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Abstract

A demand-side mechanism for international trade, the Home Market Effect (HME),

predicts a more-than-proportional relationship between domestic expenditure and do-

mestic production. Yet, since its inception in the 1980s by Paul Krugman, this theo-

retical result has only been shown to be generally valid in two-location models. I prove

that the HME is maintained in an arbitrary number of locations provided the geogra-

phy of trade is home-biased: the majority of domestic sales go to domestic consumers.

Intuitively, without home bias, increasing domestic expenditure can actually benefit

foreign production more, thus causing domestic production to rise by less, violating

the more-than-proportional relationship. This result has been overlooked until now

because in standard two location models all geographies are necessarily home-biased.

∗New York University Abu Dhabi, jjnorris@nyu.edu. I thank Jiacheng Li for really excellent research
assistance.
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1 Introduction

Why do countries trade with each other? Classically, this had been understood through

supply-side comparative advantage --- such as in productivity (Ricardian) or factor endow-

ments (Heckscher-Ohlin) --- with countries exporting the goods for which they have the com-

parative advantage in. Beginning in the 1980s, Paul Krugman formalized (though informally

going back to Linder (1961)) a mechanism through demand-side comparative advantage. For

an industry exhibiting i) scale economies and ii) transportation costs, its production is con-

centrated geographically due to i), and it is concentrated in the country with the larger

consumer base to minimize ii). The result is that countries export products from industries

for which they have the larger home market of demand (Krugman (1980)). This has become

known as the Home Market Effect (HME).

This supply-demand dichotomy has gained much attention academically, with the HME

being a central tenant in New Trade Theory and New Economic Geography (Krugman

(1991)), and it has brought with it distinct policy implications, implying that import protec-

tion may be used as export promotion. Yet, since its inception, the canonical theoretical link

between a country’s demand and industrial specialization has only been shown to be valid

in two-location models (Behrens et al. (2009)), or special cases of many-location models

such as those with perfect geographic symmetry (Costinot et al. (2019)).1 This is poten-

tially problematic for the empirical relevance of the HME, as these cases are counterfactual.2

The importance of this theoretical limitation on geography is acutely emphasized by leading

scholars in the field (Thisse (2010)).3

In this paper, I generalize the conditions under which the HME is valid to a broad,

empirically relevant class: a home biased geography, defined as the majority of the sales from

a location going to consumers based in that location. In an otherwise arbitrary geography

— with an arbitrary number of locations — I show that home bias is a sufficient condition

for the HME when stated in derivatives: an increase in $1 of domestic expenditure causes, to

first order, an increase of more than $1 of domestic production. This more-than-proportional

relationship, characteristic of HME models, implies domestic net exports increase following

the expenditure increase.4

The HME in derivatives I use is one of a number of characterizations of the HME in the

1Alternatively, researchers have considered more generalized demand determinants of production in many
location models, such as market access (Bartelme (2015),Matsuyama (2017)) and quality (Dingel (2016)).

2Empirical tests of the theory usually apply the two location predictions to settings with many locations
(Davis and Weinstein (2003)). Authors acknowledge their specifications are misspecified.

3“...it should be clear that accounting explicitly for a multiregional economy with different trade costs
should rank high on the research agenda” – Thisse (2010) pg 294.

4The strong home market effect, as termed by Costinot et al. (2019).
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literature. These are all equivalent in symmetric two-location models (Ottaviano and Thisse

(2004) pg 2582), but distinct more generally (Behrens et al. (2009) pg 264). I choose this

characterization as, in contrast to alternatives, I show it permits sharp theoretical results,

while maintaining the tight connection with net exports.5

I prove my results in the canonical HME model (Helpman and Krugman (1985)) extended

to an arbitrary geography by Behrens et al. (2009). Formally, I prove that a home biased

geography is a sufficient condition for the HME to hold on average across countries, and I

provide simulation evidence showing this appears to be sufficient for countries individually. In

proving this, I make, to my knowledge, a general contribution to the linear algebra literature:

the real component of each eigenvalue for the inverse of a diagonally dominant markov matrix

is bounded below by one.

The intuition behind the sufficiency of a home biased geography for the HME can be

explained intuitively, as follows. In a model where the geography is not home biased, then

the largest consumer base of demand for a location’s producers is not the domestic consumers.

Thus, increasing domestic expenditure in such a geography can actually benefit producers

in other locations relatively more. This reduces competitiveness of the domestic producers,

causing domestic production to rise less than proportionally, or even contract. I provide

a simple example demonstrating this in a perfectly geographically symmetric four location

model.

This intimate connection between the HME and a home biased geography is hitherto

overlooked in the literature. This is perhaps because, in two location models, all geographies

are home biased when foreign trade is more costly than domestic trade — the standard pa-

rameterization. My results therefore provide a non-trivial qualitative difference of modeling

many-locations vs only two locations. The latter being a convenient simplification often used

in theoretical frameworks.6

The outline of the paper is as follows. In section 2, I present the model. In section 3, I

give my theoretical results. In section 4, I provide intuition on the results, I show why this is

overlooked in two location models, and provide a simple example. In section 5, I conclude.

All my proofs and derivations are presented in the appendix.

5Behrens et al. (2009) considers a ranking in levels, and, separately, a derivative using logs of shares.
Suedekum (2007) considers derivatives in the level of shares in three location models.

6In the same spirit, Fabinger (2011) provides a distinct qualitative difference between models with small
vs large number of locations.
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2 Model

For presentational clarity, I present a partial equilibrium model that is isomorphic to the

canonical HME model extended to an arbitrary geography (which is general equilibrium and

microfounded). See appendix B.2 for the isomorphism.

The economy consists of N locations i ∈ {1, ..., N}. Each location has a representative

consumer and producer, and shipment of goods between locations i and j incur iceberg

transport cost τij ≥ 1. No arbitrage implies that the price in j of consuming a good produced

in i is Pij = Piτij, where Pi is the production price in i.

Goods are differentiated by location of production and consumers have preferences with

constant elasticity of substitution σ > 1 between them. Goods produced in i therefore face

total quantity demanded

QD
i =

∑
j

τij
P−σij∑
k Pkj

1−σEj︸ ︷︷ ︸
=Qij

(1)

where Qij is the quantity of goods produced in i demanded by j, and Ej is total exogenous

expenditure by consumers in j. An exogenous increase in Ei can be interpreted as an increase

in location population, or shifting expenditure from goods in other industries — both of these

are abstracted from in the partial equilibrium model (see appendix B.2.3).

The producer in i has supply curve

QS
i ≡ aiP

−σ
i (2)

where ai > 0 is an exogenous supply shifter. The elasticity of supply is equal to negative

of the demand elasticity of substitution, −σ; an emergent symmetry of the canonical HME

model. It being negative reflects the presence of increasing returns to scale in production:

production is more efficient at greater scales therefore price decreases as output increases.

Product market clearing occurs in all locations

∀i : QS
i = QD

i (3)

Some useful objects I use. I denote dollar output Yi ≡ PiQi, export share matrix γij ≡ PijQij
Yi

and import share matrix λij ≡ PijQij
Ej

. The “trade freeness” matrix, Φij = τ 1−σ
ij ∈ (0, 1]. This

is a non-linear transformation of the trade costs matrix, with a larger value indicating freer

trade. Notably, Φij = 0 when trade costs are infinite τij = ∞, and Φij = 1 when trade is

free τij = 1

Throughout, I assume the following regularity conditions. Note that these conditions are
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on the equilibrium objects Qi, γii which are implicit restrictions on the structural parameters

through their equilibrium solutions — see equations (4) and (5).7

Assumption 1. Regularity Conditions.

1. The equilibrium is interior, ∀i : Qi > 0.

2. No global autarky ∃i : γii 6= 1

3. Export share matrix γ is full rank and diagonalizable.

Assumption 1 is needed for my HME propositions that follow in section 3, but they can

be well-justified. Assumption 1.1 follows the precedent in the HME literature: the HME is

defined about an interior equilibria, ignoring the equilibria where at least one location does

not produce any of the good (Behrens et al. (2009) pg 262). Assumption 1.2 rules out global

autarky, which is a special case where the HME is violated because Yi = Ei always. 1.3 is

not of practical concern as the export share matrices ruled out are of measure zero.8 Full

rank is needed otherwise the perturbed equilibrium isn’t unique. Diagonalizability is needed

for the method of proof I use.

2.1 Equilibrium Solution

An equilibrium is such that the demand equation (1), supply equation (2) and market clearing

equation (3) hold. This system of equations can be solved analytically, giving output

Yi =
∑
j

Φ−1
ji ai∑

k Φ−1
jk ak

Ej (4)

and bilateral export share

γij = a−1
i Φij

∑
k

{
Φ−1

}
jk
ak (5)

which are both only functions of the exogenous parameters. See appendix B.1 for the deriva-

tion.

7Note that Qi = a
−1
σ−1

i Y
σ
σ−1

i , by using the supply equation (2).
8In either case, a full rank or diagonalizble matrix can be attained by an arbitrarily small perturbation

of the elements, so that the eigenvalues become non-zero or distinct, respectively.
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2.2 Home Market Effect Definition

I define the HME to be present in i if a differential increase in total i expenditure Ei causes

a more-than-proportional increase in i dollar output Yi. I also define an average HME, as

this is easier to characterize in my main theoretical results.

Definition 1. Home Market Effect. Is present in location i iff

∂Yi
∂Ei

> 1 (6)

and on average across all locations iff

1

N

N∑
i=1

∂Yi
∂Ei

> 1 (7)

Definition 1 characterizes questions of comparative statics. It is silent on questions re-

garding levels in a given equilibrium. Both sets of questions are important, with interest

depending on the research question.

The average HME can be understood as follows. Consider an experiment where ex-

penditure is only increased in location 1. Output in location 1 is measured, and ∂Y1
∂E1

is

determined. Then, redo the experiment but with expenditure only increased in location 2

and ∂Y2
∂E2

is determined. This is repeated for each location. Although in each experiment, the

output-expenditure relation may not be more-than-proportional, i.e. ∂Yi
∂Ei

≷ 1, if we take the

average across all experiments, the relation is more-than-proportional, 1
N

∑N
i=1

∂Yi
∂Ei

> 1.

Definition 1 is not the unique characterization of the HME in the literature. Alternative

forms considered are derivatives in shares or logs, or rankings in levels.9 In the symmetric

two location model, all these alternatives are equivalent (Ottaviano and Thisse (2004) pg

2582) but not necessarily so more generally.

I use definition 1 not only as it allows for precise theoretical results, whereas other def-

initions do not (Behrens et al. (2009)), but because it maintains desirable implications for

trade patterns.

In particular, iff equation (6) holds, an increase in in the home market of i, Ei, causes i

to increase its net exports and therefore improve its trade balance, TBi ≡ Yi − Ei. That is

∂Yi
∂Ei

> 1 ⇐⇒ ∂TBi

∂Ei
> 0 (8)

9Respectively:
∂(Yi/

∑
j Yj)

∂(Ei/
∑
j Ej)

≥ 1, ∂ lnYi
∂ lnEi

≥ 1, and E1 ≥ E2 ≥ ... =⇒ Y1

E1
> Y2

E2
> .... See Behrens et al.

(2009) appendix C for a discussion.
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using ∂TBi
∂Ei

= ∂Yi
∂Ei
− ∂Ei

∂Ei
= ∂Yi

∂Ei
− 1 > 0. A definition in terms of derivatives in logs or shares

does not have this property generally, except in the symmetric two location model.10

3 Theoretical Results

In proposition 1, I derive the endogenous change in output Yi with respect to exogenous

shifts in expenditure {Ej}Nj=1.

Proposition 1. Equilibrium Comparative Statics. Let equations (1), (2) and (3) hold. More-

over, assume γ is full rank. Then,

dYi =
∑
j

{
γ′
−1
}
ij

dEj (9)

Proof. See appendix A.1.

The relationship takes a very succinct form. Notably, the export share matrix γ is a

sufficient statistic for the equilibrium change in output. This result is reminiscent of the

exact-hat algebra (Dekle et al. (2008)), but with a particular simple form, in part, due to the

emergent symmetry of the canonical HME model: the supply elasticity is equal to negative

of the demand elasticity of substitution.

The necessary and sufficient condition on the export share matrix for the HME to hold

in a given location is a simple corollary of proposition 1.

Corollary 1. Home Market Effect. The Home Market Effect (definition 6) in location i is

present iff {
γ′
−1
}
ii
> 1 (10)

Although terse, equation (10) is abstruse: under what geography of trade, γ, is equation

(10) satisfied?11

With matrix dimensions greater than 2×2, the relation between a matrix and its inverse

is generally very complicated. Therefore, I derive a simple and intuitive sufficient condition

on the export share matrix γ such that the HME holds. This condition is a home biased

10The change in trade balance in these alternatives depends on the initial trade balance. In logs: ∂ lnYi
∂ lnEi

> 1,

which is equivalent to ∂Yi
∂Ei

> Yi
Ei

implies ∂TBi
∂Ei

> Yi
Ei
− 1. In shares, sZi ≡ Zi∑

j Zj
:
∂sYi
∂sEi

> 1, which is equivalent

to ∂Yi
∂Ei

>
1−sEi
1−sYi , implies ∂TBi

∂Ei
>

1−sEi
1−sYi − 1 =

sYi −s
E
i

1−sYi
. Both of these can be negative given a sufficiently

negative trade balance, Yi < Ei.
11Equation (10) puts an implicit restriction on the structural parameters of the model through the equation

(4).
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geography (assumption 2): the majority of the sales from a location go to consumers in that

location. This is equivalent to all the diagonal elements of γ being greater than 0.5.

Assumption 2. Home-Biased Geography. Assume that each diagonal element of the export

share matrix γ is greater than 0.5

∀i : γii > 0.5

This condition is also highly relevant empirically. In figure 1, I present γii for the major

world economies. As the HME model abstracts from intermediate good trade and assumes

all trade is in final goods, I use the value-added content of trade flows estimated by Johnson

and Noguera (2017) in the construction of γii. The figure shows that the majority of countries

i satisfy γii > 0.5, and more so throughout history.

The sufficiency of a home biased geography for the HME is presented in proposition

2. Although I only prove that a home-biased geography is sufficient for the average HME

— part i) in proposition 2 — in section 3.1 I provide simulation evidence suggesting it is

also sufficient for the HME to hold in each location. I do prove sufficiency for the HME

in each location if I add the additional assumption of a symmetric geography — part ii) in

proposition 2 — but the simulation evidence also implies this additional assumption is not

necessary.

Proposition 2. Home Market Effect in a Home Biased Geography . i) Assume the geography

is home-biased (assumption 2), then the HME is present on average

1

N

N∑
i=1

∂Yi
∂Ei

> 1

ii) Furthermore, assume the geography is symmetric, γ = γ′, then the HME is present in

each location

∀i :
∂Yi
∂Ei

> 1

Proof. See appendix A.2 for i), appendix A.3 for ii).

In proving proposition 2.i), I make, to my knowledge, a general contribution to linear

algebra literature. For any matrix M that is diagonally dominant and a markov matrix, I

prove that the real component of the inverse of all its eigenvalues are greater than one. This

is proposition 3.

Proposition 3. (Eigenvalues of the inverse of a row-diagonally dominant, markov matrix

have real component greater than one) . Let a full-rank and diagonalizble matrix M with
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dimensions N ×N be strictly row-diagonally dominant

∀i : Mii >
∑
j 6=i

Mij

and a (row) markov matrix

∀i, j : Mij ≥ 0

∀i :
∑
j

Mij = 1

Then, all the eigenvalues of M−1 have real component greater than or equal to one.

If we also assume that M 6= I, where I is the identity matrix, then at least one eigenvalue

of M−1 has real component strictly greater than one.

Proof. See appendix A.4.

Proposition 3 is key to proving sufficiency of a home biased geography in proposition

2. The export matrix γ is full-rank and diagonalizable by regularity condition 1.3. The

home-biased assumption 2 implies diagonal dominance. It is a markov matrix as trade flows

cannot be negative, and the rows add up to one as element is a share. Hence, proposition 3

applies to γ, and with the equality strict as the no global autarky regularity assumption 1.2

implies γ 6= I.

To see where proposition 3 is used in proposition 2, write

1

N

N∑
i=1

∂Yi
∂Ei

=
1

N

N∑
i=1

{
γ′
−1
}
ii

=
1

N

N∑
i=1

eigenvaluei

(
γ′
−1
)

> 1

The first equality follows from the comparative statics equation (9). The second equality

follows from the trace of a matrix equalling the sum of its eigenvalues. Noting that the

imaginary components of the eigenvalues in the sum cancel out as γ (and therefore γ
′−1) is

real,12 the third inequality follows from proposition 3, and proposition 2 is proved.

12γ
′−1 is real therefore the complex conjugate of any eigenvalue is also an eigenvalue. Thus, the imaginary

components exactly cancel when all eigenvalues are summed together.
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3.1 Simulation Evidence

Given I do not prove sufficiency of a home-biased geography for the HME to hold separately

in each location — equation (6) — I use simulations to show that this nonetheless seems to

be true.

To do this, I randomly simulate export share matrices γ that do and do not satisfy home

bias 1,000,000 times each. The simulation process in detail for each is:

• Non-home biased export share matrix, γ. I randomly generate an N ×N matrix M

with each element distributed uniform between zero and one, ∀i, j : Mij ∼ U [0, 1].

I then scale each row by the row sum so that the resulting matrix is a row markov

matrix, γij =
Mij∑
kMik

. I keep this γ in the distribution if it is not diagonally dominant

γii ≤ 0.5. I repeat this 1,000,000 times.

• Home biased export share matrix, γ. The share of γ that are diagonally dominant in

the above process is increasingly small as N raises. Therefore, I modify the algorithm

so that the randomly generated matrix is diagonally dominant by construction. I first

randomly generate the diagonal elements of γ so that diagonal dominance is satisfied,

∀i : γii ∼ U
[

1
2
, 1
]
. Second, I randomly generate ∀i, j 6= i : Mij ∼ U [0, 1]. The off-

diagonal elements of γij are the scaled Mij so that their sum equals 1− γii, thus being

a markov matrix: ∀i, j 6= i : γij = (1− γii) Xij∑
k 6=iXik

. I repeat this 1,000,000 times.

I do this simulation for the set of N ∈ {2, 3, 5, 10}. For each γ simulated, I calculate
∂Yi
∂Ei

=
{
γ−1′

}
ii
. If mini

∂Yi
∂Ei

> 1, then the HME holds separately for each location, as this

implies ∀i : ∂Yi
∂Ei

> 1.

Figure 2 presents the results, with each sub-figure a different N . The distribution of

mini
∂Yi
∂Ei

is displayed in each sub-figure (density truncated at 0.01). We see that mini
dYi
dEi

> 1

holds for the entire distribution simulated when trade is home biased, whereas not necessarily

when trade is non-home biased. Hence, a home-biased geography appears to be sufficient for

the HME to hold separately for each location, not just on average.

4 Discussion

4.1 The role of a Home Biased Geography

Intuition to the role of home bias in the theoretical results can be attained by looking at

textbook supply and demand curves in Pi − Yi space in a single location i, and considering

the comparative statics (to first order) of increasing expenditure in i, dEi > 0, {dEj = 0}j 6=i.
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Figure 3 illustrates the comparative static graphically in a home-biased and sufficiently

non-home-biased geography. The supply curve for producers in location i is given by multi-

plying equation (2) by Pi and differentiating to give

dY S
i = − (σ − 1)Qii︸ ︷︷ ︸

Supply gradient in i

dPi (11)

which is downward sloping due to the supply elasticity being negative (equal to −σ < −1).

The demand curve facing producers in location i is given by multiplying equation (1) by Pi

and differentiating to give13

dY D
i = − (σ − 1) (1− {λγ′}ii)Qii︸ ︷︷ ︸

Demand gradient facing i

dPi + (σ − 1) ·
∑
k 6=i

{λγ′}ik ·QkdPk +

Initial Shift︷ ︸︸ ︷
λiidEi︸ ︷︷ ︸

Total Demand Shift

(12)

The term labeled “initial shift” is the shift in the demand curve due to an increase in expen-

diture dEi, holding prices in all other locations’ fixed, dPj 6=i = 0. The initial shift is, to first

order, simply the increase in domestic expenditure dEi multiplied by the share of expendi-

ture that is spent on domestic goods, i.e. the own-import share λii. Because 0 ≤ λii ≤ 1, the

initial shift always causes a weakly less-than-proportional change in output. Intuitively, the

increase in expenditure of i consumers, dEi, is often not spent one-for-one on goods produced

in i. i consumers consume from goods in all locations; they only spend λii of their income

locally.

In equilibrium, the total demand shift incorporates the change in demand facing i pro-

ducers due to the change in other locations’ prices. This total shift can be rewritten by

substituting out the endogenous price changes dPj 6=i using their solution in equilibrium,

leaving the shift in terms of only the exogenous shock dEi > 0, {dEj = 0}j 6=i14

dY D
i = (σ − 1) (1− {λγ′}ii)QiidPi + {λγ′}ii ·

{
γ′
−1
}
ii
· dEi︸ ︷︷ ︸

Total Demand Shift

(13)

In contrast to the initial shift, where the shift in the demand curve was positive and

weakly less-than-proportional, the total demand shift faces no such constraint. Pivotally, it

depends on the value of
{
γ′ −1

}
ii
. Intuitively, the positive initial shift in i demand can be

13The demand elasticity is negative as 0 < {γλ′}ii +
∑
j 6=i {γλ′}ij = 1 =⇒ 0 < {γλ′}ii < 1, using∑

j 6=i {γλ′}ij > 0. Note also that the the demand curve is steeper than the supply curve.
14dPi = − 1

(σ−1)Qi dYi = − 1
(σ−1)Qi

{
γ′
−1
}
ii

dEi where the first equality uses equation (11) and the second

uses equation (9).
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amplified if j 6= i prices increase in response to dEi, as this causes further substitution of

consumption to goods produced in i (figure 3a).

However, it can be the case that j 6= i prices decrease. This occurs if producers in j are

highly exposed to consumers in i, so that demand facing j producers sufficiently increases

following an expenditure increase in i. As a result, production in j expands and prices in j

fall due to downward-sloping supply, causing substitution of consumption away from i. Thus

a less-than-proportionate, even negative, equilibrium shift in i demand may result (figure

4b). Consequently, the HME effect is violated.

This is precisely what a home-biased geography rules out. j producers having high

direct exposure to i consumers translates to a high sales share from j to i, γji. j can be

highly exposed indirectly to i through a third country, thus all off-diagonal elements of γ

factor into this exposure. A home-biased geography implies that γjj > 0.5, therefore all off-

diagonal elements are sufficiently small such that ∀j 6= i locations are not highly exposed to

i consumers. Thus, demand facing j 6= i producers will not increase sufficiently in response

to an expenditure increase in i, and the HME will not be violated.

4.2 Home Bias in Two Location Models

The results of section 3 on the sufficiency of a home biased geography for the home market

effect provides a novel insight to a theory that is four decades old. Perhaps the reason for

this being overlooked in the literature is because the theory has almost exclusively focused

on models with only two locations. As I now show, a home biased geography is in fact

implied under the standard parameter restrictions in two location models. Hence no explicit

consideration of it has been necessary in two location models, and therefore no consideration

of it has been taken into account when extending the theory to more than two locations.

The standard parameter restriction referred to is a very natural and empirically appropri-

ate one: trade between locations is more costly than trade within a location (with geographic

symmetry in all other parameters). This, quite intuitively, implies home bias in a two lo-

cation model as it’s cheaper to consume domestically relative to consuming from foreign.

However, with more than two locations, this is not sufficient. Even though the relative cost

of consuming from domestic producers is still less, there are now more foreign locations to

buy from. Given the love variety in preferences (due to CES), the non-domestic consumption

share rises, and a home biased geography is no longer guaranteed.

This result is formalized in proposition 4.

Proposition 4. Home Bias in Two Location Models. Consider N = 2, with trade between

locations being more costly than within a location, ∀i, j 6= i : τii < min {τij, τji}, and sym-
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metric initial expenditures E1 = E2, productivities a1 = a2. Then, for all interior equilibria,

assumption 2 is satisfied.

Proof: see appendix A.5.

4.3 Simple Example

I present a simple example demonstrating violation of the home market effect in more than

two locations when trade between locations is more costly than trade within a location.

This is the “symmetric square geography” (see figure 4).15 There are four identical lo-

cations, N = 4, with equal (initial) expenditure in all locations ∀i : Ei = E, and equal

productivities in all locations ∀i : ai = a. Trade within a location is free, τii = 1, is costly

between adjacent vertices, incurring transport cost τ > 1, and impossible between opposite

vertices (infinite trade costs). Such a geography may characterize a perishable good which

can only be shipped to nearby locations. Because all locations are symmetric, an interior

equilibrium exists for all τ > 1 and is symmetric.

The math is much cleaner if we use the trade freeness matrix Φ, which in this geography

is

Φ =


1 φ 0 φ

φ 1 φ 0

0 φ 1 φ

φ 0 φ 1


where φ ≡ τ 1−σ. Using equation (5), the export matrix and it’s transposed inverse is

γ =


1

1+2φ
φ

1+2φ
0 φ

1+2φ
φ

1+2φ
1

1+2φ
φ

1+2φ
0

0 φ
1+2φ

1
1+2φ

φ
1+2φ

φ
1+2φ

0 φ
1+2φ

1
1+2φ

 , γ−1′ =


1−2φ2

1−2φ
φ

2φ−1
2φ2

1−2φ
φ

2φ−1
φ

2φ−1
1−2φ2

1−2φ
φ

2φ−1
2φ2

1−2φ
2φ2

1−2φ
φ

2φ−1
1−2φ2

1−2φ
φ

2φ−1
φ

2φ−1
2φ2

1−2φ
φ

2φ−1
1−2φ2

1−2φ


By equation (9), the change in domestic output from a change in domestic expenditure in

this geography is
∂Yi
∂Ei

=
{
γ−1′

}
ii

=
1− 2φ2

1− 2φ
(14)

which is equal for all i due to geographic symmetry. Figure 6a displays ∂Yi
∂Ei

from equation

(14) as a function of φ ∈ (0, 1]. We see that the HME is present, ∂Yi
∂Ei

> 1, only when trade

costs are sufficiently high, φ ∈
(
0, 1

2

)
. For φ ≥ 0.5, the HME is violated. For φ ∈

(
1
2
, 1√

2

]
,

15At least four locations is needed for this. In three locations, the analogous geography is a line, which
leads to complete agglomeration at the central point.
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the effect on output is negative, ∂Yi
∂Ei
≤ 0. For φ ∈

(
1√
2
, 1
]
, the relationship is positive but

less than proportional, ∂Yi
∂Ei
∈ (0, 1].

Why is the HME violated for φ ≥ 0.5? Insight can be gained by looking at the own-

export share γii as a function of φ, see figure 6b. We see that when φ ≥ 0.5, trade costs are

sufficiently small that the geography is no longer home biased, γii < 0.5. Thus, the HME

is no longer guaranteed by proposition 2 (due to geographic symmetry, the average HME is

equal to the individual HME). Intuitively, as explained in section 4.1, an increase in domestic

expenditure causes a sufficient increase in the demand facing producers in other locations.

This is because those producers are highly exposed due to low trade costs, materializing

in a low own-export share. The expansion of production in other locations attenuates the

domestic expansion in production, so violating the HME.

5 Conclusion

In this paper, I provide new results on a decades old theory: the Home Market Effect. The

theory has gained much attention academically and in policy, yet its canonical theoretical im-

plications have mostly been confined to two location models. This is a potentially important

limitation as two locations is empirically counterfactual.

I extend the applicability of the HME to an arbitrary number of locations under the

additional assumption of a home-biased geography: the majority of the sales from a location

going to consumers based in that location. In proving sufficiency of this condition for the

HME to hold on average, I contribute a new result to the linear algebra literature.

This assumption is both empirically relevant, and its connection with the HME simple to

explain. When the geography is not home-biased, an increase in domestic expenditure causes

production in foreign locations to expand sufficiently, reducing the expansion of domestic

production. Thus, the more-than-proportional relationship between output and expenditure,

characteristic of the HME, can be violated.

This result is vacuous, and therefore overlooked, in standard two location models as

all geographies are home-biased. My results therefore provide a non-trivial qualitative dif-

ference of modeling many-locations vs only two locations. The latter being a convenient

simplification often used in theoretical frameworks.
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Figure 1: Observed Domestic Sales Share, γii

Notes. The geography is home biased (assumption 2) if all countries are above the dashed line for a given
year. Constructed using the estimated value-added content of international trade flows from Johnson and

Noguera (2017). Included are the 42 OECD countries and major emerging markets, which account for
around 90% of world GDP.
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Figure 2: Sufficiency of Home Biased Geography for the HME in each i: Simulation Evidence

(a) N = 2 (b) N = 3

(c) N = 5 (d) N = 10

Notes. Export share matrices that satisfy home bias and not are separately randomly simulated. For each
N , we see that mini

dYi
dEi

> 1 holds for the entire distribution simulated when trade is home biased, whereas
not necessarily when trade is not home biased. Hence, home bias appears sufficient for the HME to hold

separately for each location. See section 3.1.
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Figure 3: Home Market Effect dependence on Geography

(a) Home-Biased Geography

(b) Non-Home-Biased Geography
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Figure 4: Symmetric Square Geography: Visualization

i = 1 i = 2

i = 3i = 4

1 1

11

φ

φ

φ

φ

Notes. Trade is only permitted between locations i that are directly connected by a dashed line, and faces
the labeled trade freeness parameter. Diagonally opposite locations are not able to trade with each other.

See section 4.3.
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Figure 5: Symmetric Square Geography: Equilibrium Variables

(a) Change in domestic output from a change in domestic expen-
diture, ∂Yi

∂Ei

(b) Own-export share, γii
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A Proposition Proofs

A.1 Proposition 1 (Equilibrium Comparative Statics)

Proof. Multiplying demand equation (1) by Pi and differentiating gives

d lnY = (1− σ) · d lnP + γ · [−(1− σ) · λ′ · d lnP + d lnE]

dY = (1− σ) (I − λ · γ′) (Q ◦ dP ) + λ · dE (15)

Multiplying supply equation (2) by Pi and differentiating gives

d lnY = − (σ − 1) · d lnP

dY = − (σ − 1) · (Q ◦ dP ) (16)

Substitute out Q ◦ dP from equation (15) by using (16)

dY = (I − λ · γ′) dY + λ · dE

Rearrange, using the fact that X, and therefore γ, λ are full rank, to give

dY = γ′
−1

dE

A.2 Proposition 2 i) (Average Home Market Effect under Home Biased

Geography)

Proof. Using proposition 1

1

N

N∑
i=1

∂ lnYi
∂ lnEi

=
1

N
Trace

(
γ′−1

)
=

1

N

N∑
k=1

eig
(
γ′−1

)
k

=
1

N

N∑
k=1

Re
{
eig
(
γ′−1

)
k

}
where eig (γ′−1)k is the kth eigenvalue of γ′−1, and Re {eig (γ′−1)k} its real component. The

second line follows from the trace equalling the sum of the eigenvalues. The last line follows
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from the complex conjugate root theorem: for any real matrix, the complex conjugate of a

complex eigenvalue is also an eigenvalue; therefore the imaginary components of eig (γ′−1)k
cancel in the sum.

To prove the proposition, it is sufficient to show that the real part of all eigenvalues of γ′−1

are greater than or equal to 1, with at least one eigenvalue strictly greater than one. To do

this, note: γ is row-diagonally dominant (from the assumption of home biased geography);

it is a markov matrix (because it is a share matrix with rows summing to one); and the

eigenvalues of a matrix and it’s transpose are the same (so that the eigenvalues of γ′−1 and

γ−1 are the same). Hence, proposition 3 applies, ∀k : Re {eig (γ′−1)k} ≥ 1. Furthermore, the

inequality is strict for at least one k as γ 6= I due to the no global autarky assumption 1.2.

Thus,

1

N

N∑
i=1

∂ lnYi
∂ lnEi

=
1

N

N∑
k=1

Re
{
eig
(
γ′−1

)
k

}
> 1

the second inequality is implied by proposition 3.

A.3 Proposition 2 ii) (Individual Home Market Effect in a Home-Biased

and Symmetric Geography)

Proof. Because γ is symmetric, we can take the spectral decomposition γ−1 = QΛQ′ where

Λ is the diagonal matrix of eigenvalues, Λkk = eig (γ−1)k, and Q has each column k equal to

the corresponding orthonormal eigenvector xk of γ. Writing this in component form

{
γ−1
}
ii

=
∑
k

eig
(
γ−1
)
k︸ ︷︷ ︸

>1

x2
ki︸︷︷︸
>0

>
∑
k

x2
ki︸ ︷︷ ︸

=1

> 1

where xki is the ith element of eigenvector xk.

In the first line, eig (γ−1)k > 1 follows from applying proposition 3 to a symmetric matrix:

all eigenvalues are real for a symmetric matrix, therefore eig (γ−1)k = Re {eig (γ−1)k} > 1.

In the second line,
∑

k x
2
ki is the modulus of eigenvector xk, which is equal to one as the

eigenvectors are orthonormal.
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A.4 Proposition 3 (Eigenvalues of the inverse of a row-diagonally domi-

nant, markov matrix have real component greater than or equal to

one)

Proof. There are two parts. In part A, I manipulate the matrix M into a form in which the

Leontieff Inverse can be applied. In part B, I show that the real part of the eigenvalues of

the resulting Leontieff inverse expansion can be bounded below by one.

Part A. Rewrite matrix M in Leontieff inverse form

M−1 =
(
I − M̃

)−1

=
∞∑
n=0

M̃n (17)

where

M̃ ≡ I −M

M̃ij =


∑

j 6=iMij i = j

−Mij i 6= j
(18)

The expression for the diagonal elements in equation (18) used the fact that M is a (row)

markov matrix M̃ii = 1 −Mii =
∑

j 6=iMij. For the Leontieff inverse expansion — equation

(17) — to be valid, the eigenvalues of M̃ , eig
(
M̃
)
k
, where k ∈ {1, ..., N} indexes the eigen-

value, must each be less than one in absolute value. Using the Gershgorin Circle theorem,

each eigenvalue of satisfies, for some i∗,∣∣∣eig (M̃)
k
− M̃i∗i∗

∣∣∣ ≤∑
j 6=i∗

∣∣∣M̃i∗j

∣∣∣∣∣∣∣∣eig (M̃)k −∑
j 6=i∗

Mi∗j

∣∣∣∣∣ ≤∑
j 6=i∗

Mi∗j (19)

where the second line follows from the definition of M̃ , equation (18), and uses that all

elements of M are nonnegative. Equation (19) bounds each eigenvalue of M̃ , eig
(
M̃
)
k
,

within a circle in the complex plane of radius
∑

j 6=i∗Mi∗j centered on
∑

j 6=i∗Mi∗j (see the

blue circle in figure 6, written in terms of M using M̃ ≡ I −M).
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Furthermore,
∑

j 6=i∗Mi∗j < 0.5 as

∀i : Mii >
∑
j 6=i

Mij

1−
∑
j 6=i

Mij >
∑
j 6=i

Mij

0.5 >
∑
j 6=i

Mij (20)

where the first line follows as M is strictly row-diagonally dominant, and the second line

from M being a markov matrix. Equations (19) and (20) imply
∣∣∣eig (M̃)

k

∣∣∣ < 1 for all

k ∈ {1, ..., N} eigenvalues of M̃ , therefore the Leontieff inverse expansion in equation (17) is

valid.

Part B. The Leontieff Inverse summation in equation (17) can be be re-written using the

spectral decomposition M̃ = QΛQ−1, where Λ is the diagonal matrix with the k ∈ {1, ..., N}
eigenvalues eig

(
M̃
)
k

along its diagonal.

M−1 =
∞∑
n=0

M̃n

= Q
∞∑
n=0

ΛnQ−1

Thus, the matrix
∑∞

n=0 Λn is the diagonalized form of M−1, and thus comprise its eigenvalues.

That is,

eig
(
M−1

)
k

=
∞∑
n=0

eig
(
M̃
)n
k

=
1

1− eig
(
M̃
)
k

using that
∣∣∣eig (M̃)

k

∣∣∣ < 1 for each k, as proved in part A. The real component

Re
{
eig
(
M−1

)
k

}
=

1−Re
{
eig
(
M̃
)
k

}
(

1−Re
{
eig
(
M̃
)
k

})2

+
(
Im
{
eig
(
M̃
)
k

})2

Now, this is greater than or equal to one iff

1−Re
{
eig
(
M̃
)
k

}
(

1−Re
{
eig
(
M̃
)
k

})2

+
(
Im
{
eig
(
M̃
)
k

})2 ≥ 1
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1−Re
{
eig
(
M̃
)
k

}
≥
(

1−Re
{
eig
(
M̃
)
k

})2

+
(
Im
{
eig
(
M̃
)
k

})2

1−Re
{
eig
(
M̃
)
k

}
≥ 1− 2 ·Re

{
eig
(
M̃
)
k

}
+Re

{
eig
(
M̃
)
k

}2

+
(
Im
{
eig
(
M̃
)
k

})2

0.52 ≥ 0.52 −Re
{
eig
(
M̃
)
k

}
+Re

{
eig
(
M̃
)
k

}2

+
(
Im
{
eig
(
M̃
)
k

})2

0.52 ≥
[
Re
{
eig
(
M̃
)
k

}
− 0.5

]2

+
[
Im
{
eig
(
M̃
)
k

}]2

(21)

Equation (21) is a circle in the complex plane centered at eig
(
M̃
)
k

= 0.5 with radius 0.5

(see the red circle in figure 6, written in terms of M using M̃ ≡ I−M). That is, if eig
(
M̃
)
k

is within this circle, then Re {eig (M−1)k} ≥ 1.

The final step is to note that the circular bound of equation (19) is contained weakly

within the circular bound of equation (21), because 0.5 >
∑

j 6=iMij from equation (20) (the

blue circle is always weakly within the red circle in figure 6). Thus, M being diagonally

dominant and a markov matrix implies Re {eig (M−1)k} ≥ 1 for all eigenvalues k.

The additional result of the proposition on the strict inequality follows from noting that

Re {eig (M−1)k} = 1 is true only when equation (21) holds with equality (on the boundary

of the red circle in figure 6). The only value of eig
(
M̃
)
k

satisfying (21) with equality, while

satisfying equation (19), is eig
(
M̃
)
k

= 0 (the only point of overlap of the blue and the red

circles in figure 6 is at the origin). This is equivalent to Re {eig (M)k} = 1, Im {eig (M)k} =

0. Hence, as long as at least one eigenvalue of M is not equal to one, then Re {eig (M−1)k} >
1 for some eigenvalue k.

The only matrix M with all eigenvalues equal to one is the identity matrix I. Thus, if

we also assume M 6= I, then ∃k : Re {eig (M−1)k} > 1.
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Figure 6: Eigenvalue bounds in proposition 3

Notes. The bounds hold for all eigenvalues, indexed by k.

A.5 Proposition 4 (Home Bias in Two Location Models)

Proof. To prove the proposition, I show that for all parameter values subject to the assump-

tions in the proposition, a home-biased geography is implied.

I will use the trade freeness matrix

Φ =

(
φ11 φ12

φ21 φ22

)

where φij = τ 1−σ
ij . The premise ∀i, j 6= i : τii < min {τij, τji} implies

∀i, j 6= i : φii > max {φij, φji} (22)
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I rewrite the interior equilibrium condition (assumption 1.1) as

∀i : Yi > 0 (23)

using Yi = PiQi = a
1
σ
i Q

σ−1
σ

i from the supply equation (2). Using the equilibrium solution

for Yi in terms of the structural parameters — equation (26), and that ai = a, Ei = E, in

equation (23) for location 1 gives

Y1 > 0

φ22

φ22 − φ12

E − φ21

φ11 − φ21

E > 0

φ22 (φ11 − φ21) > φ21 (φ22 − φ12) (24)

and for location 2 gives

Y2 > 0

φ11

φ11 − φ21

E − φ12

φ22 − φ12

E > 0

φ11 (φ22 − φ12) > φ12 (φ11 − φ21) (25)

The home-biased geography assumption in a two location model is satisfied if γ11 > γ12

and γ22 > γ21. Using equation (27) to write export share matrix in terms of the structural

parameters, and that ai = a, then we find

γ11 =
φ11 (φ22 − φ12)

φ11φ22 − φ12φ21

>
φ12 (φ11 − φ21)

φ11φ22 − φ12φ21

= γ12

where the second line used the interior equilibrium condition for location 2, equation (25).

Note that equation (22) implies φ11φ22 − φ12φ21 > 0. Also,

γ22 =
φ22 (φ11 − φ21)

φ11φ22 − φ12φ21

>
φ21 (φ22 − φ12)

φ11φ22 − φ12φ21

= γ21
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where the second line used the interior equilibrium condition for location 1, equation (24).

Hence γ11 > γ12 and γ22 > γ21 are both satisfied, and the geography is therefore home

biased, for all parameter values subject to the assumptions in the proposition.

B Model Derivations and Extensions

B.1 Equilibrium Solution in terms of Structural Parameters

B.1.1 Output

Output Yi is solved for in equilibrium by combining demand equation (1), supply equation

(2) and market clearing equation (3)

PiQ
S
i = PiQ

D
i

Yi =
∑
j

P 1−σ
ij∑

k Pkj
1−σEj

=
∑
j

a−1
i YiΦij∑
k a
−1
k YkΦkj

Ej

As shown by Behrens et al. (2009), this resulting set of equations can be solved explicitly for

Yi by converting to matrix form

Y = diag [a]−1 diag [Y ] Φdiag
[
Φ′diag [a]−1 Y

]−1
E

Φ−1a = diag
[
Φ′diag [a]−1 Y

]−1
E

diag
[
Φ′diag [a]−1 Y

]
Φ−1a = E

diag
[
Φ−1a

]
Φ′diag [a]−1 Y = E

Y = diag [a] Φ
′−1diag

[
Φ−1a

]−1
E

In component form

Yi =
∑
j

Φ−1
ji ai∑

k Φ−1
jk ak

Ej (26)
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B.1.2 Export Matrix

γij ≡
PijQij

Yi

=
P 1−σ
ij∑

k Pkj
1−σ

Ej
Yi

=
ΦijP

1−σ
i∑

k ΦkjPk1−σ
Ej
Yi

=
a−1
i YiΦij∑
k a
−1
k YkΦkj

Ej
Yi

= a−1
i Φij

Ej∑
k a
−1
k YkΦkj

= a−1
i Φij

∑
k

{
Φ−1

}
jk
ak (27)

Where the second equality substituted out Qij using demand equation (1). The third equality

used Pij = Piτij and the definition of the trade freeness matrix Φ = τ 1−σ. The fourth equality

used Yi = aiP
1−σ
i from the supply equation (2) to substitute out Pi.

The sixth equality used equation (29), which follows from the equilibrium being interior,

as derived here

PiQ
S
i = PiQ

D
i

Yi =
∑
j

P 1−σ
ij∑

k Pkj
1−σEj (28)

=
∑
j

a−1
i YiΦij∑
k a
−1
k YkΦkj

Ej

1 =
∑
j

a−1
i Φij∑

k a
−1
k YkΦkj

Ej

∑
i

{
Φ−1

}
ji
ai =

Ej∑
k a
−1
k YkΦkj

(29)

B.1.3 Assumption 1.1 (Interior Equilibrium) in terms of the structural parameters

Here I rewrite the interior equilibrium condition 1.1, ∀i : Qi > 0 in terms of the exogenous

structural parameters of the model, rather than endogenous output Qi.

I do this by first relating output in quantity units, Qi, to output in dollar units, Yi using
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the supply equation (2) to give

Yi = PiQi =
(
a

1
σ
i Q
− 1
σ

i

)
Qi = a

1
σ
i Q

σ−1
σ

i

=⇒ Qi = a
−1
σ−1

i Y
σ
σ−1

i (30)

Next, I substitute out Yi for using the equilibrium solution in equation (26)

Qi = a
−1
σ−1

i Y
σ
σ−1

i

= a
−1
σ−1

i

(∑
j

Φ−1
ji ai∑

k Φ−1
jk ak

Ej

) σ
σ−1

Into the interior equilibrium condition

∀i Qi > 0

a
−1
σ−1

i

(∑
j

Φ−1
ji ai∑

k Φ−1
jk ak

Ej

) σ
σ−1

> 0

∑
j

Φ−1
ji∑

k Φ−1
jk ak

Ej > 0

B.2 General Equilibrium Isomorphism

B.2.1 The Model

This section replicates the extension of the canonical HME framework from Helpman and

Krugman (1985) to an arbitrary geography by Behrens et al. (2009).

The economy consists of N locations indexed i ∈ {1, ..., N}. Location i hosts an exoge-

nously given mass of Li > 0 consumers, each of whom supplies one unit of labor inelastically.

Hence, both the world population and the world labor endowment are given by L =
∑

i Li.

Labor is the only factor of production, is assumed to be geographically immobile, sectorally

mobile, and its labor supply are traded in perfectly competitive local labor markets. Hence,

the wages in all sectors within a location are the same, denoted wi.

Preferences are defined over a homogenous agricultural good (A) and over a continuum

of varieties of horizontally differentiated manufacturing goods (D). The preferences of the

representative consumer of location i are represented by the following Cobb-Douglas utility

function

Ui = X1−µi
i Aµii
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where parameter µi ∈ (0, 1)is the share of expenditure on manufacturing goods. The

representative consumer in location i has income wiLi.

Agricultural goods are produced by perfectly competitive firms under constant returns to

scale with zi denoting the corresponding unit labor requirement in location i. Agricultural

goods can be traded freely across locations, meaning that agricultural price, pAi , is equalized

across all locations, and is chosen as the numéraire, ∀i : pAi = 1. Marginal cost pricing

implies pAi = ziwi. Therefore, productivity-adjusted wages are equalized across all locations

wi = 1/zi (31)

provided that some numéraire production takes place everywhere. Parameter values are

restricted so that this is the case.

X is a CES subutility defined over the manufacturing varieties as follows

Di =

[
N∑
j=1

(∫
Ωj

dji(ω)
σ−1
σ dω

)] σ
σ−1

(32)

where dji(ω) is the consumption in location i of variety ω produced in location j, and

Ωj is the set of varieties produced in location j. The parameter σ > 1 is the elasticity of

substitution between any two varieties.

The production of any variety of the differentiated goods takes place under increasing

returns to scale by a set of monopolistically competitive firms. This set is endogenously

determined in equilibrium by free entry and exit.16ni denotes the mass of firms located in

location i.

Production of each variety requires a fixed and a constant marginal labor requirements,

fi > 0 and ci > 0 respectively, which may be location-specific. The ratio ri ≡ fi/ci measures

the intensity of increasing returns to scale in the manufacturing production technology. These

are assumed common across locations, that is, ri = r. Increasing returns to scale and costless

product differentiation yield a one-to-one relationship between firms and varieties. Shipments

of any variety between locations are subject to ’iceberg’ trade costs: τji ≥ 1 units have to be

shipped from location j to location i for one unit to reach its destination.17

16Note that this is not the relevant source of scale economies for the HME in this model. Due to free
entry, quantity produced per firm is fixed (see below) in equilibrium and therefore these scale economies (on
the intensive margin) are not active in response to demand shocks. The relevant source of scale economies
is the preference for diversity: as the number of products increases, the cost of achieving one unity of utility
(the price index) decreases. This is a form of economies of scale (on the extensive margin): price decreases
with scale of output.

17The remaining τji − 1 units ”melts” along the way, hence the name iceberg trade costs.

32



In equilibrium, manufacturing firms differ only by their location. Accordingly, to simplify

notation, the variety label ω is suppressed from here. Maximization of consumer utility

subject to the budget constraint yields the following demand in location j for a variety

produced in location i

dDij =
p−σij

P1−σ
j

Ej, where Pj =

[∑
k

nkp
1−σ
kj

] 1
1−σ

, (33)

where pij is the consumption price of the variety,

Pj =

[∑
k

nkp
1−σ
kj

] 1
1−σ

(34)

is the CES price index in location j, and

Ej = µjwjLj

=
µjLj
zi

(35)

is the aggregate expenditure from consumers in location j on manufacturing goods, where

in the second equality I used equation (31) to substitute out wi.

Firms set their production price pi (assume no price discrimination by destination) and

bilateral shipments qij to maximize profits

Πi =
N∑
j=1

(piqij − wiciqij)− wifi (36)

subject to demand qij = τijd
D
ij (they must ship τij − 1 extra to cover the trade costs), the

no arbitrage condition pij = piτij, and taking Pj as given (as they are infinitesimal in the

market). The optimal production price is

pi =
σ

σ − 1

ci
zi
≡ p∗i (37)

where I used equation (31) to substitute out wi.

Due to free entry and exit, profits must be non-positive in equilibrium

Πi ≤ 0 (38)

Using equations (36), (37) and (38) together imply that a firms’ equilibrium scale of

33



operation in location i must satisfy

qSi ≡
∑
j

qij ≤
fi(σ − 1)

ci
≡ q∗i (39)

with equality if ni > 0. The product market clearing in the manufacturing sector is∑
j

τijd
D
ij = qSi

Using the the product demand equation (33) for the LHS, and the free-entry condition (38)

for the RHS, we can re-write this as

∑
j

τij
p−σij∑
k nkp

1−σ
kj

Ej ≤ q∗i

∑
j

p∗−σi τ 1−σ
ij∑

k nkp
∗1−σ
k τ 1−σ

kj

Ej ≤ q∗i (40)

In an interior equilibrium, equation (??) holds with equality for all i. This system of equations

solves for the equilibrium number of manufacturing firms in each location ni. Note that p∗i , q
∗
i

are both exogenous.

B.2.2 Isomorphism

I show the isomorphism in three parts. In part A I define a mapping from the variables in

canonical model section B.2.1 to the variables in the main text model in section 2. In part

B, I show the mapping implies the demand and supply equations (1) and (2) in the main

text model. In part C, I show that the market clearing equation (3) imposed in the main

text model gives the same equilibrium solution as the canonical model.

Part A. I map the following parameters{
ni, q

∗
i , p
∗
i , Ei, {τij}

N
j=1

}N
i=1︸ ︷︷ ︸

Canonical Model

7→
{
Pi, Qi, ai, Ei, {τij}Nj=1

}N
i=1︸ ︷︷ ︸

Main Text Model
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Note that τij, Ei are the same in both models. The mapping is as follows

Pi = n
1

1−σ
i p∗i (41)

Qi = n
σ
σ−1

i q∗i (42)

ai = p∗σi q
∗
i (43)

Pi can be interpreted as an effective aggregate production price for location i, which can be

seen from inspecting the consumer price index in the canonical model equation (34)

Pj =

[∑
k

nkp
1−σ
kj

] 1
1−σ

=

∑
k

τ 1−σ
kj nkp

∗1−σ
k︸ ︷︷ ︸

≡P 1−σ
k


1

1−σ

Qi can be interpreted as effective aggregate production quantity for location i, because the

product PiQi equals aggregate production revenue in the canonical model

PiQi =

(
n

1
1−σ
i p∗i

)(
n

σ
σ−1

i q∗i

)
= nip

∗
i q
∗
i

Part B. The demand equation (1) is derived by defining the effective aggregate bilateral

shipments, Qij, such that the product PiQij is equal to total bilateral sales from location i

to j in the canonical model

PiQij = nipiqij

n
1

1−σ
i piQij = nipiqij

Qij = n
σ
σ−1

i qij

= n
σ
σ−1

i τij
p−σij∑
k nkp

1−σ
kj

Ej

= τij
P−σij∑
k P

1−σ
kj

Ej

≡ QD
ij
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The supply equation (2) is derived by using equations (41) and (42) to substitute out ni

Qi = n
σ
σ−1

i q∗i

=

{(
Pi
p∗i

)1−σ
} σ

σ−1

q∗i

= P−σi pσi q
∗
i

= P−σi ai

≡ QS
i

where the second to last equality used equation (43).

Part C. Inserting the demand and supply equations (1) and (2) into the market clearing

equation (3), and imposing the interior equilibrium assumption 1.1, Qi > 0,

QD
i = QS

i∑
ij

τ 1−σ
ij

P−σi∑
k P

1−σ
kj

Ej = aiP
−σ
i∑

ij

τ 1−σ
ij

1∑
k P

1−σ
k τ 1−σ

kj

Ej = q∗i p
∗σ
i

∑
ij

τ 1−σ
ij

p∗σi∑
k nkp

∗1−σ
k τ 1−σ

kj

Ej = q∗i (44)

Where the third equality used that P−σi > 0 by the interior equilibrium assumption.

Equation (44) is exactly equation (40) with equality, i.e. under an interior equilibrium.

Hence, the equilibrium solutions from the canonical model and the main text model are the

same.

B.2.3 Exogenous Microfoundation for shift in Expenditure, Ei

Total expenditure Ei in the main text model of section (2) is assumed exogenous and given.

It’s in the this sense which the main text model is partial equilibrium. However, we can

provide a microfoundation of Ei that is consistent with general equilibrium by using the

canonical model of section B.2.1.

Equation (35), rewritten here for convenience

Ei =
µiLi
zi
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gives Ei in terms of exogenous variables in the canonical model (section B.2.1).

Thus, through the lens of this microfoundation, a shift in the exogenous Ei in the partial

equilibrium model of the main text can be consistently interpreted as a shift in the endoge-

nous Ei in the general equilibrium canonical model arising from either a shock to population

Li, or to the share of expenditure on manufacturing µi.

This is consistent because µi, Li are only appear in Ei and not the supply shifter ai — see

equation (43).18 Thus a shock to µi, Li only shifts Ei. Note that a shock to the agricultural

unit labor requirement, zi, is not consistent as the supply shifter ai does depend on zi.

18It may be surprising that supply doesn’t depend on population Li, which is also total labor, in the
canonical model in section (B.2.1). This is because of the agricultural sector causing wages to be fixed in
equilibrium. The manufacturing sector faces a perfectly elastic labor supply curve and therefore is indepen-
dent of Li.

37


	WP Cover - 0072, Norris
	JJNorris_Sep21
	Introduction
	Model
	Equilibrium Solution
	Home Market Effect Definition

	Theoretical Results
	Simulation Evidence

	Discussion
	The role of a Home Biased Geography
	Home Bias in Two Location Models
	Simple Example

	Conclusion
	Proposition Proofs
	Proposition 1 (Equilibrium Comparative Statics) 
	Proposition 2 i) (Average Home Market Effect under Home Biased Geography)
	Proposition 2 ii) (Individual Home Market Effect in a Home-Biased and Symmetric Geography)
	Proposition 3 (Eigenvalues of the inverse of a row-diagonally dominant, markov matrix have real component greater than or equal to one)
	Proposition 4 (Home Bias in Two Location Models)

	Model Derivations and Extensions
	Equilibrium Solution in terms of Structural Parameters
	Output
	Export Matrix
	Assumption 1.1 (Interior Equilibrium) in terms of the structural parameters

	General Equilibrium Isomorphism
	The Model
	Isomorphism
	Exogenous Microfoundation for shift in Expenditure, Ei




