm 3 to also increase its effort. On the

10



Figure 1: Two similar networks with different densities

5
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6 1

2 3

(a) A dense network

5

4

6 1

2 3

(b) A less dense network

contrary, firms 4, 5, 6 —which are not aware of the effort increase by the other firms in the

economy—believe that the total resource V decreases over time (they believe that there are

fewer and fewer resources in the economy year after year) without knowing why. It turns out

that, after some time, firms 4, 5, and 6 will end up making no effort and all resources will be

shared between firms 1, 2, and 3. This steady state is a PCE.13

Suppose now that agents 1 and 2 are no longer aware of each other. This corresponds to

the network displayed in Figure 1(b). After the first year, firms 1, 3, 4, 5, and 6 believe that

the amount of resource to be shared is equal to V/2, because they are all aware of exactly

two other firms. Firm 2, in turn, is aware of three other competitors and hence believes that

the amount of resource to be shared is 2V/3. Thus, in the following year, firm 2 will make

more effort than the other firms. The following year, firm 2’s effort increase will trigger firm 3

increase its effort. And so forth. At this point it is not possible to provide more intuition, but

we will show that, at the PCE, all firms will be active. Thus, adding one link dramatically
13At this point of the paper, it is not possible to explain why this outcome will be reached. We explicitely

compute this PCE in Section 3.4.
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changes the set of active firms in equilibrium.

2.6 Existence

Let us show that there exists a Perception Consistent Equilibrium (PCE) in a rather large

class of aggregative games, which includes both Tullock and Cournot models.

Definition 2. We say that there is a competitive aggregative game on a directed network

(N,G) if,

(i) h is (weakly) concave in the first argument, i.e., ∂2h
∂x2 (x,X) ≤ 0;

(ii) h is strictly decreasing in the second argument, i.e., ∂h
∂X < 0 for any x > 0;

(iii) the cross derivative of h is strictly negative, i.e., ∂2h
∂x∂X < 0;

(iv) the map x 7→ h
(
x, x+y

W

)
is strictly quasiconcave for any W > 0, and y ≥ 0;

(v) limx→+∞
∂h
∂x(x,X) < 0, limX→0 inf0<x≤X

X ∂h
∂X

(x,X)

x ∂h
∂x

(x,X)
≥ −1 and limX→+∞

∂h
∂x(x,X) < 0.

These assumptions are relatively mild and standard.14 They guarantee that the game is

well-defined. In particular, assumption (ii) guarantees that we focus on competition while

assumption (v) guarantees that zero effort is not an equilibrium. Indeed, given (v), when

aggregate effort is very low, agents have an incentive to increase their effort. Note, however,

that this does not imply that all efforts are positive at a PCE. Note also that assumption (v)

is also easy to check, as we will show below.

Theorem 1. In a competitive aggregative game on a directed network (N,G), there always

exists a Perception-Consistent Equilibrium (PCE). Moreover, at any PCE x∗ and for any pair

of active agents i, j, we have x∗i ≥ x∗j if and only if
∑

l∈Ni x
∗
l ≥

∑
k∈Nj x

∗
k. Hence the efforts

at a PCE represent an ordinal centrality measure on the sub-network of active agents.

This result is very general and shows that there always exists a PCE if the conditions in

Definition 2 are satisfied. More importantly, it shows that at any PCE, the efforts represent

an ordinal centrality measure —a general class of centrality measures introduced by Sadler

(2021).15, Many well-known network centrality measures, such as degree, eigenvector and
14We denote by ∂h/∂x the derivative of h with respect to its first argument and ∂h/∂X the derivative of h

with respect to its second argument. Note that these assumptions are not equivalent to strategic substitutes,
since it should involve the second derivative with respect to twice the second argument of h. For instance, in
the case of Tullock, we have ∂2h

∂x∂X
= −V/X2, while ∂2πi

∂xi∂xj
= −V/X2 + 2V xi/X

3.
15The function i ∈ N → x∗i represents an ordinal centrality (Sadler, 2021) if and only if it satisfies recursive

monotonicity. That is, for any i, j, if there exists an injective map φ : Nj → Ni such that x∗φ(k) ≥ x∗k for all
k ∈ Nj , then x∗i ≥ x∗j . Observe that, at a PCE, we have x∗i ≥ x∗j if and only if

∑
l∈Ni

x∗l ≥
∑
k∈Nj

x∗k. Hence,
recursive monotonicity clearly holds for i 7→ x∗i .
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Katz-Bonacich centrality, belong to this class. Below, in Theorem 2, we show that for a more

specific class of competitive aggregative games, the efforts at any PCE represent a specific

ordinal centrality measure, namely, eigenvector centrality.

An important class of competitive aggregative games. The payoff function of both

applications—Tullock and Cournot—share a common structure: h can be written as h(x,X) =

xf(X). In this case, the payoff function of agent i is given by

πi(x) = xif(X). (8)

where f = R+ → R+ is differentiable on ]0,+∞[, strictly decreasing with limX→0+ f(X) > 0,

limX→+∞ f(X) < 0, such that x 7→ xf
(x+y
W

)
is strictly quasiconcave, and limX→0

Xf ′(X)
f(X) ≥

−1. Note that the last requirement is automatically satisfied, as soon as f is continuously

differentiable in 0. Such payoff functions satisfy the assumptions of Definition 2, and thus

both Tullock and Cournot belong to the large class of competitive aggregative games covered

by Definition 2.16,17

3 General analysis: Perception-consistent equilibria

In this section, we present a complete analysis of perception-consistent equilibria in competi-

tive aggregative games with payoff functions given by Equation (8). We first provide a general

algebraic characterization in Section 3.1. We show that PCE provides a microfoundation of

eigenvector centrality. Note that eigenvector centrality is an ordinal centrality measure. Hence

the result can be interpreted within the context of Theorem 1: in the subclass of competitive

aggregative games defined by Equation (8), any PCE represents the eigenvector centrality

on the sub-network of active agents. In Section 3.2, we apply our result to the Tullock and

Cournot models. Sections 3.3 and 3.4 are devoted to providing an alternative characterization;

we introduce the concept of community and show that carefully ordering the agents by com-

munity allows the easy identification of all PCEs in any network. Finally, we show in Section

3.5 that the set of PCEs can be refined to a unique stable PCE. Importantly, this particular

PCE provides a microfoundation of eigenvector centrality in the whole network, and this

holds true for any weakly connected network.

16Parts (i), (ii) and (iii) follow from the fact that ∂2h
∂x2

= 0, ∂h
∂X

= xf ′(X) < 0, and ∂2h
∂x∂X

= f ′(x) < 0,
respectively. Finally ∂h

∂x
= f(X) and thus assumptions (iv) and (v) follows from the assumptions on f .

17Indeed, for Tullock, f(X) = V/X − c. Hence xf
(
x+y
W

)
= x

(
VW
x+y
− c
)
, which is strictly concave in x.

Moreover Xf ′(X)
f(X)

= −V
V−cX →X→0 −1 For Cournot, f(X) = (α −X)+ − c, and xf

(
x+y
W

)
= x ((α−X)+ − c),

which is strictly quasiconcave. Moreover Xf ′(X)
f(X)

= −X
α−c−X →X→0 0.

13



3.1 General characterization of perception-consistent equilibria

We already established that the set of perception-consistent equilibria is nonempty. In this

section, we show that an effort profile is a perception-consistent equilibrium if and only if it

is a (properly normalized) nonnegative eigenvector of G. let N+(x∗) be the set of agents who

are active at equilibrium x∗. That is, N+(x∗) = {i ∈ N : x∗i > 0}.

Theorem 2. Let (N,G) be a weakly-connected network and consider the competitive aggrega-

tive game in which the utility of each agent i is given by (8). Then, x∗ is a perception-consistent

equilibrium if and only if

Gx∗ =

(
−f(X∗)− f ′(X∗)X∗

f(X∗)

)
x∗, and x∗ ∈ Rn+ \ {0}. (9)

Theorem 2 provides a microfoundation of eigenvector centrality. It is a particular case of

Theorem 1, since eigenvector centrality is an ordinal centrality measure. In particular, it shows

that, for any weakly-connected network, at any PCE, the effort of each agent is proportional

to her eigenvector centrality, in the sub-network of active agents.18 This result is driven

by the consistency requirement (ii) of Definition 1 and also to the utility function (2) of

the aggregative game. This is a new result, complementing that of Ballester et al. (2006),

who show that, for any network, in a game with strategic complementarities, for each agent

who chooses effort that maximizes a linear-quadratic utility function, her equilibrium effort is

equal to her Katz-Bonacich centrality. Here, we show that, if each agent chooses effort that

maximizes utility (2) based on the competitive aggregative game, then, at any PCE, her effort

will be proportional to her eigenvector centrality.

Another key feature of PCEs introduced in Theorem 2 is that the set of active agents is

a closed set. That is, i⇒j and j ∈ N+(x∗) =⇒ i ∈ N+(x∗). Note that the closedness of

the set of active agents cannot be guaranteed in the general class of competitive aggregative

games covered in Theorem 1.

Remark 4. In any strongly-connected networks, there is a unique perception-consistent equi-

librium x∗. In addition, for each i ∈ N , x∗i > 0.

3.2 Microfoundation of eigenvector centrality: Some applications

We illustrate our characterization results for our two main applications of aggregative games:

Linear (Tullock) contest games and Cournot competition.
18Eigenvector centrality is usually defined for strongly-connected networks. Indeed, in this case, it is a well-

defined measure of centrality captured by the Perron-Frobenius vector associated with the adjacency matrix
(Jackson, 2008). In Section B.2 of Online Appendix B, we provide a more general definition of eigenvector
centrality for networks that are not necessarily strongly connected.
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Linear (Tullock) contest games. Let us show (9) emerges in the Linear (Tullock) contest

games described in Section 2.3.1. First, given Wi, each agent i chooses her effort x∗i that

maximizes her perceived utility (5). This leads to:

Wi
∑

j gijx
∗
j(

x∗i +
∑

j gijx
∗
j

)2V = c.

Combining this identity with consistency condition Wi =
x∗i+

∑
j gijx

∗
j

X∗ , we obtain:∑
j gijx

∗
j

x∗i +
∑

j gijx
∗
j

V

X∗
= c.

By solving this equation, we get:

∑
j

gijx
∗
j =

(
cX∗

V − cX∗

)
x∗i ,

In matrix form, we therefore obtain:

Gx∗ =
cX∗

V − cX∗
x∗. (10)

Cournot competition. Let us perform the same exercise for the standard homogeneous

good Cournot oligopoly game of Section 2.3.2. First, given Wi, each firm i chooses a quantity

x∗i that maximizes her perceived utility (7). This leads to:

ᾱ−
x∗i +

∑
j gijx

∗
j

Wi
− x∗i
Wi

= c.

Combining this identity with consistency condition Wi =
x∗i+

∑
j gijx

∗
j

X∗ , we obtain:

ᾱ−X∗ − x∗iX
∗

x∗i +
∑

j gijx
∗
j

= c.

By solving this equation, we get:

∑
j

gijx
∗
j =

(
2X∗ − ᾱ+ c

ᾱ− c−X∗

)
x∗i ,

In matrix form, we obtain:

Gx∗ =

(
2X∗ − ᾱ+ c

ᾱ− c−X∗

)
x∗. (11)
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Let us emphasize one important difference between the Cournot competition and the

Tullock contest game. Suppose that —dropping the no-isolation assumption—we allow an

agent to be completely invisible, i.e., no other agent is aware of her. In the Tullock model,

there must be at least two active agents at a PCE. This is due to the fact that the aggregator

f is not regular at zero in the Tullock model, a consequence of which being that the quantity

−f(X∗)−f ′(X∗)X∗ cannot be equal to zero. Hence, the set of active agents at a PCE cannot

be a network with largest eigenvalue 0 and thus it contains at least two elements. In contrast,

this is not anymore true in the Cournot competition model, where there is a PCE in which

the isolated agent is the only one who is active, and she optimally chooses quantity as if she

were in a monopolistic situation. Thus, it chooses the quantity x∗i that solves the equation

−f(X)− f ′(X)X = 0, i.e., x∗i = (α− c)/2.

3.3 Communities

Let us start with some important definitions. For any subset of agentsM ⊆ N , let GM denote

the restriction of matrix G to M .

Definition 3. Given M ⊂ N , (M,GM ) is a strongly-connected component (or commu-

nity)19 of (N,G) if:

(i) it is a strongly-connected sub-network;

(ii) for each I ⊂ N \M , (M ∪ I,GM∪I) is not a strongly-connected network.

Let C(G) denote the set of communities in (N,G):

C(G) := {M ⊂ N : (M,GM ) is a community of (N,G)} .

An element of C(G) is a subset of agents of cardinal at least two, such that the corresponding

sub-network is strongly connected. Note that under the no-isolation property, C(G) is never

empty and communities form a partition of the set of agents.

To illustrate this definition, consider the network in Figure 1(a) with N = {1, 2, 3, 4, 5, 6} and
define M1 = {1, 2, 3} and M2 = {4, 5, 6}. We can see that both (M1,GM1) and (M2,GM2)

are strongly-connected components: each is a strongly-connected sub-network, and it is not

possible to enlarge any of these two sub-networks to form a larger strongly-connected network.
19Since we assumed the no-isolation property, a strongly-connected component contains at least two agents.

However, we can still define communities in the same way even if there are isolated agents, since these agents
are by themselves a strongly connected component. In that case, the characterization we establish in the next
section still holds but might depend on the aggregator f .
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Hence, C(G) = {M1,M2}. Note that the set of communities is unchanged in the network of

Figure 1(b).

Definition 4. Let M ⊂ N . Agent i ∈ N is an adjunct to the sub-network (M,GM ) of

(N,G) if i is connected to some agent j ∈M through a path. The adjunct set of M , denoted

by M̄ , is therefore defined as the set of all agents that are adjuncts to M , that is:

M̄ = {i ∈ N : ∃j ∈M with i ⇒ j}.

Given M,M ′ ∈ C(G), we say that M ′ is adjunct to M if M ′ ⊂ M̄ .

Note that the definition of the adjunct set of a community M is inclusive in the sense that

M is also part of the adjunct set. In the network of Figure 1(a), M̄1 = M1 = {1, 2, 3} and

M̄2 = M2 ∪M1 = N = {1, 2, 3, 4, 5, 6}. Importantly, this definition of adjunct sets induces

a partial ordering � on the set of communities C(G).20 The binary relation � is defined as

follows:

M ′ �M if and only if M ′ ⊂ M̄. (12)

In other terms, M ′ � M if there exists a path from M ′ to M . As usual, if M ′ � M and

M ′ 6= M , we write M ′ � M . A community M is �-maximal if no community M ′ exists

such that M ′ � M . That is, there is no M ′ that is aware of M . If not, we say that M is

hidden from M ′. Maximal elements with respect to this partial ordering are communities few

agents are aware of. This “advantage” can be intuitively captured by making the following

observation: given a PCE x∗, we have

M ⊂ N+(x∗)⇒M ′ ⊂ N+(x∗), ∀M ′ �M.

Let us now illustrate the concept of communities and the �-ordering.

Example 1. Consider the network (N,G) in Figure 1(a) with N = {1, 2, 3, 4, 5, 6}. As we

saw above, there are two communities: M1 = {1, 2, 3} andM2 = {4, 5, 6}. Since there is a link

from 1 to 6, for instance, we have M1 �M2, and, clearly, the community M1 is �-maximal.

Example 2. Consider now the network (N,G) displayed in Figure 2 with N = {1, 2, · · · , 9}.
There are three communities in this network: M1 = {1, 2, 3}, M2 = {4, 5}, and M3 =

{6, 7, 8, 9}. To check that these three connected subnetworks satisfy (ii) in Definition 3,

note that there is no path from M3 to either M1 or M2, and that there is no path from M2 to

M1. However, there is a link from 2 to 4, so that M1 �M2. There is also a link from 4 to 9,

so that M2 �M3. Finally, we obtain M1 �M2 �M3. Community M1 is �-maximal.
20A partial ordering is a reflexive, antisymmetric, and transitive binary relation.
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Figure 2: Network structure in Example 2
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In both examples, the ordering � is complete (every pair of communities is comparable as per

the � ordering). This is not always the case. It is possible to have communities that are not

comparable according to �.

3.4 Characterization of perception-consistent equilibria

Thus far, we have shown that any weakly-connected network (N,G) can be associated with an

ordering in the set of strongly-connected components. In this section, we characterize active

agents at a PCE in terms of their position in the network, along with the “density” of the

community they belong to.

Definition 5. For each community (M,GM ), we refer to its adjunct set M̄ as a candidate

set with root M . A perception-consistent equilibrium x∗ of (N,G) such that N+(x∗) = M̄ for

some community M is called an equilibrium with root M .

A candidate set is a set of agents that could naturally be the set of active players at

equilibrium. Indeed, if there is one agent i who is active in M , then all agents in its adjunct

set M̄ will be active. This is because all agents who are path-connected to i are necessarily

active, since the set of active agents at a perception-consistent equilibrium is closed (see (??)).

We obtain the following key result:

Proposition 1. There is at most one perception-consistent equilibrium x∗ with root M . It

exists if and only if

ρ(GM ) > max
{
ρ(GM ′) : M ′ ∈ C(G), M ′ �M

}
. (13)

In particular, for any �-maximal M , there always exists an equilibrium with root M .
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This proposition is very useful in terms of characterizing PCEs which admits a root. It

states that, for any community M , there is at most one PCE with root M . This provides

a necessary and sufficient condition in terms of the largest-eigenvalue comparisons for this

equilibrium to exist. This condition is automatically satisfied for maximal communities, be-

cause the set {M ′ ∈ C(G) : M ′ �M} is empty. For non-maximal elements of C(G), however,

ascertaining if a PCE with root M exists requires checking the non-trivial inequality (13).

Let us now illustrate Proposition 1 for the linear (Tullock) contest games (Section 2.3.1) with

the following examples.21

Examples 1 and 2: Perception-consistent equilibria

• Consider the network (N,G) in Figure 1(a). As we saw above, there are two communities:

M1 := {1, 2, 3} and M2 := {4, 5, 6}, with M1 � M2. Hence there is an equilibrium with

root M1, where only agents 1, 2, and 3 are active. Since ρ(GM2) = ρ(GM1) and there is no

equilibrium with root M2. As a result, there is a unique perception-consistent equilibrium

such that x∗1 = x∗2 = x∗3 = 2V
9c and x∗4 = x∗5 = x∗6 = 0.

• Consider now the network (N,G) displayed in Figure 1(b), a variation of Figure 1(a) in

which we deleted the directed edges between agents 1 and 2, so that the strongly-connected

component M1 is now less dense and, thus, its spectral radius is smaller. The partial order

is unchanged: M1 � M2. Hence there is again an equilibrium with root M1 = {1, 2, 3},
where only agents 1, 2 and 3 are active, with x∗1 = x∗2 = 1

(1+
√

2)2
V
c , x

∗
3 =

√
2

(1+
√

2)2
V
c , and

x∗4 = x∗5 = x∗6 = 0. Since ρ(GM2) = 2 >
√

2 = ρ(GM1), there is now an equilibrium with root

M2, where all agents in the network are active. At such an equilibrium, note that efforts are

not symmetric. Indeed, x∗1 = V
9c , x

∗
2 = 7V

45c , x
∗
3 = 2V

15c , and x
∗
i = 4V

45c for each i ∈ {4, 5, 6}.

• Finally Consider the network displayed in Figure 2 with M1 = {1, 2, 3}, M2 = {4, 5}, and
M3 = {6, 7, 8, 9}, with M1 � M2 � M3. Despite the existence of three strongly-connected

components, let us use Proposition 1 to show that there are (only) two perception-consistent

equilibria. Each community’s subnetwork is complete, so that ρ(GM2) = 1 < ρ(GM1) = 2 <

ρ(GM3) = 3.

Since M1 is �-maximal, there is an equilibrium with root M1 (with set of active agents

M̄1 = {1, 2, 3}) which, using Theorem 2, is given by:

x∗i =
2V

9c
for i ∈ {1, 2, 3}, x∗j = 0 for j ∈ {4, 5, 6, 7, 8, 9}.

21We can perform the same exercise for Cournot Competition (Section 2.3.2) with utility function (7). For
instance, in the network in Figure 1(a), there is a unique PCE where only firms 1, 2, 3 are active with x∗1 =
x∗2 = x∗3 = (ᾱ− c) /4 and X∗ = 3 (ᾱ− c) /4. In the network in Figure 1(b), there are two PCE. The first one is
such that only firms 1, 2, 3 are active with x∗1 = x∗2 = (ᾱ− c) /

[
2
(√

2 + 1
)]

and x∗3 = (ᾱ− c) /
[√

2
(√

2 + 1
)]
,

with X∗ = (ᾱ− c) /
√

2. The other PCE is such that all firms are active with x∗ = (ᾱ−c)
40

(5, 7, 6, 4, 4, 4) and
X∗ = 3 (ᾱ− c) /4.
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Since M1 �M2 and ρ(GM2) < ρ(GM1), there is no equilibrium with root M2.
Finally, Since ρ(GM3) > max{ρ(GM1), ρ(GM2)}, there is an equilibrium with root M3 such
that the set of active individuals is M̄3 = N . This equilibrium is given by:

x∗i =
3V

56c
for i ∈ {1, 4, 5}, x∗j =

9V

112c
for j ∈ {2, 3}, and x∗k =

3V

28c
, for k ≥ 6.

In summary, in the network in Figure 2, there are two PCEs: one in which only agents 1, 2,

and 3 are active, and one in which all agents are active. �

In order to complete our characterization of perception-consistent equilibria, let us now con-

sider an interesting subset of weakly connected networks.

Definition 6. A weakly-connected network (N,G) is simple if for any M1,M2 ∈ C such that

ρ(GM1) = ρ(GM2) = ρ, we have max {ρ(GM ) : M �M1 or M �M2} ≥ ρ.

Hence, simple networks are such that, for any two distinct communities with the same

spectral radius, a community must exist whose spectral radius is at least as large, and which

is aware of one of them. In other words, (i) we exclude weakly-connected networks for which

two PCEs with different roots have the same spectral radius, but (ii) we allow the existence

of two communities with the same spectral radius if one of them is not part of a PCE. In

particular, we exclude networks in which two �-maximal communities have the same spectral

radius. For example, the network displayed in Figure E1 in the Online Appendix E.2 is not

simple because the two �-maximal communities M1 = {2, 3} and M2 = {4, 5} have the same

spectral radius (i.e., ρ(GM1) = ρ(GM2) = 1). On the other hand, the networks in Figures 1(a)

and (b) (Example 1) and in Figure 2 (Example 2) are simple. Observe, in particular, that in

the network displayed in Figure 1(a), the communities M1 = {1, 2, 3} and M2 = {4, 5, 6} have
the same spectral radius (i.e., ρ(GM1) = ρ(GM2) = 2). However, because M2 is not the root

of a PCE, this network is simple.

We show that, in simple networks, perception-consistent equilibria always admit a root,

meaning that Proposition 1 provides a full characterization of the set of equilibria in these

networks.

Proposition 2. Let (N,G) be a simple network, and let x∗ be a perception-consistent equi-

librium of (N,G). Then, x∗ admits a root. Moreover, equilibrium efforts are proportional to

eigenvector centrality in the sub-network of active players.

The last statement of Proposition 2 must be understood as follows: if x∗ is a PCE, then

the effort of active agents is proportional to their eigenvector centrality in the sub-network

they generate. It is important to understand that this result does not say anything about the
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eigenvector centrality of agents in the whole network, since inactive agents are not taken into

account. A direct consequence of Proposition 2 is that there is a finite number of equilibria

in simple networks because, for any community M , there is at most one PCE with root M .

Actually, the set of perception-consistent equilibria is finite if and only if the network is simple.

This is formally stated in Proposition D1 in the Online Appendix D.1. In Section E of the

Online Appendix, we show that we can still describe the set of perception-consistent equilibria

in a simple way when the network is no longer simple (see Proposition E6).

Remark 5 (Equilibrium payoffs). Pick any perception-consistent equilibrium x∗ with root M .

Then, the payoff of each active agent i is given by

πi(x
∗) = f(X∗)x∗i , (14)

Moreover, the sum of utilities of active agents at x∗ is given by:

∑
i

πi(x
∗) = f(X∗)X∗ =

−(X∗)2f ′(X∗)

(ρ(GM ) + 1)
, (15)

since (ρ(GM ) + 1)f(X∗) = −X∗f ′(X∗)

This remark shows that the equilibrium utility of each active agent is proportional to her

equilibrium effort and thus the utility of active agents is proportional to their eigenvector

centrality in the sub-network of active agents. This only informs us about the relative utility

of active agents but does not tell us anything on the aggregate utility. However, for the Tullock

context function, we have:

∑
i

πi(x
∗
i ) =

V

ρ(G) + 1
,

while, for Cournot competition, we obtain:

∑
i

πi(x
∗
i ) =

(X∗)2

ρ(GM ) + 1
= (ᾱ− c) ρ(GM ) + 1

(ρ(GM ) + 2)2
.

In both examples (Tullock and Cournot), we can write the aggregate utility as an explicit

function of ρ(GM ), the spectral radius of the network associated to the equilibrium. Hence,

in these examples, the aggregate utility decreases when the network becomes denser. In the

general case, as can be seen in equation (15), we cannot make such a statement because X∗

depends on ρ(GM ).
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3.5 Stability and eigenvector centrality

This section is devoted to refining the set of equilibria by characterizing those perception-

consistent equilibria that are stable. Such an approach has two fundamental objectives. First,

it allows us to identify which equilibria are robust to perturbations and provides a dynamic

microfoundation to the concept of perception-consistent equilibrium. Second, refining the set

of equilibria is necessary if one wants to extend the eigenvector centrality microfoundation

to general networks. Indeed, as noted above, the efforts of active agents are proportional to

their eigenvector centrality in the sub-network of active players. However, this raises a natural

question: Is there a link between eigenvector centrality in the whole network and PCE? The

answer is positive and we show that, in any simple network, exactly one PCE is proportional

to the eigenvector centrality of the whole network, and it is precisely this PCE that we identify

as the stable one.

As usual, stability of equilibria is defined through a meaningful dynamical system, the rest

point of which is the equilibria we want to consider. A stable equilibrium is then defined as a

stable rest point of the dynamics, that is, a rest point to which, starting from conditions close

enough to it, the system asymptotically stabilizes. For this purpose, we introduce perceived

best-response dynamics. This captures the idea that agents smoothly adapt their actions in

the direction of their best possible action, given the information available to them.

3.5.1 The perceived best-response dynamics

We now present the continuous-time dynamics to which we characterize stability. Even though

it is very close—in terms of interpretation—to the classical continuous-time best-response

dynamics,22 we explain how it is related to a simple discrete-time model.

Consider a discrete-time sequence of effort profiles in which, after observing their neighbors’

effort level as well as Wi in the previous period, agents adapt their effort levels at each period

of time. Specifically, before choosing her effort level at period t, agent i observes the effort of

her neighbors xt−1
−i as well as the realized shifter W t−1

i at period t− 1. She can then compute

her optimal effort level with respect to quantity W t−1
i by maximizing the map23

bi ∈ [0,+∞[ 7→ bi · f
(
bi + (Gxt−1)i

W t−1
i

)
.

We denote by Bri(xt−1) this maximizer. Since W t−1
i =

xt−1
i +(Gxt−1)i

Xt−1 , the map Bri(·) is given
22See e.g., Gilboa and Matsui (1991), Matsui (1992), and, more recently, Bramoullé et al. (2014) and Bervoets

and Faure (2019).
23Observe that (Gx)i =

∑
j∈Ni

xj . We use this more compact notation whenever it is convenient.
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by

Bri(x) = Argmaxbi≥0 bi · f
(
X(bi + (Gx)i)

xi + (Gx)i

)
.

Tullock model. In the linear Tullock contest model, we can compute explicitely the perceived

best-response map:24

Bri(x) = max

{
−(Gx)i +

(
V

cX
(Gx)i (xi + (Gx)i)

)1/2

, 0

}
. (16)

Cournot competition. In the Cournot model, we can also compute explicitely the perceived

best-response map:

Bri(x) =
1

2
max

{
−(Gx)i + (ᾱ− c)xi + (Gx)i

X
, 0

}
. (17)

Agent i chooses an effort level equal to a convex combination of her last effort level and the

perceived best response based on what she observed at the last time period:

xti = (1− ε)xt−1
i + εBri(x

t−1) (18)

When ε is small, the sequence generated by (18) is related to the solution curves of the

continuous-time system

ẋ(t) = B(x(t)), (19)

where Bi(x) = −xi + Bri(x), i = 1, ..., N . Indeed, system (18) is a so-called Cauchy-Euler

scheme, designed to approximate the solutions of (19) by choosing a small ε. In other words,

system (19) can be interpreted as a smooth limit version of (18).

Choosing the appropriate state space, the stationary points of this ordinary differential

equation are precisely the perception-consistent equilibria of our problem. We now consider

the stability notion to be naturally associated to the dynamics (19). Stability for a given

PCE x∗ means that the solutions of (19) starting from initial conditions close enough to x∗

converge back to x∗. Formally:

Definition 7. A perception-consistent equilibrium x∗ is said to be asymptotically stable for

(19) if there exists an open neighborhood U of x∗ such that

lim
t→+∞

sup
x0∈U∩S

‖φ(x0, t)− x∗‖ = 0,

where S, defined in (23) in the proof of Theorem 3, contains all the relevant states of the
24This holds if and only if the action profile x is such that (Gx)i = 0 ⇒ xi = 0.
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problem we consider, and (φ(x, t))x∈S,t≥0 is the semi-flow associated to (19) on S. Specifically,

φ(x, t) is equal to the position of the (unique) solution of (19) starting at x.

Definition 7 states that a PCE x∗ is asymptotically stable if it uniformly attracts all

solutions starting in an open neighborhood of itself. This is a standard concept of stability used

in economics (Benaïm and Hirsch, 1999; Weibull, 2003), and in network games in particular

(Bramoullé et al., 2016; Bervoets and Faure, 2019).

3.5.2 Stable PCE: A simple characterization

We now characterize the PCEs that are asymptotically stable with respect to the best-response

dynamics (19). It turns out that being asymptotically stable depends entirely on the sub-

network of active players in this PCE, in a very simple and intuitive way. Let (N,G) be a

simple network.25 Given a PCE x∗, we call ρ(x∗) the largest eigenvalue of the sub-network

(N+(x∗),GN+(x∗)).

Theorem 3. Let (N,G) be a simple network. Then, there is a unique asymptotically stable

equilibrium x∗ such that ρ(x∗) = ρ(G). Moreover, agents’ effort levels at the stable PCE are

proportional to their eigenvector centrality in the whole network (N,G).

The intuition behind the characterization in terms of largest eigenvalues is as follows. Since

the network is simple, there is exactly one PCE for which the largest eigenvalue of the set

of active players is equal to ρ(G). We must show that it is the only asymptotically stable

equilibrium. Suppose that x∗ is a PCE such that ρ(x∗) is strictly smaller than ρ(G). Then,

one can find a community M in which agents are inactive at x∗, while having ρ(GM ) = ρ(G).

Now, suppose that we slightly perturb x∗ so that, instead of playing zero, agents in M play

εui, where u is the normalized positive eigenvector associated with ρ(G). Since, for agents

in M , this initial condition is associated with an eigenvalue that is strictly larger than the

eigenvalue associated with x∗, the agents in M will want to increase their effort and not come

back to zero. Thus, it is clear that x∗ cannot be stable.26 We conclude the proof by showing

that the (unique) PCE for which ρ(x∗) = ρ(G) is stable using standard methods. The last

part of the theorem directly follows from the definition of eigenvector centrality.

Theorem 3 provides a simple and efficient analytic method for checking which PCEs are

stable by looking for communities with the highest spectral radii. First, consider Example

1 with the networks displayed in Figure 1(a) and Figure 1(b). There are two communities:

M1 = {1, 2, 3} and M2 = {4, 5, 6}, with M1 � M2 in both networks. The only difference
25Our main result (Theorem 3) holds under the less restrictive assumption that (N,G) has a unique dom-

inant component, as properly defined in condition (UDC) in Section B.2 of the Online Appendix B. In fact,
eigenvector centrality is well defined if and only if the network satisfies the condition (UDC).

26For ease of presentation, asymptotically stable PCEs are referred to as stable PCEs.
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between these two networks is that the one in Figure 1(a) has two extra links between agents

1 and 2 compared to the network in Figure 1(b). This is an important difference because the

largest eigenvalue of the �-maximal community, M1, changes: it is equal to 2 in Figure 1(a),

whereas it is equal to
√

2 in Figure 1(b). In Figure 1(a), there is a unique equilibrium that

is clearly stable, in which only agents 1, 2, and 3 are active. In Figure 1(b), we have seen

that there were two PCEs, one with root M1 = {1, 2, 3} and one with root M2 = {4, 5, 6}.
Since ρ(GM1) =

√
2 < ρ(GM2) = 2 = ρ(G), there is a unique stable PCE for which all

agents are active. Thus, disconnecting agents 1 and 2 has a dramatic impact on the stable

perception-consistent equilibria. The fact that the �-maximal community in Figure 1(b) is

less dense than in Figure 1(a) prevents agents 1, 2, and 3 from capturing the entire resource

V and thus obliges them to share V with the other players in the PCE.

Second, consider Example 2 with the network depicted in Figure 2. We have seen that

there were two PCE with roots M1 = {1, 2, 3} and M3 = {6, 7, 8, 9}, respectively. Since

ρ(GM1) = 2 < ρ(GM3) = 3 = ρ(G), the only stable PCE is the equilibrium with root M3,

where all agents are active. Note that in both examples where there exists a perception-

consistent equilibrium x∗ with N+(x∗) = N , x∗ is the stable equilibrium. This is actually

always true:

Corollary 1. In a simple network, if there exists a perception-consistent equilibrium x∗ with

N+(x∗) = N , then x∗ is the asymptotically stable PCE.

In summary, for any simple network, we can determine the unique stable perception-

consistent equilibrium. First, we establish the �-ordering as defined in Section 3.3. Second,

we determine the different perception-consistent equilibria by checking, for each community,

if its spectral radius is strictly greater than that of the communities that dominate it as per

the �-ordering (Proposition 1). For each PCE, we can ascertain the effort of each agent,

which is equal to her eigenvector centrality (Theorem 2) in the set of active agents. Finally,

the unique stable perception-consistent equilibrium in the network is the PCE for which the

corresponding root has the same largest eigenvalue as the whole network (Theorem 3).

4 Policy interventions

4.1 Adding links

We now consider the policy implications of our model. We start with the simplest intervention:

Given a network and its unique stable perception-consistent equilibrium, what would happen if

we added a link between two agents?
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Consider networks with a unique dominant component. We only focus on stable perception-

consistent equilibria, that is, equilibria for which the largest eigenvalue of the root is equal to

that of the whole network (Theorem 3). We examine whether adding a link from individual i

to individual j has an impact on individual efforts. If we do not make additional assumptions

on the payoff structure, adding links does not have a clear impact on the aggregate equilibrium

effort.27 Hence we only obtain results on relative efforts in the general model:

Proposition 3. Pick a simple network (N,G) with x∗ being the asymptotically stable perception-

consistent equilibrium. Suppose that i, j ∈ N+(x∗), and gij = 0. Let Ĝ be the network obtained

from G by adding a link from i to j. Then, Ĝ admits an asymptotically stable perception-

consistent equilibrium x̂∗ that has the following properties:

(i) N+(x̂∗) ⊆ N+(x∗),

(ii) for any k ∈ N , we have x̂∗i
x∗i
>

x̂∗k
x∗k
.

Since both players i and j initially belong to the set of active agents, there is no reason

why adding a link between them should induce a positive effort from an initially inactive

agent. Indeed, the spectral radius of the subgraph of inactive agents remains the same while

the spectral radius of the set of initially active agents can only increase. In other words,

N+(x̂∗) ⊆ N+(x∗). This is part (i). Additionally, agent i becomes more central relatively to

other agents when adding a link from i to j. This implies that the relative effort increase is

maximal for agent i. This is captured by part (ii) of the proposition. Note that, if f(·) is

such that X∗ increases with the spectral radius of the graph, then part (ii) of Proposition 3

directly implies that x̂∗i > x∗i .

4.2 Key players

Another possible intervention involves removing one agent as well as all links from the network.

This is known as the key-player policy (Zenou, 2016) and is particularly relevant in the crime

application (Ballester et al., 2006, 2010) but also in the conflict application (König et al.,

2017), because governments want to target these individuals (the key players) in order to

reduce total activity X (total crime or total conflict).

Because there is no clear relationship between network density (captured by the spectral

radius ρ(G)) and total equilibrium effort X∗ (see Remark 5), it is difficult to obtain general

results of the key player policy. However, in specific cases, such as the Tullock contest function
27Observe that, in the general case, X∗ is increasing with ρ(G) if f(X)(−f ′(X)−Xf ′′(X))+X(f ′(X))2 > 0.

A sufficient condition is that Xf ′(X) is non-increasing. However, it is not necessary. For example, in the linear
Tullock model, Xf ′(X) = −V/X. Nevertheless, f(X)(−f ′(X)−Xf ′′(X)) +X(f ′(X))2) = cV/X2 > 0
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model,28 we can derive some results. Proposition D2 in the Online Appendix D.2.1 shows that,

in the Tullock model, when removing a player, total effort will never increase. This is because

the largest eigenvalue either stays the same or is reduced; the latter decreases total effort.

However, the distribution of efforts may be greatly altered, as shown in the following example.

Example 3. Key players and the spread of efforts across neighborhoods for the

(linear) Tullock context function

Consider the network displayed in Figure 1(a) (Example 1). We have shown that there is

a unique stable perception-consistent equilibrium where the only active agents belong to �-
maximal community M1 = {1, 2, 3} with x∗1 = x∗2 = x∗3 = 2V

9c and thus the total effort is

X∗ = 2V
3c .

Let us now remove the active agent 1 from the network as well as all of her links. It is

easily verified that the unique stable PCE x[−1]∗ is such that now {2, 3, 4, 5, 6} ⊆ N+(x∗), even

though the total effort remains the same at 2V
3c . Indeed, by removing agent 1, the spectral

radius of M1 = {1, 2, 3} decreases from 2 to 1 and becomes strictly smaller than the spectral

radius ofM2 = {4, 5, 6}, which is equal to 2. As a result, the only stable PCE is now such that

agents 2, 3, 4, 5, and 6 are active. Removing an agent can thus have the counter-productive

effect of making inactive agents active. In the standard key-player policy (Zenou, 2016), this

is not possible since total effort always decreases as all agents reduce their individual effort. �

4.3 Social mixing

We conclude this section with a brief look at the issue of social mixing. To address this

issue, we need to depart slightly from our initial model in which there was one (simple)

network. Suppose, instead, that we start with two disconnected (simple) networks (N1,G1)

and (N2,G2), each of which has a unique stable PCE. As above, we can obtain results only

for specific cases. We consider here social mixing in the Tullock contest function model.29

Think of social mixing as starting with two fully segregated neighborhoods, each endowed

with their own resources V 1 and V 2. The key question for the planner is whether merging

these two neighborhoods (social mixing) into a connected network (N,G), with N = N1 +N2,

V = V 1 + V 2, leads to an increase in total activity and resources.

Proposition D3 in the Online Appendix D.2.2 shows that the total effort in any new

stable PCE of the connected network (N,G) is higher than the sum of total efforts in each

disconnected neighborhood. Hence, linking the two neighborhoods is beneficial to aggregate

effort. On the other hand, the distribution of resources between agents in N1 and N2 is less
28The same is true for the Cournot model.
29Similar results can be obtained for the Cournot model.
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clear. Indeed, distribution in the new equilibrium depends on the specific connections that

are formed between the two groups. It is therefore possible to have some agents who are worse

off following the mixing of the two neighborhoods.

5 Economic implications of our model

5.1 The concept of perceived competition

We would now like to illustrate our results and to highlight our concept of “perceived” competi-

tion. Understanding how community ordering works in combination with community densities

is crucial to detect who is active in a network as well as how much effort agents exert when

they are active. However, these two questions need to be answered separately.

Let us first focus on the question: Who is active in a network? Note that, given a

communityM , either all agents inM are active in the stable equilibrium, or none of them are.

In the former case, we will say that the community is active (at the stable equilibrium). For a

given community, being active or not will be determined by a combination of the two following

ingredients: (i) its relative position with respect to other communities in the network (indeed,

the relation � translates into an advantage in terms of competition); and (ii) its density, in

terms of the largest eigenvalue of the corresponding sub-network.

Indeed, according to Proposition 1 and Theorem 3, in order to be active at the stable

equilibrium, a community must satisfy (at least) one of the two following conditions:

(a) it must exhibit the largest spectral radius among all communities and be “hidden” from

all other communities, if any, that have the same property;30

(b) it must be aware of all communities with the largest spectral radius.31

For obvious reasons, being “denser” makes it more likely for a community to satisfy condition

(a), while having a better relative position as per �-ordering makes condition (b) more likely

to hold.

Once the set of active players is established, we can turn to the second question: How

active is an agent among the set of active agents? Here, the answer is simpler, since the

effort level of an active player is determined by her relative position in the sub-network of

active players, which is fully captured by her eigenvector centrality. Consequently, the more

aware of other active players an agent is, the more active she is. Also, the more “hidden” from

other active agents she is, the more active she is. However, this does not mean that removing
30This means that a path must not exist from another community with the same spectral radius.
31This means a path exists from this community to every community with the largest spectral radius.
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links from other active agents will necessarily increase her effort level because, in doing so, it

might be that the community is no longer dense enough, rendering this community inactive

in equilibrium.

5.2 Dynamic competition: Numerical simulations for the (linear) Tullock
contest function

In this section, we illustrate how the dynamics of our game works and how it converges to the

unique stable PCE for the Tullock contest function.32

To understand the underlying dynamics of our model, consider the network displayed in

Figure 1(a). As stated above, each agent i best replies to the observed W t−1
i . When ε = 0.1,

this is described by the following equation (see (18)):

xti =
9

10
xt−1
i +

1

10
εBri(x

t−1), (20)

Indeed, at time t, each agent i does not know V or the efforts of all agents in the network.

She only observes W t−1
i , her own payoff from the previous period, and her neighbors’ effort.

By taking the initial conditions x0
i = 0.1 for all i = 1, . . . , 6, we obtain Figure 3.33 The

Figure 3: Convergence to the unique stable PCE in the network of Figure 1(a)

green, blue, and red curves correspond to the effort of agents 2, 1, and 3, respectively, while
32A similar exercise can be done for the Cournot competition model.
33For simplicity, in all numerical simulations, we take V/c = 1.
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the cyan curve corresponds to that of agent 4, 5, or 6. By using (20), agents best respond

to their neighbors’ efforts and their perceived resources up to the point when this dynamic

process converges to the unique stable PCE in which agents 1, 2, and 3 make 2V/9c = 2/9

effort while agents 4, 5, and 6 exert zero effort.34 At this equilibrium, Wi =
x∗i+

∑
j∈Ni

x∗j∑
j∈N x∗j

, for

each agent i ∈ N . In other words, perceived and real resources are equal. Observe that agents

4, 5, and 6 start with the wrong perception that there are large local resources; over time,

they observe that these resources decrease and thus reduce their effort until it reaches zero,

since there are no resources left to grab.

If we now turn to the network in Figure 1(b) and consider the same dynamical system

given by (20), starting with the same initial conditions, we obtain Figure 4. Here, agents

Figure 4: Convergence to the unique stable PCE in the network of Figure 1(b)

adjust their effort and reach the interior equilibrium in which x∗1 = 1/9 (blue), x∗2 = 7/45

(green), x∗3 = 2/15 (red), and x∗i = 4/45 for i = 4, 5, 6 (cyan). Agents 4, 5, and 6 do not end

up making zero effort because W 0
i ; their perception of local resources at t = 0 is not too far

from the reality and thus they slightly change their effort over time.

These two examples illustrate the fact that local perceived resources vary over time, which

makes agents change their effort in order to best reply to what they observe (that is, their

local resources and their neighbors’ effort from the previous period) at each period of time.

In Section 3.4, we showed that, in the network of Figure 1(b), there were two PCEs:

one in which all agents are active and one in which only agents 1, 2, and 3 are active, with
34This is independent of the initial conditions.
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x∗1 = x∗2 ∼ 0.1715 and x∗3 ∼ 0.2426. We showed that the latter was asymptotically unstable.

To understand this, let us start with initial conditions very close to this equilibrium, that is,

x0
1 = x0

2 = 0.1715, x0
3 = 0.2426, and x0

i = 0.001. Figure 5 shows the dynamics of the system

and the convergence to the unique stable PCE in which all agents are active. This clearly

illustrates that the equilibrium in which agents 4, 5, and 6 are inactive is unstable. Moreover,

since the initial conditions are very close from another equilibrium, it takes some time for

agents to adjust their effort and to converge back to the unique stable PCE discussed above.

The fact that this equilibrium is unstable does not change the fact that the drift is very small

around it and, thus, the dynamical system moves very slowly.

Figure 5: Convergence to the unique stable PCE in the network of Figure 1(b) when starting
from the unstable PCE

6 Conclusion

In this paper, we consider a competitive aggregative game in which agents have an imperfect

knowledge of their competitors. We model this imperfect knowledge by a network by assuming

that each agent only has information on the activities of their perceived competitors. We

develop a new concept of equilibrium, which we refer to as perception-consistent equilibrium

(PCE). Each agent chooses an effort level that maximizes her perceived utility. However,

at the PCE, effort levels of all agents have to be consistent: for each agent, her perceived

subjective utility has to be equal to her objective payoff.

First, for a large class of competitive aggregative games, we show that there always exists
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a PCE and that agents’ efforts represent an ordinal centrality. Second, for a specific class

of aggregative games, we demonstrate that, at any PCE, the effort of an active agent is

proportional to her eigenvector centrality. We then introduce the concept of community:

within each community, all agents have the same propensity to exert positive effort. We

construct an ordering of the communities in terms of active agents. Agents in the better

ranked communities are more likely to be active because few agents are “aware” of them, and

agents in these communities are more likely to be active. Then, we determine all perception-

consistent equilibria by comparing the spectral radius of these communities and that of their

adjunct set (i.e., agents that can reach them through a path) in the whole network. We

show that, to be active in equilibrium, one needs to belong either to a �-maximal community

(because few agents are aware of these individuals) or to communities of large size. Finally,

we demonstrate that there is a unique stable PCE in each network. This PCE corresponds

to the community that has the largest spectral radius in the network. We illustrate all our

results with two well-known applications of aggregative games: Tullock contest function and

Cournot oligopoly competition.

Lastly, we study the policy implications of our model. We show that adding a link can

reduce the number of active agents in the network because it creates a new path that makes

some agents more likely to be reached; in turn, this may lower their status in terms of com-

munity. We also study the key-player policy and show that, by removing an agent from the

network, we may make several inactive agents active. Further, we examine social mixing by

merging two different disconnected networks, highlighting that total activity is higher than

the sum of total activity in each network.

In many real-world situations, agents are not aware of the full set of agents with whom

they are in competition and thus only take into account their perceived competitors when

deciding which actions to take. In this paper, we shed some light on this issue by foreground-

ing the importance of individual network position and the community to which each agent

belongs. More generally, we believe that the concept of “perceived” competition is important

to understand and explain many situations in which competition is not perceived as reciprocal

and agents only care about their local competitors, even though competition is global.
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Appendix: Proofs of all results in the main text

Proof of Theorem 1. If the game is a competitive aggregative game as per Definition 2, the

map Bri : x ∈ Rn+ \ {0} → R+ given by

Bri(x) := Argmaxbi≥0 h

bi, X

xi +
∑

j gijxj

bi +
∑
j

gijxj


is single-valued. A PCE is a fixed point of the map

Br : x ∈ Rn+ \ {0} 7→ (Br1(x), ..., Brn(x)) .

However, there is a regularity issue in zero, which prevents us from directly using a fixed point

theorem on the action profiles space (it is not closed).

Let X be the unique positive real number such that ∂h
∂x(0, X) = 0. Pick δ < 1 and choose

X > 0 small enough so that, for any 0 < x ≤ X, we have
−X ∂h

∂X
(x,X))

x ∂h
∂x

(x,X)
< 1 + δ. Let

K :=
{
x : X ∈ [X,X]

}
. This set is compact and convex. Moreover Br is continuous on K.

Hence Br : K → K admits a fixed point x∗. We now need to check that x∗ is a PCE.

First, note that we have ∂h
∂x(xi, X) ≤ ∂h

∂x(0, X) = 0. Consequently

∂h

∂x
(xi, X) +

X

xi + (Gx)i

∂h

∂X
(xi, X) < 0, if x is s.t. X = X.

As a result, X∗ < X.

Moreover, by construction of X, we have that ∂h
∂x(x,X) + X

(1+δ)x
∂h
∂X (x,X) > 0 for any 0 < x ≤

X. Now suppose that x∗ is such that X∗ = X. Note that, if (Gx∗)i > 0 then x∗i > 0, because

∂h

∂x
(xi, X) +

X∗

(xi + (Gx∗)i

∂h

∂X
(xi, X) ≥ ∂h

∂x
(xi, X) +

X

(1 + δ)xi

∂h

∂X
(xi, X) > 0

for small enough xi. Let now i be such that (Gx∗)i ≥ x∗i > 0 (such an index i exists by

assumption). We have

∂h

∂x
(x∗i , X) +

X

xi + (Gx∗)i

∂h

∂X
(x∗i , X) >

∂h

∂x
(x∗i , X) +

X

(1 + δ)x∗i

∂h

∂X
(x∗i , X) > 0.

This contradicts the fact that x∗i = Bri(x
∗). Hence X∗ > X. Finally X∗ ∈ Int (K).

If x∗i > 0, then we necessarily have ∂h
∂x(x∗i , X

∗) + X∗

x∗i+(Gx∗)i
∂h
∂X (x∗i , X

∗) = 0, because there

exists ε > 0 such that (xi, x
∗
−i) ∈ K for all xi ∈]x∗i − ε, x

+
i ε[. Hence x∗i = Bri(x

∗). Let now i

be such that x∗i = 0. Then, ∂h∂x(0, X∗) + X∗

(Gx∗)i
∂h
∂X (0, X∗) ≤ 0 and 0 = Bri(x

∗).
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Let now x∗ be a PCE such that x∗i ≥ x∗j > 0. Then,

∂h

∂x
(x,X∗) +

X∗

x+ (Gx∗)i

∂h

∂X
(x,X∗) > 0 for any x < x∗i .

On the other hand, we have

∂h

∂x
(x∗j , X

∗) +
X∗

x∗j + (Gx∗)j

∂h

∂X
(x∗j , X

∗) = 0

and thus
X∗

x∗j + (Gx∗)j

∂h

∂X
(x∗j , X

∗) ≤ X∗

x∗j + (Gx∗)i

∂h

∂X
(x∗j , X

∗).

Since ∂h
∂X < 0, this implies that (Gx∗)j ≤ (Gx∗)i, with equality if and only if x∗i = x∗j . This

proves that x∗i ≥ x∗j if and only if
∑

l∈Ni x
∗
l ≥

∑
k∈Nj x

∗
k. �

Proof of Theorem 2.

• We first show that, if x∗ is a PCE, then

Gx∗ =
−f(X∗)− f ′(X∗)X∗

f(X∗)
x∗ (21)

Since X∗ > 0 there exists i with x∗i > 0. Using the assumptions on f , it necessarily implies

that x∗i satisfies the first-order condition

f (X∗) +
x∗i

x∗i + (Gx∗)i
f ′ (X∗)X∗ = 0.

Since f ′(X∗)X∗ < 0, we necessarily have f(X∗) > 0, and thus

x∗i > 0 implies that (Gx∗)i =

(
−f(X∗)− f ′(X∗)X∗

f(X∗)

)
x∗i . (22)

Recall that, if (Gx∗)i > 0, then x∗i > 0. Let λ(X) := −f(X)−f ′(X)X
f(X) . Note that we necessarily

have λ(X∗) ≥ 0. We distinguish two cases:

a) Suppose that λ(X∗) = 0. If x∗i = 0 then (Gx∗)i = 0. Moreover, if x∗i > 0 then equality

(22) shows that (Gx∗)i = 0 still holds. Hence (21) holds

b) Suppose now that λ(X∗) > 0. If x∗i = 0 we necessarily have (Gx∗)i = 0 and (21). holds.

• We now prove the reverse implication. Suppose that x∗ ∈ Rn+ is different from zero and

satisfies identity (21), with λ(X∗) > 0. For each agent i for whom (Gx∗)i > 0, x∗i satisfies

37



the first-order condition associated to the maximization problem (i) of the PCE definition,

with Wi =
x∗i+(Gx∗)i

X∗ . Meanwhile, for each agent i for whom (Gx∗)i = 0, x∗i = 0 solves the

optimization problem (i) of the PCE definition, with Wi = 0.

Now, if λ(X∗) = 0 then identity (21) means that (Gx∗)i = 0 for all i. Take any profile with

X∗ such that λ(X∗) = 0 and (Gx∗)i = 0 for all i. Then, for any i and any x∗i ≥ 0, the

map bi 7→ bif
(
bi
x∗i
X∗
)

is maximal in bi = x∗i . Hence x∗ is a PCE. This proves the reverse

implication. �

Proof of Remark 4. Since Remark 4 is a special case of Theorem 2, we will prove Remark

4 as the following corollary of Theorem 2.

Corollary 2. Let (N,G) be a strongly connected network. Then, there exists a unique

Perception-Consistent Equilibrium.

Proof. Suppose that (N,G) is a strongly connected network. Then G is irreducible and, by

Perron-Frobenius Theorem, there exists a positive eigenvector y associated to ρ(G). Moreover

any non-negative eigenvector of G is a multiple of y. By Theorem 2, x∗ is a PCE if and only

if it is a non-negative eigenvector of G, associated to eigenvalue −f(X∗)−f ′(X∗)X∗
f(X∗) . Hence x∗ is

a PCE if and only if x∗ is a multiple of y and ρ(G) = −f(X∗)−f ′(X∗)X∗
f(X∗) . Such a vector exists

and is uniquely defined.

Proof of Proposition 1. First note that if x is a PCE with root M then its restriction to

M̄ is a positive eigenvector of GM̄ . By definition of M̄ , the matrix GM̄ admits a Frobenius

normal form as follows:

GM̄ =



A1 A12 ... ... A1s+1

0 A2 A23 ... A2s+1

... ... ... ... ...

0 ... 0 As Ass+1

0 ... ... 0 As+1


, with As+1 = GM .

Note that the set V := ∪si=1Vi is closed and, by definition of M̄ we necessarily have {M ′ ∈
C(G) : M ′ ⊂ V } = {M ′ ∈ C(G) : M ′ �M}. Hence

ρ(GV ) = max
i=1,...,s

ρ(Ai) = max
M ′∈C(G): M ′�M

ρ(GM ′).

If ρ(GM ) > maxM ′∈C(G):M ′�M ρ(GM ′) then

ρ(As+1) = ρ(GM ) > max
M ′∈C(G):M ′�M

ρ(GM ′) = max
i=1,...,s

ρ(Ai),
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Consequently, we are in the conditions of Lemma B7. Thus GM̄ then admits a unique positive

eigenvector y = (yi)i∈M̄ , such that
∑

i∈M̄ yi solves the equation −f(X)−Xf ′(X)
f(X) = ρ. Let then

x be defined as xi = yi if i ∈ M̄ and xi = 0 if i ∈ N \ M̄ . By construction, x is a PCE with

root M and there can be no other one.

Now suppose that ρ(GM ) ≤ maxM ′∈C(G):M ′�M ρ(GM ′). Then

ρ(As+1) = ρ(GM ) ≤ max
M ′∈C(G):M ′�M

ρ(GM ′) = max
i=1,...,s

ρ(Ai),

meaning that GM̄ admits no positive eigenvector, by Lemma B4. This concludes the proof.

�

Proof of Proposition 2. Suppose that x does not admit a root. Then, by Propositions E4

and E5, we have N+(x) = ∪ni=1M̄i, with n ≥ 2, M1, ...,Mn being distinct elements of C(G)

and

ρ (GMi) = ρ > max
M ′∈C(G):M ′�Mi

ρ(GM ′), ∀i = 1, ..., n,

which contradicts the fact that G is simple. �

Proof of Theorem 3. Let us first show that the system (19) is well-behaved on the set

S := {x 6= 0 : xi ≥ 0 ∀i, f(X) > 0} (23)

in the sense that, for any initial condition in S, there exists a unique solution (x(t))t≥0 which

forever remains in S.

Given a PCE x∗, we have x∗ ∈ S, because the expression −f(X)−Xf ′(X)
f(X) is either undefined

or negative when f(X) ≤ 0. As a consequence S contains all the relevant states of the problem

we consider. We denote by (φ(x, t))x∈S,t≥0 the semi-flow associated to (19) on S. Namely

φ(x, t) is equal to the position of the (unique) solution of (19) starting in x.

Lemma 1. System (19) induces a semiflow on S.

Proof. We need to check that the vector field B points inward on the boundary of S. Suppose

that x ∈ S, with f(X) = 0. Then Bri(x−i) = Argmaxbi≥0 bif
(
X bi+(Gx)i

xi+(Gx)i

)
. Since f(X) = 0,

this map is equal to zero in bi = xi, negative when bi > xi and positive when bi < xi. Hence

Bri(x−i) < xi for all i such that xi > 0 and Ẋ < 0 in x. �

For the Tullock model, on the positively invariant set S, system (19) writes

ẋi(t) = −xi(t)− (Gx)i(t) +

(
V

cX(t)
(Gx)i(t) (xi(t) + (Gx)i(t))

)1/2

for i = 1, ..., N.
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For the Cournot model we have

ẋi(t) = −xi(t)−
1

2
(Gx)i(t) +

1

2
(ᾱ− c)xi(t) + (Gx)i(t)

X(t)
for i = 1, ..., N.

The following result will be useful to prove that a point is not asymptotically stable. It directly

follows from the definition of asymptotic stability.

Lemma 2. Suppose that there exists an open neighborhood U0 of x∗ with the property that,

for any open neighborhood U of x∗ and any T > 0 , there exists x ∈ U such that φ(x, t) /∈ U0,

for any t ≥ T . Then x∗ is not asymptotically stable.

Lemma 3. Let x∗ be a PCE such that ρ(x∗) < ρ(G). Then x∗ is not asymptotically stable.

Proof. Recall that x∗ is an eigenvector of G, associated to eigenvalue ρ(x∗), given by

ρ(x∗) =
−f(X∗)− f ′(X∗)X∗

f(X∗)
.

In what follows, let ρ∗ := ρ(x∗) and ρ := ρ(G).

Let M∗ ∈ C be the root of x∗. For any M � M∗ we necessarily have ρ(GM ) < ρ∗. Let

C := N \ M̄∗. By construction, GC is a nonnegative matrix with largest eigenvalue ρ, and we

call u the eigenvector associated to ρ, whose components sum to one.

Define aε as follows:

aεi = εui ∀i ∈ C, and aεi = x∗i ∀i ∈ M̄∗,

where ε is a positive number. We claim that, for any i ∈ C, Bi(aε) > 0. By definition of C,

we have gij = 0 for any i ∈ C and any j ∈ M̄∗. Consequently

(Gaε)i =
∑
j∈C

gija
ε
j = (GCa

ε)i = ρεui.

Define, for i ∈ C and bi > 0,

Hε
i (bi) := g

(
Aε(bi + ρεui)

(1 + ρ)εui)

)
+

biA
ε

(1 + ρ)εui
g′
(
Aε(bi + ρεui)

(1 + ρ)εui)

)
− c.

where A(ε) =
∑

i a(ε)i = X∗ + ε. Then Bri(a
ε) is the unique zero of Bri, and Bri(bi) <

0 ∀bi > Bri(a
ε) (resp. Bri(bi) > 0 ∀bi < Bri(a

ε)). We have

Hε
i (a

ε
i) = f(Aε) +

Aε

1 + ρ
f ′(Aε)− c.
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Since ρ > ρ∗ = c−f(X∗)−f ′(X∗)X∗
f(X∗)−c , we have

f(X∗) +
X∗

1 + ρ
f ′(X∗)− c > 0.

Hence, for small enough ε > 0, we have Brεi (a
ε
i) > 0, and thus aεi < Bri(a

ε), i.e. Bi(aε) > 0.

This concludes the proof that x∗ is not asymptotically stable for dynamics (19).

We now prove the following lemma, which completes the proof of Theorem 3:

Lemma 4. Let x∗ be a PCE such that ρ(x∗) = ρ(G). Then x∗ is asymptotically stable.

Proof. We prove this lemma in the particular case of Tullock contest. The proof is similar in

the case of Cournot contest. However, writing a general proof without relying on the explicit

formulation of map f(·) would be extremely tedious and lengthy. We believe that illustrating

the spirit of the proof on a concrete example is more illminating. If B(.) in (19) is differentiable

in an open neighborhood of a PCE, then a simple sufficient condition for an interior equilibrium

to be asymptotically stable is that the eigenvalues of the Jacobian matrix of B(.), evaluated at

x∗, have negative real parts. Unfortunately the map B is not differentiable at a non-interior

PCE, and we then cannot use this result. However we can compute the directional derivatives

of B at any PCE: let u 6= 0 be such that ui ≥ 0 ∀i. Then the directional derivative of B in

x∗ along u, namely the quantity

DuB(x∗) := lim
h→0,h>0

B(x∗ + hu)

h

exists, and we can compute it: given h > 0,

Bi(x
∗+hu) = −(x∗i +hui+(G(x∗+hu))i)+

(
V

c(X∗ + hU)
(G(x∗ + hu))i)(x

∗
i + hui + (G(x∗ + hu))i)

)1/2

The term in the square root can be written

V

cX∗

(
1− h U

X∗

)
[(Gx∗)i(x

∗
i + (Gx∗)i) + h [(Gx∗)i(ui + (Gu)i) + (Gu)i(x

∗
i + (Gx∗)i)]] +O(h2)

=
V

cX∗
(Gx∗)i(x

∗
i + (Gx∗)i)

(
1− h U

X∗

)[
1 + h

[
ui + (Gu)i
x∗i + (Gx∗)i

+
(Gu)i
(Gx∗)i

]]
+O(h2)

=
V

cX∗
(Gx∗)i(x

∗
i + (Gx∗)i)

[
1 + h

[
− U

X∗
+

ui + (Gu)i
x∗i + (Gx∗)i

+
(Gu)i
(Gx∗)i

]]
+O(h2)

Observing that ( V
cX∗ (Gx∗)i(x

∗
i + (Gx∗)i))

1/2 = x∗i + (Gx∗)i, the square root of the above quantity
is equal to

(x∗i + (Gx∗)i)

[
1 +

h

2

[
−U
X∗

+
ui + (Gu)i
x∗i + (Gx∗)i

+
(Gu)i
(Gx∗)i

]]
+O(h2)
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Hence, since (x∗i + (Gx∗)i) = V
V−cX∗x

∗
i , we obtain

Bi(x
∗ + hu) = −(hui + h(Gu)i) +

h

2

[
−UV

X∗(V − cX∗)
x∗i + (ui + (Gu)i) +

V

cX∗
(Gu)i

]
+O(h2)

=
h

2

[
−UV

X∗(V − cX∗)
x∗i − ui +

V − cX∗

cX∗
(Gu)i

]
+O(h2)

Consequently

lim
h→+∞,h>0

Bi(x
∗ + hu)

h
=

1

2

[
−UV

X∗(V − cX∗)
x∗i − ui +

V − cX∗

cX∗
(Gu)i

]
=

1

2
(DF (x∗)u)i ,

which proves that

DuB(x∗) =
1

2

(
−IN +

1 + ρ(x∗)

X∗
L(x∗) +

1

ρ(x∗)
G

)
· u,

where L(x∗) is the matrix where every column is equal to x∗.

Let D(x∗) := 1
2

(
−IN + 1+ρ(x∗)

X∗ L(x∗) + 1
ρ(x∗)G

)
. We first show that all eigenvalues of D(x∗)

have a negative real part. Suppose that D(x∗) · u = λ · u, with u 6= 0. Call U :=
∑

i∈N ui.

Then we have

−u− 1 + ρ

X∗
Ux∗ +

1

ρ
Gu = 2λu

which gives (
IN −

1

ρ(1 + 2λ)
G

)
u = − 1 + ρ

X∗(1 + 2λ)
Ux∗.

Suppose that Re(λ) > 0 or that λ is pure imaginary. Then |1 + λ| > 1 and the matrix

G/(ρ(1 + 2λ))’ spectral radius is strictly smaller than one. As a consequence IN − 1
ρ(1+2λ)G

is invertible and (
IN −

1

ρ(1 + 2λ)
G

)−1

=
+∞∑
p=0

1

ρp(1 + 2λ)p
Gp.

Consequently

u = − 1 + ρ

X∗(1 + 2λ)
U

(
IN −

1

ρ(1 + 2λ)
G

)−1

x∗

= − 1 + ρ

X∗(1 + 2λ)
U

+∞∑
p=0

1

ρp(1 + 2λ)p
Gpx∗

= − 1 + ρ

X∗(1 + 2λ)
U

+∞∑
p=0

1

(1 + 2λ)p
x∗

= − 1 + ρ

2X∗λ
Ux∗
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Since u 6= 0, this equality implies that U 6= 0 and summing the coordinates of u we obtain

that 2λ = −(1 + ρ) < 0, a contradiction.

Suppose now that λ = 0. Then we have(
IN −

1

ρ
G

)
u = −1 + ρ

X∗
Ux∗.

Suppose that U 6= 0. Then, multiplying both sides of the equality by
∑K

k=0
1
ρk
Gk, we obtain

the identity

(
IN −

1

ρK+1
GK+1

)
u = −1 + ρ

X∗
U

K∑
k=0

1

ρk
Gkx∗ = −1 + ρ

X∗
UKx∗

The modulus of the left-hand is bounded above by 2|u|, while the modulus of the right-hand

side term grows to infinity with K, which is a contradiction. Hence U = 0. This means that

Gu = ρu,

i.e. that u is in fact an eigenvector associated to the largest eigenvalue of G. Since
∑

i ui = 0,

this contradicts the fact that (N,G) is a simple network.

We proved that the real part of every eigenvalue of DF (x∗) is strictly negative.

As we proved above, for x ∈ X, we have

B(x) = D(x∗) · (x− x∗) + ‖x− x∗‖2g(‖x− x∗‖)

Denote by (λ1, ..., λ1, λ2, ..., λ2, ..., λP , ..., λP ) the eigenvalues of D(x∗), and call np the multi-

plicity of eigenvalue λp. Let us first put D(x∗) in its Jordan form:

DF (x∗) = PJP−1,

where J is diagonal by blocks, i.e.

J = Diag (J1, ...,JP ) :=


J1 0 ... 0

0 J2 ... 0

... ... ... ...

0 ... 0 JP

 , with Jp =



λp 1 0 ... 0

0 λp 1 ... 0

... ... ... ...

0 ... 0 λp 1

0 ... ... 0 λp


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Define now Q := Diag (Q1, ...,QP ), with Qp = Diag(1, ε, ..., εnp−1). We then have

Q−1
p JpQp =



λp ε 0 ... 0

0 λp ε ... 0

... ... ... ... ...

0 ... 0 λp ε

0 ... ... 0 λp


Thus, defining R := PQ we obtain

R−1D(x∗)R = Q−1JQ = D(λ) + εB,

where D(λ) is the diagonal matrix filled with the eigenvalues of D(x∗).

Now define V : S→ R+ as follows:

V (x) :=
∣∣R−1(x− x∗)

∣∣2 =
〈
R−1(x− x∗) | R−1(x− x∗)

〉
We have

V̇ (x) =
〈
R−1ẋ | R−1(x− x∗)

〉
+
〈
R−1ẋ | R−1(x− x∗)

〉
=

〈
(D(λ) + εB)R−1(x− x∗) | R−1(x− x∗)

〉
+
〈

(D(λ) + εB)R−1(x− x∗) | R−1(x− x∗)
〉

+ ‖x− x∗‖2h(‖x− x∗‖),

where h(a)→a→0 0. Hence we have

V̇ (x) =
〈

(D(λ) + D(λ))R−1(x− x∗) | R−1(x− x∗)
〉

+ 2εRe
(〈

BR−1(x− x∗) | R−1(x− x∗)
〉)

+ ‖x− x∗‖2h(‖x− x∗‖)

Let α := maxp=1,...,P Re(λp) < 0. We have〈
(D(λ) + D(λ))R−1(x− x∗) | R−1(x− x∗)

〉
≤ 2α|R−1(x− x∗)|2 = 2αV (x).

As a consequence, choosing ε small enough and x close enough of x∗ we obtain that

V̇ (x) ≤ αV (x),

which proves that V (x(t)) goes to zero exponentially fast, as t goes to infinity, and this

concludes the proof. �
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Proof of Proposition 3. Let M be the root of x∗, meaning that N+(x∗) = M̄ , and

ρ := ρ(GM̄ ) = ρ(G). The network Ĝ also has a unique dominant component, M̂ . Either

M̂ = M35, or M̂ is a community which did not exist in G. When it is the case, we have

i, j ∈ M̂ , M̂ ⊂ M̄ and ρ(GM̂ ) ≥ ρ. Hence there is a unique stable equilibrium x̂ (with root

M̂) in Ĝ, N+(x̂) ⊂ N+(x) and ρ̂ := ρ(ĜM̂ ) = ρ(Ĝ).

We now prove that (ii) holds. Note that x̂∗ 6= x∗: suppose by contradiction that x∗ = x̂∗.

Let k 6= i with k ∈ N+(x∗). Then ρx∗k = (Gx∗)k = (Ĝx∗)k = ρ̂x̂∗v, implying that ρ = ρ̂. Thus

ρx∗i = (Gx∗)i = (Ĝx∗)i − x∗j = ρx∗i − x∗j , a contradiction. Consider the following subsets of

agents:

K+ :=

{
k ∈ M̂ :

x̂∗k
x∗k
≥
x̂∗l
x∗l
∀l ∈ M̂

}
, K− :=

{
k ∈ M̂ :

x̂∗k
x∗k
≤
x̂∗l
x∗l

l ∈ M̂
}
.

We actually prove a stronger property, namely that i ∈ K+. Note that if k 6= i and k ∈ K+

then x̂∗k
x∗k

=

∑
w∈Nk

x̂∗w∑
w∈Nk

x∗w
. Hence w ∈ K+ for all w ∈ Nk. By a recursive argument this implies

that, if k is connected to w through a path then w ∈ K+. The same property also holds for

K−. As a consequence i ∈ K+ ∪K−. If this were not the case there would exist two nodes

k+ 6= i and k− 6= i such that k+ ∈ K+ and k− ∈ K−, which would imply that elements of M

belong to both K+ and K−, a contradiction.

Suppose first that we are in the case where ρ̂ > ρ, and let k 6= i. Suppose that k ∈ K+. Then

1

ρ̂
=

x̂∗k
(Ĝx̂∗)k

=
x̂∗k∑

w∈Nk x̂
∗
w

≥
x∗k∑

w∈Nk x
∗
w

=
x∗k

(Gx∗)k
=

1

ρ
,

a contradiction. Hence K+ = {i}.
Suppose now that ρ̂ = ρ. Showing that i ∈ K+ is equivalent to showing that i /∈ K−. Suppose
by contradiction that i ∈ K−. Then

1

ρ
=

x̂∗i
(Ĝx̂∗)i

=
x̂∗i∑

w∈Ni x̂
∗
w + x̂∗j

<
x̂∗i∑

w∈Ni x̂
∗
w

≤ x∗i∑
w∈Ni x

∗
w

=
x∗i

(Gx∗)i
=

1

ρ
,

where the strict inequality follows from the fact that j ∈ N+(x̂) (see above). This is a

contradiction. Thus i ∈ K+. �

35If, for instance there is no path from j to i.

45



(Non-for-Publication) Online Appendix
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A Descriptive evidence

We would now like to provide some simple descriptive evidence of networks with perceived

competition, which implies that networks are directed and weakly connected. Daniele et al.

(2021)5 observed (roughly) 700 street-food vendors in Kolkata (India), which were distributed

across 10 areas in the city. Within each area, there are blocks of streets of 8-12 vendors where

all vendors are very close geographically to each other. Vendors are sellers of food in kiosks

and sell different types of food or beverage. Competition is rather fierce. Among many other

variables, the authors collected information about the network of these vendors, assuming that

each block is a network. By showing the names and pictures of all vendors in the same block,

they asked each vendor which vendors he knew in the block. This is a good way of measuring

competition, since knowing a vendor is equivalent knowing the competition. In Figures A1

and A2, we display two of these networks.6

Each vendor is represented by a circle whose color indicates which type of food or beverage

they sell. Consider, first, the network displayed in Figure A1. There are eight vendors who

sell different types of food and beverage. We see that the network is directed. For example,

the “red” vendor on the left is not aware of any other vendors in his block but the “red” vendor

next to him is aware of him. In other words, the “red” vendor, who sells drinks, perceives

that he is not in competition with any other vendors, but the “red” vendor next to him, who

also sells drinks, perceives him as a competitor. The same is true for the top “blue” (selling

vegetarian meals). We also see that the network is weakly connected since, for example, there

is no path between the “red” vendor on the left and any other vendors in the network.
1New York University Abu Dhabi. Email: olivier.bochet@nyu.edu.
2Aix-Marseille University, France. Email: mathieu.faure@univ-amu.fr.
3Huazhong University of Science and Technology, China. Email: ylong@hust.edu.cn.
4Monash University, Australia. Email: yves.zenou@monash.edu.
5Daniele, G., Mookerjee, S., and Tommasi, D. (2021). Informational shocks and food safety: A field study

on street vendors in urban India. Review of Economics and Statistics, forthcoming.
6There are 100 networks/blocks in the dataset. We thank Denni Tommasi for giving us access to this

dataset.
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Figure A1: Perceived competition in India: Network 1 with 8 vendors Source: Own
calculation based on the dataset from Daniele et al. (2021)

If we now consider the network in Figure A2 with nine vendors, a similar pattern emerges.

For example, nobody is aware of the “blue” vendor on the left whereas he can reach all other

vendors. Similarly, nobody is aware of the “blue” vendor on the right while, apart from the

“green” vendor on the left, he can reach all other vendors. Similarly, nobody is aware of the

“orange” vendor on the right but he can reach all vendors apart from the “blue” and the “red”

vendors on the right. Also, even though some vendors perceive that competition is local, it is

in fact global at the block level. For example, the “blue” vendor on the left who sells vegetarian

meals is not aware that he is in competition with the “green” vendor who also sells vegetarian

meals and with all the “orange” vendors who sell snacks.
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Figure A2: Perceived competition in India: Network 2 with 9 vendors. Source: Own
calculation based on the dataset from Daniele et al. (2021)
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B Non-negative matrices and eigenvector centrality

B.1 The Frobenius normal form

A matrix is called nonnegative if all its elements are nonnegative. Here we consider only

nonnegative square matrices of order n, i.e., matrices that have n rows and n columns. A non-

negative matrix A is called irreducible if the associated directed graph is strongly connected.

For convenience any one-by-one matrix is regarded as irreducible.

Lemma B1. (Perron-Frobenius Theorem) Let A be an irreducible matrix. Then

(i) A has a positive eigenvalue ρ(A) such that the value of ρ(A) is not less than the absolute

value of any other eigenvalue of A;

(ii) the eigenvalue ρ(A)is simple, and corresponds to a positive eigenvector x(A);

(iii) any non-negative eigenvector is a multiple of x(A).

The vector x(A) and the number ρ(A) that appear in this lemma are called the Perron-

Frobenius vector and the Perron-Frobenius eigenvalue of A, respectively.

The following lemma extends some conclusions of the Perron-Frobenius Theorem to nonneg-

ative matrices (not necessarily irreducible).

Lemma B2. Let A be a nonnegative matrix; then

a) A has a nonnegative eigenvalue ρ(A) such that the value of ρ(A) is not less than the

absolute value of any other eigenvalue of A.

b) To eigenvalue ρ(A) corresponds a nonnegative eigenvector x(A).

c) If there exists a positive eigenvector, then it is necessarily associated to eigenvalue ρ(A).

Note that if x is a non-negative eigenvector of A, x is not necessarily associated with

ρ(A). Also there could exist eigenvectors with both negative and positive entries, associated

to ρ(A).

Lemma B3. Any nonnegative matrix A can be put in an upper-triangular block form as
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follows:7

A =



A1 A12 ... ... ... ... ... A1r

0 A2 A23 ... ... ... ... A2r

... ... ... ... ... ... ... ...

0 ... 0 As Ass+1 ... ... Asr

0 ... ... 0 As+1 0 ... 0

... ... ... ... ... ... ... ...

0 ... ... ... ... 0 Ar−1 0

0 ... ... ... ... ... 0 Ar


(B.1)

such that:

(i) each block matrix Ai is square and irreducible;

(ii) for any i = 1, ...s, there exists j ∈ {i+1, ..., r} such that the block matrix Aij is not zero.

This upper triangular block form is known as the Frobenius normal form. It is unique up

to a permutation. We have ρ(A) = maxi=1...r ρ(Ar). We call Vi the set of nodes corresponding

to the block matrix Ai.

Definition B1. A nonnegative matrix A is strongly nonnegative if we have

ρ(Ar) = ρ(Ar−1) = ... = ρ(As+1) > max
i=1,...,s

{ρ(Ai)}

Obviously, any irreducible matrix is strictly nonegative because the Frobenius normal form

then consists of one block. The next results can be found in Rothblum (2014)8 or Hu and Qi

(2016).9

Lemma B4. A nonnegative matrix A admits a positive eigenvector if and only if A is strongly

nonnegative.

Note that, if A is an irreducible nonnegative matrix, then the conclusion of Lemma B4 directly

implies point (ii) of Lemma B1, i.e., the Perron Frobenius Theorem.

We illustrate the Frobenius normal form for network (N,G) displayed in Figure 2, with

N = {1, 2, · · · , 10} and with three communities: M1 = {2, 3, 4}, M2 = {5, 6}, and M3 =

{7, 8, 9, 10}.
7Up to a permutation of indices.
8Rothblum, U. (2014). Nonnegative matrices and stochastic matrices. In: L. Hogben (Ed.), Handbook of

Linear Algebra, Second Edition, Chap. 10. CRC Press, pages 1–26.
9Hu, S. and Qi, L. (2016). A necessary and sufficient condition for existence of a positive Perron vector.

SIAM Journal of Matrix Analysis and Applications 37(4), 1747–1770.
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Let C(m) be the adjacency matrix of the complete m-agents network.10 Keeping the

indexing of agents as it is, we have

G =



0 0 0 1 0 0 1 0 0 0

0 0 1 1 0 0 0 0 0 0

0 1 0 1 1 1 0 0 0 0

0 1 1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 0 1 1

0 0 0 0 0 0 1 1 0 1

0 0 0 0 0 0 1 1 1 0



=


0 A12 0 A14

0 A2 A23 A24

0 0 A3 A34

0 0 0 A4

 ,

where A1 = 0, A2 = GM1 = C(3), A3 = GM2 = C(2), and A4 = GM3 = C(4), while

A12 = [0 0 1], A13 = [0 0], A14 = [1 0 0 0], etc. In particular, Aij is distinct from the null

matrix, except forA13 (there is no link from group 1, i.e., agent 1, to communityM2, i.e., agents

{5, 6}). Consequently we have s = 3 and r = 4 and ρ(A4) = 3 while ρ(A1) = 0, ρ(A2) = 2 and

ρ(A3) = 1. Hence, G is strongly nonnegative and thus admits a positive eigenvector. Now,

remove agent 9 from this network. Then, the Frobenius normal form has the same structure,

except that ρ(A4) = 2 = maxi=1,...,3 ρ(Ai). Hence, the matrix is no longer strictly nonnegative

and, thus, there is no positive eigenvector.

It might be useful to clarify the relationship between the Frobenius normal form and the

�-ordering on communities. In the Frobenius normal form of G, any Ai corresponds to the

submatrix of a strongly connected component, which can either be a community, or a singleton.

Note that, by the no-isolation assumption, Ai cannot be a size one matrix for i = s+ 1, ..., r;

it then necessarily corresponds to a community for these indexes. If M ′ � M , then there

exists some i, i′ such that i′ < i, GM = Ai and GM ′ = Ai′ . In other words the indexes in the

Frobenius normal form are inversely ordered in accordance with the � ordering.

The Frobenius normal form does not help us to characterize the perception-consistent

equilibria (i.e., which agents are active and which are not) but will be very useful for some of

our proofs because of Lemma B4, which can be applied to any closed set, as we will see in the

proof section.
10That is, C(m)ii = 0, C(m)ij = 1 for i 6= j
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B.2 Eigenvector centrality in weakly connected networks

Eigenvector centrality has been informally introduced by Bonacich (1972)11 to measure pop-

ularity in friendship networks. Given a weighted network (N,G), it was originally defined as

any non-negative vector e having the property that the centrality of agent i is proportional to

the average centrality of her neighbors:

λei =
∑
j

Gijej , ∀i. (B.2)

In the particular case of strongly connected networks, this vector is well-defined because there

is a unique solution to the system (B.2), given by the eigenvector associated to the largest

eigenvalue λ of G. More generally, there is a consensus consisting in regarding eigenvector

centrality as being the normalized eigenvector associated to the largest eigenvalue of the

network (see e.g., Jackson (2008)).12

In weakly connected networks, however, eigenvector centrality cannot be defined in the

same way because the largest eigenvalue of a weakly connected network is not always simple.

For instance, consider the network in Figure E3 in Appendix E, where ρ(G) = 1. The

eigenspace associated to ρ(G) is generated by normalized vectors (1/3, 1/3, 1/3, 0, 0) and

(1/3, 0, 0, 1/3, 1/3). Hence, any convex combination of these two vectors is a non-negative

eigenvector, which means that eigenvector centrality is not defined for this network.

Consequently, we focus on an (arguably large) subset of weakly connected graphs, in which

the notion of eigenvector centrality can be naturally extended. A weakly connected network

has a unique dominant component if

∀M,M ′ ∈ C(G), ρ(GM ) = ρ(GM ′) = ρ(G)⇒M �M ′ or M ′ �M. (UDC)

Obviously any simple network has a unique dominant component. A simple adaptation of the

proof of Proposition D1 shows that a weakly connected network admits a unique normalized

eigenvector associated to ρ(G) if and only if it has a unique dominant component.

Definition B2 (Eigenvector centrality). Suppose that (N,G) has a unique dominant com-

ponent. Then, the eigenvector centrality of agent i is the i-th component of the normalized

eigenvector associated to ρ(G).

In some networks, it may be the case that some agents in the network exhibit a null

eigenvector centrality, and one may wonder what it means, and whether or not this definition
11Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. Journal

of Mathematical Sociology 2(1), 113–120.
12meaning the eigenvector whose components sum to one.
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makes sense when this happens. As we show now, this definition is indeed meaningful, because

our definition of eigenvector centrality is robust to any small perturbations of the network, in

the following sense:

Lemma B5. Suppose that (N,G) has a unique dominant component and call e the normalized

eigenvector associated to ρ(G). Let (Gn)n be a sequence of irreducible matrices such that

limn→+∞Gn
ij = Gij. Then en → e, where en is the normalized eigenvector associated to

ρ(Gn).

In other words, the sequence of centrality measures always converge to the same vector,

regardless of how Gn converges to G. The implication of this observation is that eigenvector

centrality is unambiguously defined in networks having a unique dominant component.

Observe that the network (N,G) depicted in Figure E3 in Appendix E does not exhibit

such a property; thus, defining an eigenvector centrality for such a network would imply making

an arbitrary choice. Indeed, it can be shown that, for any λ ∈ [0, 1], one can find a sequence of

strongly connected weighted networks (N,Gn) such that en converges to 1
3(1, λ, λ, 1−λ, 1−λ).

B.3 Relationship between the � ordering and the Frobenius normal form

Lemma B6. Let (N,G) be a weakly connected network. Consider its Frobenius normal form

(B.1). For any i = 1, ..., r either |Vi| = 1 or Vi ∈ C(G). As a consequence

ρ(G) = max
i=1,...,r

ρ(Ai) = max
M∈C(G)

ρ (GM ) (B.3)

Proof. Suppose that |Vi| > 1. By construction of the Frobenius normal form, (Vi, Ai) is a

strongly connected component of (N,G). Hence Vi belongs to the set of communities C(G).

Since ρ(G) = maxi=1...r ρ(Ai) and ρ(Ai) = 0 if |Vi| = 1 this concludes the proof of (B.3). �

For any closed set N ′ ⊂ N , note that C(GN ′) = {M ∈ C(G) : M ⊂ N ′}. Hence we have

ρ(GN ′) = max
M ′∈C(G): M⊆N ′

ρ(GM ′) (B.4)

Lemma B7. Suppose that A is a nonnegative matrix that admits a Frobenius normal form

(B.1) with r = s + 1 and ρ(As+1) > maxi=1,...,s {ρ(Ai)}. Then A admits a unique positive

eigenvector.13

13Uniqueness is up to multiplication by a constant.

A8



Proof. We only need to show that, if x and y are two positive eigenvector of A then x = αy

for some α > 0. We can write A as follows:

A =

[
A′ B

0 As+1

]
, where A′ =



A1 A12 ... ... A1s

0 A2 A23 ... A2s

... ... ... ... ...

... ... ... ... ...

0 ... ... 0 As


and B =



A1s+1

A2s+1

...

...

Ass+1


.

Let us write x as (x′,x[s+1]), according to the decomposition of A we just wrote and let

ρ := ρ(As+1) = ρ(A). We have[
x′

x[s+1]

]
= ρ−1

[
A′ · x′ + B · x[s+1]

As+1 · x[s+1]

]
,

so that, in particular,
(
I− ρ−1A′

)
x′ = ρ−1Bx[s+1]. Since ρ(A′) < ρ by construction, the

matrix I− ρ−1A′ is invertible and we have

x′ = ρ−1
(
I− ρ−1A′

)−1
Bx[s+1] (B.5)

Now the matrix As+1 being irreducible and x[s+1],y[s+1] both being positive eigenvectors of

As+1 we must have x[s+1] = αy[s+1] Since identity (B.5) holds for both x and y, we obtain

that x′ = αy′, concluding the proof. �
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C Cournot with non-linear demand

Consider a standard homogeneous good Cournot oligopoly game on a network with n firms

competing in quantities, but with non-linear demand:

p = (ᾱ− k (X))+ ,

where k : [0,+∞( is non-decreasing, such that h(0) = 0, limx→+∞ k(x) ≥ α, and x ∈ ]0,+∞[7→
xk
(
x+z
W

)
is quasi-concave for any z ≥ 0,W > 0. Hence, firm i’s perceived utility can be written

as

ui(xi,x−i;Wi) =

[
ᾱ− k

(
xi +

∑
j gijxj

Wi

)]
xi − cxi.

Again, the map f satisfies the required assumptions, that is, f(0) = α > c, limy→+∞ f(y) =

0 < c and x 7→ x
(
α− h

(
x+z
W

))
+
is quasiconcave. Finally, limx→0+ xf(x) = 0.

First, given Wi, each firm i chooses quantity x∗i that maximizes her perceived utility. This

leads to:

ᾱ− k
(
xi +

∑
j gijxj

Wi

)
− xi
Wi

k′
(
xi +

∑
j gijxj

Wi

)
= c.

Second, Definition 1(ii) requires that quantity choices are consistent at a PCE by imposing

that

Wi =
x∗i +

∑
j gijx

∗
j∑

j x
∗
j

.

By plugging this value in the FOC above, we obtain:

ᾱ− k (X∗)− x∗iX
∗

x∗i +
∑

j gijx
∗
j

k′ (X∗) = c.

or equivalently ∑
j

gijx
∗
j =

(
k(X∗) +X∗k′ (X∗)− ᾱ+ c

ᾱ− c− k(X∗)

)
x∗i .

In matrix form, we have

Gx∗ =

(
k(X∗) +X∗k′ (X∗)− ᾱ+ c

ᾱ− c− k(X∗)

)
x∗, and x∗ ∈ Rn+ \ {0}.

It is easily verified that, when k(X) = X, we obtain the result with linear-demand (equation

(11)).
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D Additional results

D.1 Peer-confirming equilibria

Corollary D1. If the network (N,G) is a semi-connected network then there are at most n

perception-consistent equilibria, where n is the number of communities.

Proof of Corollary D1. If the network is semi-connected then the communities are totally

ordered: M1 �M2 � ... �Mn. Hence the number of PCE is equal to

Card

{
s = 1, ..., n : ρ(GMs) > max

k=1,...,s−1
ρ(GMk

)

}
.

�

Proposition D1. Let (N,G) be a weakly-connected network. The following are equivalent:

(i) The set of perception-consistent equilibria is finite.

(ii) For any pair
(
x1∗,x2∗) of perception-consistent equilibria, ρ (GN+(x1∗)

)
6= ρ

(
GN+(x2∗)

)
.

(iii) (N,G) is a simple network.

Proof of Proposition D1. (i) ⇒ (ii) : suppose that (ii) does not hold. Then there exists

two PCE x1,x2 such that ρ(x1) = ρ(x2) =: ρ. For λ ∈ [0, 1] and define xλ := λx1 + (1−λ)x2.

Then Xλ = X1 = X2. Hence

Gxλ = λGx1 + (1− λ)Gx2 = λρx1 + (1− λ)ρx2 = ρxλ,

and xλ is a PCE. Thus there is a continuum of PCE, contradicting (i).

(ii) ⇒ (i) : this implication follows from the fact that the set of eigenvalues of subgraphs of

G is finite.

(ii)⇒ (iii) : Suppose that (iii) does not hold. Then there exists M1,M2 such that ρ(GM1) =

ρ(GM ′1
), maxM ′∈C(G):M ′�M1

ρ(GM ′) < ρ(GM1) and maxM ′∈C(G):M ′�M2
ρ(GM ′) < ρ(GM2).

The last two strict inequalities mean that there exists a PCE with root M1, and a PCE with

root M2, contradicting (ii).

(iii) ⇒ (ii) : Assume that (ii) does not hold, and let M1 (resp. M2) be the root of x1 (resp.

x2). Being both PCE, it follows that we have maxM ′∈C(G):M ′�M1
ρ(GM ′) < ρ(GM1) and

maxM ′∈C(G):M ′�M2
ρ(GM ′) < ρ(GM2), contradicting (iii).

Finally we obtain (i)⇔ (ii)⇔ (iii) and the proof is complete. �
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D.2 Policy interventions

D.2.1 Key players

Proposition D2. Consider the (linear) Tullock contest game. Let x∗ be the (unique) asymp-

totically stable equilibrium of the simple network (N,G) and x̂∗ the (unique) asymptotically

stable equilibrium of the simple network (N\{i},GN\{i}). Then, X̂∗ ≤ X∗.

Proof of Proposition D2. We have X∗ = V ρ(G)
c[1+ρ(G)] and X̂∗ ≤ V ρ(GN\{i})

c[1+ρ(GN\{i}]
. By standard

results, ρ(G) ≥ ρ(GN\{i}). Hence X̂∗ ≤ X∗. �

D.2.2 Social mixing

Proposition D3. Consider the (linear) Tullock contest game. Let (N1,G1) and (N2,G2) be

two simple networks endowed with resources equal to V1 and V2, respectively. Let x1∗ (resp.

x2∗) be the unique stable PCE of (N1,G1) (resp. (N2,G2)), with root M1 (resp. M2).Let

also (N,G) be the network obtained from (N1,G1) and (N2,G2) in which N = N1 ∪ N2,

V = V 1 + V 2, with gij = 1 and gk` = 1 for some (i, `) ∈ M1, (j, k) ∈ M2. Then, there is a

unique stable PCE x∗ of (N,G) satisfying ρ(x∗) = ρ(G), and X∗ > X1∗ +X2∗.

Proof of Proposition D3. We have

X1 =
V 1

c

ρ(G1)

ρ(G1) + 1
; X2 =

V 2

c

ρ(G2)

ρ(G2) + 1
; X =

V 1 + V 2

c

ρ(G)

ρ(G) + 1

We have ρ(G) = ρ(M1 ∪M1) > max
{
ρ(G1), ρ(G2)

}
. Hence

X1 +X2 =
V 1

c

ρ(G1)

ρ(G1) + 1
+
V 2

c

ρ(G2)

ρ(G2) + 1

V 1 + V 2

c
<

ρ(G)

ρ(G) + 1
= X.

�
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E Beyond simple networks

In this section we assume that G is a weakly connected directed graph satisfying the no

isolation assumption. As mentioned in the text, the PCE set can be infinite in non-simple

networks.

E.1 Structure of the equilibrium set

We say that two distinct communities M1 and M2 are disconnected if neither M1 �M2 nor

M2 �M1.

Proposition E4. Let x∗ be a PCE. Then, there exists a family of pairwise disconnected

communities {Mi}i=1,...,n such that

N+(x∗) = ∪ni=1M̄i. (E.1)

Proof of Proposition E4. Since N+(x∗) is a closed set of G, we have that x∗ is a positive

eigenvector of GN+(x), associated to eigenvalue ρ > 0. By Lemma B4, that implies that

GN+(x) is strongly nonnegative, and thus can be written

GN+(x) =



A1 A12 ... ... ... ... ... A1r

0 A2 A23 ... ... ... ... A2r

... ... ... ... ... ... ... ...

0 ... 0 As Ass+1 ... ... Asr

0 ... ... 0 As+1 0 ... 0

... ... ... ... ... ... ... ...

0 ... ... ... ... 0 Ar−1 0

0 ... ... ... ... ... 0 Ar


(E.2)

where r > s, ρ(Ar) = ... = ρ(As+1) = ρ, and ρ(Ai) < ρ for i = 1, ..., s. Each As+i being such

that |Vs+i| ≥ 2 for i = 1, ..., r− s, we have Vs+i ∈ C(G). Hence, taking n := r− s, there exists
M1, ...,Mn ∈ C(G) such that As+i = GMi for i = 1, ..., n.

We now show that N+(x∗) = ∪ni=1M̄i. Since N+(x∗) is closed and Mi ⊂ N+(x) we have

M̄i ⊂ N+(x∗). Hence ∪ni=1M̄i ⊂ N+(x). Now pick j ∈ N+(x∗). By property (ii) of the

Frobenius normal form (see Definition B3), there exists some i ∈ {1, ..., n} such that j ⇒Mi,

meaning that j ∈ M̄i. This concludes the proof. �

Proposition E5. Let (Mi)i=1,...,n be a family of pairwise disconnected communities. There

A13



exists a perception-consistent equilibrium (PCE) x∗ with N+(x∗) = ∪ni=1M̄i if and only if

ρ (GM1) = ... = ρ (GMn) > max
i=1,...,n

max
M ′∈C(G): M ′�Mi

ρ (GM ′) . (E.3)

Proof of Proposition E5. The Frobenius normal form of G∪ni=1M̄i
can be written as

G∪ni=1M̄i
=



A1 A12 ... ... ... ... ... A1s+n

0 A2 A23 ... ... ... ... A2s+n

... ... ... ... ... ... ... ...

0 ... 0 As Ass+1 ... ... Ass+n

0 ... ... 0 GM1 0 ... 0

0 ... ... .... ... ... ... ...

0 ... ... ... ... 0 GMn−1 0

0 ... ... ... ... ... 0 GMn


. (E.4)

By Lemma B4, this matrix admits a positive eigenvector (and therefore there exists a PCE

x∗ such that N+(x∗) = ∪ni=1M̄i) if and only if

ρ (GM1) = ... = ρ (GMn) > max
i=1,...,s

ρ(Ai).

Note that V = ∪i=1,...,sVi is a closed set and thus

{M ′ ∈ C(G) : M ′ ⊂ V } = {M ′ ∈ C(G) : M ′ �Mi for some i = 1, ..., n}.

Hence

max
i=1,...,s

ρ(Ai) = ρ (GV ) = max
i=1,...,n

max
M ′∈C(G): M ′>Mi

ρ (GM ′)

This concludes the proof. �

In full generality, even if the set of peer-confirming equilibria is no longer finite, we can

still describe it in a simple way; it is always a finite union of convex sets. Recall that the set

of equilibria which admit a root is finite: there is at most one PCE with root M , for M ∈ C.
Let {ρ1, ..., ρP } be the set of positive eigenvalues of G. The set of equilibria with a root can

be written as

P⋃
p=1

Sp, where Sp := {x∗ : x∗ is a PCE with root M such that ρ(GM ) = ρp} ,

Proposition E6. Given any network G the set of perception-consistent equilibria can be
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written as

PCE =
P⋃
p=1

Λp,

where Λp is the convex polytope generated by Sp: Λp = Conv (Sp).

Proof of Proposition E6. We first show that
⋃P
p=1 Λp ⊂ PCE. It amounts to showing

that, if Sp =
{
x1, ...,xn

}
, and λ1, ..., λp are nonnegative numbers that sum to one then

x :=
∑

j=1 λjx
j is a PCE. We have

Gx =

n∑
j=1

λjGxj =

p∑
j=1

λjρpx
j = ρpx.

and this concludes this implication.

We now turn to the other inculsion. Let x be a PCE. Then, by Proposition E5, there exists p ∈
{1, ..., P} and a family of pairwise disconnected communities {Mi}i=1,...,n such that N+(x) =

∪ni=1M̄i, and ρ (GMi) = ρp > maxM ′�Mi
ρ (GM ′) , ∀i = 1, ..., n. Call xi the equilibrium with

root Mi, for i = 1, ..., n. We first define the following objects:

M̃i := M̄i \
(
∪j 6=iM̄j

)
; M̃ := ∪ni=1M̄i \

(
∪ni=1M̃i

)
; λi :=

∑
j∈M̃i

xj∑
i∈M̃i

xij
.

Note that, by construction, the family
{
M̃, M̃1, ..., M̃n

}
constitutes a partition of ∪ni=1M̄i.

Call Ai := GM̃i
and A := GM̃ . Then we can write

G∪ni=1M̄i
=



A B1 ... ... Bn

0 A1 0 ... 0

... ... ... ... ...

0 ... 0 An−1 0

0 ... ... 0 An


Be aware that this is not a Frobenius normal form because matrices A and Ai are in general

not irreducible. However we know the following: ρ(Ai) = ρp for i = 1, ..., n and ρ(A) < ρp.

Moreover, for j = 1, ..., p, xi|M̃i
is, by definition, a positive eigenvector of matrix Ai. This is

also true for x|M̃i
. The Frobenius normal form of Ai verifies the conditions of Lemma B7,

(As+1 corresponding here to Mi). As a result x|M̃i
and xi|M̃i

are proportionnal:

x|M̃i
= αix

i
|M̃i
. (E.5)
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Since x|∪ni=1M̄i
is an eigenvector of G∪ni=1M̄i

associated to ρp we have

ρpx|M̃ = Ax|M̃ +
n∑
i=1

Bix|M̃i
,

and thus, since I− ρ−1
p A is invertible,

ρpx|M̃ =
(
I− ρ−1

p A
)−1

n∑
i=1

Bix|M̃i
=
(
I− ρ−1

p A
)−1

n∑
i=1

αiBix
i
|M̃i
.

On the other hand xi|M̃∪M̃j
is an eigenvector of G|M̃∪M̃j

associated to ρp. Hence

ρpx
i
|M̃ = Axi|M̃ + Bix|M̃i

,

that is,

ρpx
i
|M̃ =

(
I− ρ−1

p A
)−1

Bix|M̃i
.

Finally we get

ρpx|M̃ =

n∑
i=1

αiρpx
i
|M̃i
,

i.e. x|M̃ =
∑n

i=1 αix
i
|M̃i

. Combining this equality with (E.5) and the fact that xm|M̃i
= 0 when

i 6= m, we obtain that

x =
n∑
i=1

αix
i

Now x and xi being all associated to the same eigenvalue ρp we necessarily have X = Xi for

i = 1, ..., n. As a result
∑n

i=1 αi = 1 and this concludes the proof. �

Remark E1. When G is a simple network, then every component is degenerate, i.e., they

reduce to a singleton. In full generality, in a given component, the largest eigenvalue of the

subgraph of active players is invariant.

E.2 Example

We illustrate this in the following example for the linear Tullock contest game.

Example E1. Non-finiteness of equilibria

Consider the network (N,G) in Figure E3 with N = {1, 2, · · · , 5}. Both M1 = {2, 3}, and
M2 = {4, 5} are �-maximal communities. Moreover we have ρ(GM1) = ρ(GM2) = 1. Conse-

quently, the set of perception-consistent equilibria is not finite since the network is not simple.
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Figure E3: Infinite set of PCE in a non-simple network

More precisely:

PCE =

{
V

12c
(1, λ, λ, 1− λ, 1− λ) : λ ∈ [0, 1]

}
.

�
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