
Limited Strategic Thinking and the Cursed Match 

Olivier Bochet and Jacopo Magnani 

Working Paper # 71        

September 2021 

New York University Abu Dhabi, Saadiyat Island P.O Box 129188, Abu Dhabi, UAE 

http://nyuad.nyu.edu/en/academics/academic-divisions/social-science.html 

Division of Social Science Working Paper Series 



Limited Strategic Thinking and the Cursed Match∗

Olivier Bochet† Jacopo Magnani‡

August 13, 2021

Abstract

In vertically differentiated matching markets with private information, agents

face an acceptance curse: being accepted as a partner conveys bad news. We

experimentally investigate whether individuals anticipate the acceptance curse in

such an environment. We test the effect of an exogenous change in reservation

values which, by making some types more selective, induces significant changes

in the posterior distribution of match qualities. Consistent with limited strategic

sophistication, subjects do not respond to this manipulation. Through additional

investigation and structural estimations, we suggest a mechanism explaining the

lack of subjects’ response: out-of-equilibrium beliefs are quantitatively more im-

portant than limited conditional thinking.
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1 Introduction

Motivation: In matching markets such as marriage and labor markets, agents often

only have imperfect information about the true attributes of potential partners. How-

ever, in these markets, useful information can be inferred from others’ willingness to

match. In vertically differentiated markets, being accepted as a partner by another

agent conveys bad news about their quality, a phenomenon dubbed as the acceptance

curse (Chade, 2006). In extreme cases, this form of adverse selection may be so power-

ful that a rational agent should choose to remain unmatched, an unraveling strikingly

illustrated by the famous quote of Groucho Marx: “I refuse to join any club that would

have me for a member.” More generally, to evaluate potential partners one needs to

appropriately adjust the information obtained through observable characteristics by

conditioning on acceptance. The failure to account for adverse selection when choosing

potential partners can result in mismatches, which in turn can lead to match dissolu-

tion when information is revealed at a later stage. While mismatches and breakups

can happen even under full rationality (Becker et al., 1977), limited strategic thinking

can exacerbate the inefficiencies caused by imperfect information. It is thus important

to evaluate the extent to which individuals are able to understand adverse selection in

matching markets.

Methodology and Main Findings: To test whether individuals anticipate the ac-

ceptance curse, we implement in the laboratory a one-shot, two-player version of the

market model of Chade (2006). This game replicates a market where matching with

higher quality types yields higher payoffs and higher quality types have higher reserva-

tion values. Qualities are private information, but before deciding whether to propose

to form a match, each player receives a noisy signal about the quality of their potential

partner. In the equilibrium of this game, medium types face an acceptance curse: con-

ditioning on acceptance lowers the probability that the quality of their potential partner

is high. Moreover, given an exogenous increase in the reservation values of high types,

2



the acceptance curse faced by medium types becomes more severe, because high types

are more selective. Thus, when the reservation value of high types is sufficiently high,

medium types should cease to propose to form matches. We test this comparative stat-

ics in the BASE treatment of our lab experiment and find that subjects propose 66% of

the time when they play the role of medium types, irrespective of the reservation value

of high types. Thus, not only they propose to form matches when equilibrium predicts

they should not, but they do not adjust their strategy in response to an exogenous

change in reservation values of other players.

Based on the experimental literature on games with private information (discussed

below), we posit two possible explanations of why people do not anticipate the accep-

tance curse: mistaken beliefs or limited conditional thinking. Subjects have mistaken

beliefs if they do not correctly anticipate how the proposal decision of others depends

on others’ reservation values. Subjects suffer from limited conditional thinking if they

cannot properly condition expectations on the hypothetical scenario in which a poten-

tial partner chooses to propose, no matter whether their beliefs about the strategies of

others are correct or not. To disentangle these two potential explanations, we use two

treatments, BEL (for “beliefs”) and COND (for “conditioning”), which sequentially

eliminate the conditions that allow these explanations to account for behavior. In both

treatments, each subject plays the role of player 1 and faces an individual choice prob-

lem obtained by assigning exogenous strategies to player 2. In our BEL treatment, we

exogenously vary the likelihood that a high-quality player 2 proposes to form a match

across rounds and we provide full information about this to each player 1 subject. In

this way, the BEL treatment removes the effects of limits in the subjects’ ability to

form consistent beliefs, while allowing scope for limited conditional thinking. In the

COND treatment, we program player 2 to always propose, thus removing the need

for the subject to condition on hypothetical events, and we vary the signal likelihoods

to match the posterior distribution of qualities in each round of the BEL treatment.

Apart from the need for subjects to condition on acceptance in BEL, BEL and COND
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are comparable environments. Thus, we can interpret any difference between BEL and

COND as the result of limits in conditional thinking.

We find that proposal rates are highly responsive to changes in the posterior dis-

tribution of qualities in both BEL and COND. This is in contrast to the absence of

responsiveness in BASE. We find small differences between BEL and COND, sug-

gesting limited conditional thinking plays a smaller role than inconsistent beliefs. To

further interpret our findings, we estimate a structural model based on cursed equi-

librium. We find a players behaves as if fully cursed in BASE but cursed to a much

smaller degree in BEL. Thus, we argue that although both out-of-equilibrium beliefs

and limited conditional thinking matter, beliefs seem quantitatively more important

than conditioning.

Contributions and Related Literature: Our paper makes two contributions. First,

we test whether individuals understand the acceptance curse in two-sided matching mar-

kets. Previous experiments show individuals often fail to account for the information of

other players in settings like auctions (e.g. Kagel and Levin, 1986) and elections (e.g.

Esponda and Vespa, 2014), but there is no previous evidence on two-sided matching.1

One structural difference between our game and the environments studied in the pre-

vious literature is that in our framework a player’s type consists of two different pieces

of information: each player has private information about his own quality as well as a

signal about the quality of potential partners.2 The essence of the game is that a player

needs to use information about his own quality to interpret signals about potential

partners. How individuals perform this task, which is central to two-sided matching

markets, has not been studied in previous papers. Second, we contribute to the litera-

ture on the role of beliefs and cognitive limits in games with private information. This

1Araujo et al. (2018) study an environment that resembles a one-sided matching market. Their
paper focuses on dynamic adverse selection and does not consider the specific form of adverse selection
arising in two-sided markets.

2In the compromise game of Carrillo and Palfrey (2009) each of the two players has private infor-
mation about his attribute (strength, in their context), but players do not observe signals about the
attribute of their opponents.
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literature aims at understanding the mechanisms driving the widely observed devia-

tions from Bayes-Nash equilibrium (BNE). The literature has focused on two types of

mechanisms: limits in forming consistent beliefs and limits in conditional thinking.3,4 A

typical approach to test for belief-based explanations is the “robot protocol” which we

adopt in our experiment: a subject’s opponent is replaced by an automated player who

follows a known strategy. A number of papers have shown that even in a robot protocol

subjects deviates substantially from optimality (Charness and Levin, 2009; Ivanov et

al., 2010; Esponda and Vespa, 2014) and conclude this casts doubt on the validity of

belief-based explanations (but for a counterargument see Camerer et al. (2016) and see

Ali et al. (2019) for a recent example where the robot protocol is effective). An expla-

nation for why people deviate from optimal behavior even under the robot protocol is

limited conditional thinking, that is the notion that individuals are limited in their abil-

ity to condition on hypothetical events (such as being pivotal in a simultaneous election

or winning a sealed-bid auction). Several experiments have shown that subjects deviate

from equilibrium less in sequential move games, where contingent thinking is not re-

quired, than in simultaneous move games (see for example Esponda and Vespa (2014),

Ngangoué and Weizsäcker (2021) and Levin et al. (2016)).5 Our COND treatment is

similar to the sequential-moves treatments of these experiments, but stronger in the

sense that we fully remove the need for subjects to condition on others’ decisions.

Our paper aims at evaluating to what extent deviations from equilibrium are driven

3Several theoretical models have been used to explain empirical deviations from BNE, such as
cursed equilibrium (Eyster and Rabin, 2005), level-k (Nagel, 1995; Stahl and Wilson, 1995; Crawford
and Iriberri, 2007; Brocas et al., 2014), analogy-based expectation equilibrium (Jehiel, 2005; Jehiel and
Koessler, 2008) and behavioral equilibrium (Esponda, 2008). These models are usually interpreted as
relaxations of the requirement of belief consistency imposed by BNE. Some of these models clearly fit
this interpretation, as in the case of level-k models, but others can be thought of reduced forms for a
variety of different mechanisms. For instance, although the cursed equilibrium model can be given a
literal interpretation in terms of beliefs, one can also interpret the cursedness parameter of the model
as a measure of limited strategic thinking more broadly defined. This is the interpretation we use in
our paper.

4There other possible explanations. For example limits in Bayesian updating (Levin et al., 2016)
and heterogeneity in processing the available information (Charness et al., 2019).

5Another experiment documenting failures in contingent reasoning is Mart́ınez-Marquina et al.
(2019).
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by inconsistent beliefs and limited conditional thinking, respectively. This approach is

similar to Koch and Penczynski (2018), who decompose the winner’s curse in a common

value auction into the two channels. Our methodology differs from theirs in the way we

remove scope for limited conditional thinking: while they rely on a transformation of

the rules of the game (including state space and payoff function), we achieve this goal

by adjusting the information structure. The other methodological innovation we make

in this paper is measuring how different treatments affect the players’ responsiveness to

changes in adverse selection. We manipulate the degree of adverse selection faced by

subjects by changing other players’ payoffs in BASE, by changing the decision rules of

automated players in BEL and by changing the the information structure in COND.

Observing the comparative statics of subjects’ behavior across treatments allows us to

make inferences about inconsistent beliefs and limited conditional thinking.6

The rest of the paper is organized as follows. In section 2 we introduce the match-

ing game that we implemented in the baseline version of our experiment and derive

comparative statics predictions. In section 3 we describe the lab implementation and

we explain how our design aims to identify the mechanism driving possible deviations

from equilibrium. In section 4 we present the results from our three treatments and

estimate the structural model. Section 5 concludes.

2 Theoretical Framework

In section 2.1, we describe the matching game that we implemented in the baseline

version of our experiment. In section 2.2 we derive equilibrium predictions under the

standard assumption of fully sophisticated players. In section 2.3 we derive predictions

when players do not fully anticipate the acceptance curse.

6Our comparative statics exercise is related to the experimental methodology used to identify
individual levels of rationality in games, see for example Kneeland (2015). In the language of Kneeland
(2015), subjects in our BASE treatment seem to satisfy rationality but not second-order rationality,
as they respond to changes in zeroth-order payoffs (their own) but not to changes in first-order payoffs
(the payoffs of their counterparts).
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2.1 A Matching Game

Consider the following Bayesian game. There are two players: i = 1, 2. Each player

has a quality qi ∈ {H,M,L} (we will denote by q, q′, q′′ realizations of qi). Each

type has the same probability (1/3). Each agent i in a pair receives a noisy signal si

about the partner’s quality qj, si ∈ {h,m, l} (we will denote by s, s′, s′′ realizations

of si). We call the pair (qi, si) the type of player i. We denote the signal likelihoods

by δ(q, s) ≡ Pr[si = s|qj = q] and the posterior probability of qj conditional on signal

si by: π(q, s) ≡ Pr[qj = q|si = s]. In our experiment, we use the parameterization

illustrated in Table 1. We chose this information structure because it simplifies the

problem of the players: an h signal reveals that the true quality of player j is H and

similarly an l signal reveals player j’s quality is L. Thus the only uncertainty faced by

a player is how to interpret an m signal.

Signal Likelihoods δ(qj, si)

L 0 1/2 1/2

qj M 0 1 0
H 1/2 1/2 0

h m l

si

Posterior Probabilities π(qj, si)

L 0 1/4 1

qj M 0 1/2 0
H 1 1/4 0

h m l

si

Table 1: Signal Likelihoods and Posterior Probabilities

After observing the signal about the partner’s quality, each player i chooses whether

to propose to form a match (ai = P ) or not (ai = N). These decisions are simultaneous.

If each agent in a pair chooses to propose then a match occurs and agents earn match

payoffs. In this case, each agent’s payoff depends only on his partner’s quality.7 We

denote player i’s match payoff by µ(qj). If at least a player chooses not to propose,

7Our assumption that match payoffs depend only on the partner’s quality follows Chade (2006)
and other seminal search and matching models such as Burdett and Coles (1997). This assumption
provides the simplest model of a market where preferences over partners are homogenous, that is a
vertically differentiated market. We believe that our findings are also applicable to situations where
match payoffs depend on both qi and qj (e.g. displaying complementarities in qualities) as long as the
ranking of potential partners is the same for all players.
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then each agent earns a reservation value that depends only on his own quality: the

reservation payoff of player i is denoted ρ(qi). The game is illustrated in Figure 1.

1
2

P

N

P N

µ(q2), µ(q1)

ρ(q1), ρ(q2) ρ(q1), ρ(q2)

ρ(q1), ρ(q2)

Figure 1: Actions and Payoffs

Motivated by the search and matching literature (and in particular Chade (2006)),

we look at situations where higher quality players have higher reservation values, that

is:8

µ(H) > µ(M) > µ(L) and ρ(H) > ρ(M) > ρ(L)

The actual values used in the experiment are reproduced in Table 2. We consider two

versions of this game, called A and B. The only difference between game A and game

B is the reservation value of H-quality players, which is higher in game A than in game

B. We chose these values in order to obtain different equilibrium predictions in the two

versions of the game, as explained in the next section.

q
H M L

µ(q) 160 80 40
ρ(q), game A 100 75 25
ρ(q), game B 80 75 25

Table 2: Payoff Values

8In search and matching models such as Chade (2006), reservations values are endogenous and de-
termined by future search outcomes. Because we use a one-shot game, we impose this payoff structure.
We return to this point in the conclusions of the paper.
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2.2 Equilibrium Analysis

We denote by σi(q, s) ≡ Pr[ai = P |qi = q, si = s] the probability that player i chooses

to propose given his quality and observed signal. Because the game is symmetric, we

focus on symmetric equilibria and drop the i index, denoting a generic player’s strategy

by σ(q, s). At this point it is also useful to define player i’s “acceptance” probability,

defined as the probability of player j proposing conditional on player i’s type:

α(q, s) ≡ Pr[aj = P |qi = q, si = s]

In deciding whether to propose or not, a player needs to compare the expected

match payoff with his reservation value. Denote by v(q, s) player i’s expected match

payoff conditional on the observed signal si = s, on own quality qi = q and on player j

proposing. This is computed as:

v(q, s) =
∑
q′

β(q′, q, s)µ(q′)

where β(q′, q, s) is the posterior belief that player j’s quality is q′, conditional on the

observed signal si = s, on own quality qi = q and on player j proposing, that is:

β(q′, q, s) ≡ Pr[qj = q′|si = s, aj = P, qi = q]

In Appendix A we provide expressions for the posterior beliefs and the acceptance

probability.

Finally, in deciding whether to propose or not a player needs to compute the ex-

pected gain from proposing relative to not proposing:

∆(q, s) ≡ α(q, s)v(q, s) + [1− α(q, s)]ρ(q)︸ ︷︷ ︸
expected payoff from P

−ρ(q) = α(q, s)[v(q, s)− ρ(q)]
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Choosing P is a best response for type (q, s) whenever ∆(q, s) ≥ 0.

Now, we can solve for the equilibrium of the games. To describe pure strategy

equilibria of the game, it is useful to define the set of signals for which a player with

quality q chooses P :

Pq ≡ {s|σ(q, s) = 1}

In a pure-strategy equilibrium, whenever s /∈ Pq then σ(q, s) = 0. Using the definitions

above, we can obtain the following propositions (proofs are in Appendix B and C).9

Proposition 1. In game A, in any Bayes-Nash equilibrium: σ(H,m) = 0 and σ(M,m) =

0. The pure-strategy BNE where most types propose is such that: PH = {h},PM =

{h},PL = {h,m, l}.

Proposition 2. In game B, the pure-strategy BNE where most types propose is such

that: PH = {h,m},PM = {h,m},PL = {h,m, l}.

Propositions 1 and 2 state that while it can be an equilibrium for H- and M -quality

players to propose after observing an m signal in game B, H- and M -quality players

should never propose after observing an m signal in game A. In the equilibrium of

game A provided in proposition 1, M -quality players face an acceptance curse: condi-

tioning on acceptance lowers the likelihood that a potential partner’s quality is H after

observing an m signal:

Pr[qj = H|si = m, aj = P, qi = M ]︸ ︷︷ ︸
β(H,M,m)

= 0 < 0.25 = Pr[qj = H|si = m]︸ ︷︷ ︸
π(H,m)

This is not the case in the equilibrium of game B provided in proposition 2, where

these two probabilities are equal. Anticipating the acceptance curse, M -quality players

optimally respond by being more selective in game A than in game B.

9While in propositions 1 and 2 we focus on the BNE where most types propose, there are other
BNE in both games (for example, where no player ever proposes). However, we focus on these equilibria
because: 1) always proposing is a weakly dominant strategy for L-quality players and 2) proposing
conditional on an h signal is a weakly dominant strategy for any quality. As discussed below, our data
show subjects propose with frequency above 80% whenever proposing is a weakly dominant strategy.
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2.3 Cursed Equilibrium

So far we have implicitly assumed that players are sophisticated. The model provides

distinctive predictions under the assumption that players fail to fully anticipate the

acceptance curse. To show this, we use the cursed equilibrium model of Eyster and

Rabin (2005).10 In a cursed equilibrium, a player with type (q, s) correctly anticipates

the acceptance probability α(q, s) but fails to fully condition his posterior belief about

player j’s quality on acceptance. Formally, the posterior belief of a χ-cursed player is:

βc(q′, q, s;χ) ≡ χπ(q′, s) + (1− χ)β(q′, q, s) (1)

In other words, posterior beliefs are a weighted average of the “naive” posterior be-

lief π(q′, s) (which only conditions on signals) and the “sophisticated” posterior belief

β(q′, q, s) (which also takes acceptance into account). The parameter χ ∈ [0, 1] is

a measure of the player’s failure to condition on acceptance. Under full rationality,

χ = 0, the cursed equilibrium coincides with BNE. Equation (1) can be derived from

the assumption that player i with qi = q, si = s believes that the probability player

j with qj = q′, sj = q′ chooses aj = P is α(q, s) with probability χ and σ(q′, s′) with

probability 1 − χ. However, another interpretation of equation (1) is that players fail

to fully condition on the hypothetical scenario in which others propose due to cognitive

limits (while correctly anticipating the acceptance probability). Independent of the in-

terpretation one can give to equation (1), it is possible to derive theoretical predictions

about proposals in the cursed equilibrium of our games. To do this, first we define the

10Other models can be used to derive predictions about this case, such as level-k models (Nagel, 1995;
Stahl and Wilson, 1995), analogy-based expectation equilibrium (Jehiel, 2005; Jehiel and Koessler,
2008) and behavioral equilibrium (Esponda, 2008). We focus on cursed equilibrium because it pro-
vides a one-parameter reduced-form model that is highly tractable for the purpose of the structural
estimation approach we will adopt to analyze the experimental data. The cursed equilibrium model is
also formally equivalent to a special case of analogy-based expectation equilibrium (Miettinen, 2009).
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expected match payoff of a cursed player as:

vc(q, s;χ) =
∑
q′

βc(q′, q, s;χ)µ(q′)

and then the expected gain from proposing for a cursed player as:

∆c(q, s;χ) ≡ α(q, s)[vc(q, s;χ)− ρ(q)]

In a cursed equilibrium, each type (q, s) chooses their proposal strategies to maximize

∆c(q, s;χ). In Appendix D we prove the following:

Proposition 3. In game A, for χ ≥ 5
14

, there is a cursed equilibrium such that: PH =

{h},PM = {h,m},PL = {h,m, l}.

When players are sufficiently cursed, they simply fail to anticipate the acceptance

curse. This leads M -quality players to overestimate the likelihood of player j being an

H type after observing an m signal. As a result, M -quality players choose to propose

conditional on an m signal. Note however that even in the cursed equilibrium H-

quality players do not propose conditional on m signals. It is also possible to show that

in game B, the BNE identified in proposition 2 is a cursed equilibrium for any χ. Thus,

failures to anticipate the acceptance curse can results in M -quality players proposing

conditional on m signals in both games.

While the previous analysis provides useful qualitative insights about the compar-

ative statics of the model, the predictions are unlikely to be borne out in the lab due

to noise in subjects’ decisions. Subjects in the lab are likely to play actions P and N

with interior probabilities even when BNE or cursed equilibrium are in pure strategies.

To obtain more realistic predictions, we use a model that allows for both stochastic

decisions and failures in strategic thinking.

To model stochastic decision we use the logit formulation of the quantal-response

equilibrium model (see for example Goeree et al., 2016) and combine this with the
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cursed equilibrium model. A similar approach has been used in Camerer et al. (2016)

and Carrillo and Palfrey (2009). In this framework, the probability of choosing action

P depends on the perceived gain from proposing according to the following equation:

σ(q, s) =
[
1 + e−λ∆c(q,s;χ)

]−1

where the parameter λ ≥ 0 measures the responsiveness of decisions to perceived pay-

offs. When λ = 0 all actions are played with probability 50% and as λ→∞ the model

converges to a cursed equilibrium. To illustrate the predictions, we solve the model

numerically for different values of λ and χ and plot the results in Figures 2 and 3. The

plots show the predicted proposal rates σ(·) for types (H,m) and (M,m) in game A

and game B. These are the key variables in our empirical analysis. For clarity we do

not show the proposal strategies of other types: all these types always have a weakly

dominated strategy across both games (such as N for L-quality types) and therefore

the comparative statics are less interesting.

Figure 2: Predicted proposal rates for m signals (λ = 0.15).

13



Figure 2 plots the predicted proposal rates against χ, for a medium value of λ.

Solid lines represent H-quality types and dashed lines represent M -quality types. The

proposal probability σ(H,m) is above 50% in game B (solid blue line) and below 50% in

game A (solid red line). The intuition for this is consistent with our previous equilibrium

analysis: H-quality types are more selective in game A than in game B. Moreover, the

behavior of H-quality players is not significantly affected by the χ parameter. The

proposal probability σ(M,m) in game B (dashed blue line) is above 50% and again

does not vary much with χ. This follows from the fact that in this game H-players are

not selective and thus ignoring the limited degree of adverse selection present in this

environment has only minor effects. The proposal probability σ(M,m) is instead highly

sensitive to χ in game A (dashed red line). When χ = 0, fully sophisticated players

correctly perceive that not proposing is the best response for type (M,m), given that

H-players are very selective. As a result, (M,m) types propose less than 50% of the

time. As χ increases, the perceived gain from proposing increases and thus the (M,m)

proposal rate rises. When χ = 1, the proposal rate of (M,m) types in game A is just

a few percentage points below game B.

The comparative statics of this model are qualitatively similar for different values

of λ. To illustrate this point, Figure 3 plots proposal rates for a lower λ (= 0.05)

and a higher λ (= 0.25). By comparing these plots, it is possible to observe several

regularities. First, σ(H,m) and σ(M,m) are lower in game A than in game B. Second,

the difference in σ(H,m) between games is roughly constant in χ. Third, the difference

in σ(M,m) across games is decreasing in χ. Figure 3 also helps us to illustrate the

main effect of the parameter λ. When λ is lower, the proposal rates become closer to

50% and less responsive to both changes in reservation values and changes in χ.

It is important to note that the parameters λ and χ have different effects on pre-

dicted behavior. Our comparative statics exercises suggest a distinctive prediction of

cursedness: large values of χ can result in striking differences between the behavior of

H- and M -quality players. To make this statement more precise we solve the model
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Figure 3: Predicted proposal rates for m signals (low and high λ).

numerically and obtain the following:

Proposition 4. Consider a profile of proposal probabilities that simultaneously satisfies

the following conditions:

1. differences in (H,m) proposal rates between game A and game B are large (>

25%);

2. differences in (M,m) proposal rates between game A and game B are small (<

5%).

In order to rationalize such a profile of proposal probabilities with a cursed QRE model,

the value of χ must be large (> 0.5).
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3 Experimental Design

We implemented the model of section 2 in the lab to test whether subjects anticipate

the acceptance curse. Our experiment consisted of three treatments, summarized in

Table 3. In section 3.1 we describe the BASE treatment. In section 3.2, we describe two

additional treatments, BEL and COND, that are aimed at identifying the mechanism

driving possible deviations from equilibrium in the baseline environment. In section 3.3

we provide more details about the experiments.

Treatment Number of subjects Number of rounds
BASE 48 60
BEL 48 60

COND 48 60

Table 3: Experimental Design

3.1 The BASE Treatment

Our BASE treatment directly implements the games described in the previous section.

Each subject participated in 60 repetitions of the game, called rounds. The 60 rounds

are divided into 30 A games and 30 B games, but the actual sequence is random (drawn

in advance and constant across all the BASE sessions). In each round, subjects are

randomly matched in pairs within a group of 8 participants. Although each subject

interacts with the same partner more than once during a session, all the interactions

are anonymous.

In each round, the quality of a player (called “type” in the experiment) is randomly

determined. To keep a neutral language, in the experiment qualities H, M and L are

relabelled as X, Y and Z respectively, but here we keep our original labels for clarity.

As in the theoretical analysis, the quality of a player is equally likely to be H, M or L

in a given round. In a round, each subject is informed of his quality. Although subjects

are not informed of the quality of their partners, they each receive a clue about it, as
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in the game.

Subjects are told that in order to determine the clue, the computer will digitally

draw a random ball from an urn containing 24 balls of different colors. The randomly

drawn ball can be either red, yellow or blue. These clues correspond to signals h, m

and l in our theoretical framework, respectively. The number of blue, yellow and red

balls in the urn is determined by the quality of the subject’s partner. The urns used

in the experiment are illustrated in Figure 4. If the partner’s quality is H, the urn

Figure 4: Urns Used to Explain the Information Structure in the Experiment.

contains no blue balls, 12 yellow balls and 12 red balls. If the partner’s quality is M ,

the urn contains 24 yellow balls but no blue or red balls. If the partner’s quality is L,

the urn contains 12 blue balls, 12 yellow balls and no red balls. Subjects are informed

that the computer will first determine which urn to use given their partner’s quality

and then it will digitally draw a random ball: each single ball in the urn has the same

probability of being selected, equal to 1/24. Note that this process exactly replicates

the information structure of our model, presented in Table 1.

After receiving the clue, each subject chooses whether they want to form a match

(called “partnership” in the experiment) or not. Only if both players in a pair choose to

form a match, a match is formed. Subjects are informed of the exact amount of payoffs
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they can earn by matching with different types of partners and of the payoffs players

with different qualities will receive if no match occurs. Participants are informed of

the payoff structure for both game A and game B and are aware of which game they

are playing in the current round. The payoff values used in the experiment are exactly

those reproduced in Table 2 (see below for more details on subject payments).

3.2 The BEL and COND Treatments

When designing our BASE treatment, we anticipated the possibility of deviations from

equilibrium. We thus designed additional treatments aimed at testing two potential

mechanisms proposed by the literature: limits in forming consistent beliefs and limits

in conditional thinking. Subjects may deviate from equilibrium behavior if they do not

anticipate how the proposal decisions of others depend on others’ qualities (and their

reservation payoffs). Subjects may also fail to properly condition expectations about

the match quality on the hypothetical scenario in which a potential partner chooses to

propose (no matter whether their beliefs about the strategies of others are correct or

not). We aim at separating these two potential mechanisms through two treatments,

BEL and COND, which sequentially eliminate the conditions that allow these expla-

nations to account for behavior. Our BEL treatment aims at eliminating the effects

of limits in the subjects’ ability to form consistent beliefs, while our COND treatment

eliminates scope for both inconsistent beliefs and limited conditional thinking.

In the two treatments, each subject plays the role of player 1 and faces an individual

choice problem obtained by assigning exogenous strategies to player 2. Because our goal

is to explain non-equilibrium behavior of M -quality players, we fix player 1’s quality

to be M . In the Beliefs treatment, after observing an m signal, the automated player

2 always proposes if his quality is either M or L, but proposes with probability p if his
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quality is H:11

σ2(H,m) = p, σ2(M,m) = σ2(L,m) = 1

By varying p we change the degree of adverse selection faced by player 1: a lower value

of p corresponds to a higher degree of adverse selection. We consider five situations: p ∈

{0, 0.25, 0.5, 0.75, 1}. We call each of this five settings a BEL-task. In the experiment,

subjects are aware of the the strategies followed by automated players. Thus, our

COND treatment is similar to the robot protocol used in the literature (Charness and

Levin, 2009; Ivanov et al., 2010; Esponda and Vespa, 2014; Koch and Penczynski, 2018).

In the COND treatment, we design five decision problems, called COND-tasks,

that are formally equivalent to the five BEL-tasks except that we remove the need for

subjects to condition on acceptance. We do this by making two changes to the task.

First, the strategy of player 2 is set to always propose after an m signal, independently

of his own type:

σ2(H,m) = σ2(M,m) = σ2(L,m) = 1

Second, the information structure is adjusted so that the posterior distribution of qual-

ities conditional on signal s1 = m is equal to the posterior distribution obtained condi-

tioning on s1 = m and acceptance in the equivalent BEL-task. Before we explain the

exact way in which we adjust the information structure, it may be useful to consider the

following simple example. In the BEL-task with p = 0, the posterior probability that

player 2’s quality is H conditional on drawing a yellow ball and on acceptance is zero.

The reason is that player 1’s quality is M and in this setting an H player never proposes

to an M player. In the equivalent COND-task, we replace all the yellow balls in the

H urn with red balls, so that the likelihood of obtaining a yellow ball from this urn is

zero. As a result, even though player 2 always proposes, the posterior probability that

player 2’s quality is H conditional on drawing a yellow ball is zero, as in the original

11In both BEL and COND treatments, player 2’s strategy is to always propose after receiving an
h signal and to propose after receiving an l signal if and only if its type is L. Note however that since
the quality of player 1 is always equal to M , the only contingency that realizes is s2 = m.
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BEL-task.

More generally, for each value of p, we calculate the COND-task likelihoods in the

following way. First, we compute the posterior probability in the BEL-task, denoted

φ(p):

φ(p) ≡ Pr[q2 = H|s1 = m, q1 = M,a2 = P ;BEL-task]

Then we require the posterior belief in the COND-task to equal the posterior belief in

the BEL-task:

Pr[q2 = H|s1 = m;COND-task] = φ(p)

To achieve this we only adjust the likelihoods of observing h and m signals when player

2’s quality is H, while leaving all other likelihoods unchanged. In terms of the urns

displayed to subjects, we only change the number of red and yellow balls in the H urn.

We derive expressions for the COND-task likelihoods as a function of p in Appendix E.

Table 4 summarizes our choice of parameter values for the five tasks in the BEL

and COND treatments. The BEL column shows the five value of p, that is the

probability player 2 proposes conditional on m signal and his type being H. The four

middle columns show information for the COND treatment, namely the likelihoods of

an m signal when qj = H, the likelihoods of an h signal when qj = H, the number of

yellow balls in the H urn and the number of red balls in the H urn. The “Posterior”

column shows the resulting value of φ(p), that is the posterior probability that player

2’s quality is H, for both treatments. When p = 1, an H-quality player 2 always

proposes in theBEL treatment, just like anH-quality player 2 in the COND treatment.

Thus, no adjustment in the COND treatment likelihood is required. Lower values of p

correspond to a lower likelihood of observing an m signal when q2 = H in the COND

treatment. When p = 0, as in our earlier example, the probability of observing an

m signal when q2 = H in the COND treatment falls to zero. In both the BEL and

COND treatments, subjects repeat each of the five tasks 12 times, for a total of 60

rounds (as in BASE). The actual sequence of tasks is random but constant across
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sessions of the same treatment.

BEL COND Posterior
p Pr[m|H] Pr[h|H] # yellow # red φ(p)
1 0.5 0.5 12 12 0.25

0.75 0.375 0.625 9 15 0.20
0.5 0.25 0.75 6 18 0.14
0.25 0.125 0.875 3 21 0.08

0 0 1 0 24 0

Table 4: Parameters for the BEL and COND treatments

In both the BEL and COND treatments, we use the payoff structure of game

A. One potential concern with adopting the standard implementation of the “robot

protocol” in our design is that the BEL and COND treatments would remove scope

not only for strategic thinking but also for social preferences: while player 1’s decision

affects the payoffs of player 2 in BASE and thus may be affected by distributional

preferences, this is not possible when player 1’s opponent is a robot. To make sure any

difference between BASE and BEL/COND is not driven by distributional preferences,

in both the BEL and COND treatments we assign the realized payoff of player 2 to

another human subject. We do this by randomly matching subjects in pairs in each

round, within a fixed group of 8 participants, as in the BASE treatment. In each

round, one of the two players in a pair is randomly assigned the role of player 1 (we call

this an “active” player in the experiment) and the other is assigned the role of player

2 (a “passive” player role). Participants know that the computer will make a decision

on behalf of player 2 following the given rules, but both players in a pair earn payoffs.

3.3 Details

We ran this experiment using oTree (Chen et al., 2016) in December 2018 at the LI-

NEEX lab of the University of Valencia. We recruited 48 subjects in each treatment,

divided into 6 groups of 8 participants. Subjects were seated at visually isolated termi-

nals and read instructions on their screens (reproduced in Appendix F). We then ran
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subjects through 2 practice rounds (without pay), before they participated in the full

60-round sequence of the experiment. In all treatments, after each round subjects re-

ceived feedback about the decision of their partner, the outcome of the game (match or

no match), the quality of their partner and their payoffs. At the end of the experiment,

one random round was selected for payment. Before finishing the experiment, subjects

participated in an incentivized multiple-price list for eliciting risk-aversion (Holt and

Laury, 2002), an incentivized three item cognitive reflection test (Frederick, 2005) and

a brief survey (about their sex and undergraduate major). See the Appendix for details.

Total payoffs were converted into Euros at an exchange rate of 1/6 Euros per point and

summed to a 5 Euros show-up fee. The average final payment was 18 Euros and the

experiment lasted on average 75 minutes.

4 Experimental Results

In section 4.1 we present results from the BASE treatment. In section 4.2 we present

results from the BEL and COND treatments. Finally, in section 4.3 we explain our

structural estimation approach and provide estimates of the model using data from all

treatments. In the following sections, we use only observations from round 21 to 60 in

each session. We do this to allow for some learning, but the results are similar if we

use the whole sample.

4.1 Base Treatment

We begin presenting the experimental data by analyzing subjects’ decisions in the

BASE treatment. Figure 5 and Figure 6 plot the aggregate proposal rates in game A

and game B respectively, pooling across subjects and rounds. We first argue that the

aggregate proposal rates show subjects understood the basic rules of the game since they

often played a dominant strategy whenever one was available to them. For example,
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Figure 5: Treatment BASE, game A : proposal rates

Figure 6: Treatment BASE, game B : proposal rates.
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both Figure 5 and Figure 6 show that L-quality players propose almost 100% of the

time independently of the signal they receive. This is reassuring because proposing is

indeed a weakly dominant strategy for these types. Similarly, H- or M -quality players

proposed almost all the times they observed h signals, but only few of the times they

observed an l signal.

Result 1 (BASE). The proposal rates of types for whom proposing is a weakly dominant

strategy are above 80%. The proposal rates of types for whom proposing is a weakly

dominated strategy are below 20%.

Another way to assess subjects’ decisions is to determine whether their strategies

were empirical best responses, given the actual distribution of strategies in our BASE

sessions. To do this, we compute the expected gain from proposing, ∆(q, s), for different

types using the empirical distribution of strategies. We find most of the strategies that

are played with a frequency above 50% are indeed empirical best responses, with one

important exception. We have already pointed out that L-quality players almost always

chose their weakly dominant strategies and this immediately implies they are almost

always best-responding. Similarly, H- and M -quality types are best responding at very

high rates conditional on h and l signals. More interestingly, we find that H- and M -

quality players propose most of the time (with frequency 56% and 66%, respectively)

conditional on an m signal in game B, where this strategy is indeed an empirical best

response. At the same time, H-quality players choose to propose only 17% of the time

in game A, where proposing is not an empirical best response. The only exception to

this pattern of frequent best responses is the behavior of M -quality players in game

A: while in this game proposing conditional on an m signal is not an empirical best

response for M -quality players, they propose 66% of the time.

Result 2 (BASE). The proposal rates of types for whom proposing is (is not) an em-

pirical best response are above (below) 50%, with only one exception: proposal rates for

(M,m) types in game A. In this game, proposing is not an empirical best response for

type (M,m) but these types of players propose 66% of the time.
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We note that the behavior of (M,m) types is consistent with limited strategic think-

ing. The high frequency with which M -quality propose after observing m signals could

be also due to risk-seeking attitudes. However, this explanation seems inconsistent with

the fact that our multiple-price list task reveals subjects to be risk-averse on average.

More importantly, risk preferences cannot explain our next finding, namely the fact the

proposal rates of (M,m) types are essentially constant between game A and B. Indeed,

(M,m) types propose 66% of the time in both games. Unsurprisingly, we cannot reject

the null hypothesis of no difference in (M,m) proposal rates between game B and game

A using a Wilcoxon test (p-value: 0.8438).12

To provide further evidence about the comparative statics of our experiment, we

use regression analysis. Restricting attention to observations consisting of an H- or

M -quality player receiving an m signal, we estimate the following equation:

propose = b0 + b1H + b2A+ b3H × A+ ε (2)

In this equation, the variable propose equals one if the subject chose to propose condi-

tional on an m signal. The variable H equals one if the subject’s quality was H (the

excluded category is M quality). The variable A equals one if the subject is playing

in game A (the excluded category is game B). We estimate equation (2) using either a

linear probability model or a logit regression and always clustering errors at both the

individual and group levels. Table 5 reports the results from regression (2). The H

coefficient estimates show that H-quality players are significantly less likely to propose

(conditional on an m signal) than M -quality players in game B. More interestingly, our

estimate of the coefficient on the dummy variable for game A is small and insignificant.

Thus, M -quality players do not adjust their proposal rate between game A and game B

on average. On the other hand, the estimate on the interaction term H ×A is large in

magnitude and highly significant, showing that H-types propose at significantly lower

12For this test, each observation is the group-level average (M,m) proposal rate. We have 6 groups
in the BASE treatment, resulting in 12 paired A-B observations.
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Dependent variable: propose
Linear Logit

H −0.105∗∗∗ −0.447∗∗∗

(0.002) (0.012)
A −0.008 −0.034

(0.029) (0.129)
H × A −0.383∗∗∗ −1.787∗∗∗

(0.018) (0.190)
Constant 0.668∗∗∗ 0.701∗∗∗

(0.005) (0.022)
Clustering Yes Yes
Observations 839 839
Log Likelihood −530 −504
Akaike Inf. Crit. 1,068 1,016

Note: This table reports estimates from regression (2). The
regressions are estimated using only observations of (H,m)
and (M,m) types. Standard errors are clustered at individual
and group level in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5: Proposal decisions in BASE

rates in game A relative to game B. To sum up, we obtain the following:

Result 3 (BASE). While proposal rates of (H,m) types differ significantly between

game A and game B, proposal rates of (M,m) types do not. This is qualitatively con-

sistent with highly cursed behavior.

Our finding that aggregate (M,m) proposal rates are similar between game A and

game B is not an artifact of averaging different behaviors across subjects. To prove this

statement, we show how proposal rates are affected by observable characteristics such

as gender or experience. We estimate an augmented version of regression (2):

propose =
K∑
k=0

bk0X
k +

K∑
k=0

bk1HX
k +

K∑
k=0

bk2AX
k +

K∑
k=0

bk3HAX
k + ε (3)

where Xk denotes one of K + 1 variables. This model includes K = 5 observables,

namely CRT,RiskAversion, Female, STEM,Round and a constant (X0 = 1). The

variable CRT is the subject’s standardized score in the Cognitive Reflection Test (Fred-
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erick, 2005). To compute the variable RiskAversion we use the subject’s switching

point in the multiple price list (Holt and Laury, 2002) and then we standardize it.13

Thus, a subject with a higher RiskAversion measure is more risk averse. The variable

Female equals one for women and zero for men. The variable STEM is a dummy

equal to one if the subject’s undergraduate major is science, technology, engineering or

mathematics and 0 otherwise (excluded categories from our survey: social sciences, hu-

manities). The variable Round is computed by subtracting 30 to the actual round: thus,

when Round = 0 the subject has experienced half of the 60 rounds in the experiment.

As before, we estimate regression (3) using both a linear probability model and a

logit model, while clustering errors at the individual and group levels. The estimates are

reproduced in Table 6. From these results it is possible to draw several conclusions. We

are particularly interested in how the behavior of M -quality types varies between game

B and game A conditional on different observables Xk, as measured by the interaction

terms A×Xk. First, note that the coefficient on A is not statistically significant. This

means that there are no differences in (M,m) proposal rates of non-STEM male students

with average CRT score, average risk-aversion and with 30 rounds of experience between

game A and game B. Moreover, this pattern is not affected by gender nor by CRT score

(the coefficients on A×Female and A×CRT are not statistically significant).14 Thus,

Result 3 appears fairly robust as it holds not only in the aggregate but also for different

types of individuals.

Being a STEM student, having more experience in the game or being more risk-

averse increase the responsiveness of (M,m) proposal rates to the game in the direction

consistent with equilibrium: the coefficients on A × STEM , A × Round and A ×
13To standardize individual i’s raw measure xi, we compute xi−mean

sd , where mean is the mean score
in our population and sd is the standard deviation of the score in our population. We do this for both
CRT and RiskAversion.

14Interestingly, although the CRT score does not affect the responsiveness of M -types, it does affect
the behavior of H-types. The coefficient on H × A × CRT is negative and highly significant. Thus,
subjects with higher CRT scores propose less often conditional on an m signal when their reservation
value is higher, relative to subjects with lower CRT scores. This suggests that CRT score is correlated
with a subjects’ ability to understand the rules of the game or pay attention to his own payoff, but
not with the subject’s ability to think strategically about others.
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Dependent variable: propose
Linear Logit

H 0.117 (0.169) 0.573 (0.761)
A 0.103 (0.093) 0.469 (0.433)
CRT 0.042 (0.046) 0.204 (0.255)
Round −0.0005 (0.006) −0.002 (0.028)
Risk Aversion 0.003 (0.025) 0.007 (0.140)
Female 0.123 (0.181) 0.569 (0.878)
STEM 0.080 (0.121) 0.365 (0.577)
H × A −0.622∗∗∗ (0.154) −3.145∗∗∗ (0.812)
H× CRT 0.092∗∗∗ (0.015) 0.409∗∗∗ (0.053)
A× CRT 0.002 (0.021) 0.002 (0.121)
H× Round −0.006 (0.007) −0.025 (0.033)
A× Round −0.003∗ (0.002) −0.013∗∗ (0.007)
H× Risk Aversion 0.032 (0.104) 0.149 (0.413)
A× Risk Aversion −0.031∗∗∗ (0.001) −0.133∗∗∗ (0.012)
H× Female −0.133 (0.129) −0.611 (0.590)
A× Female −0.052 (0.084) −0.243 (0.410)
H× STEM −0.158 (0.274) −0.709 (1.291)
A× STEM −0.084∗∗ (0.042) −0.390∗ (0.234)
H × A× CRT −0.218∗∗∗ (0.054) −1.353∗∗∗ (0.130)
H × A× Round 0.007∗∗ (0.003) 0.023∗∗ (0.012)
H × A× Risk Aversion −0.021 (0.047) −0.103 (0.089)
H × A× Female 0.014 (0.094) −0.163 (0.656)
H × A× STEM 0.305 (0.260) 1.892 (1.247)
Constant 0.559∗∗∗ (0.118) 0.217 (0.513)
Clustering Yes Yes
Observations 839 839
Log Likelihood −508 −481
Akaike Inf. Crit. 1,064 1,009

Note: This table reports estimates from regression (3). The regressions
are estimated using only observations of (H,m) and (M,m) types. Stan-
dard errors are clustered at individual and group level in parentheses.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 6: Proposal decisions and individual characteristics in BASE
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RiskAverse are negative and significant. A possible interpretation of these estimates is

that subjects with STEM -related cognitive skills, more experience or a stronger dislike

for risk are more likely to be aware of the acceptance curse. However, the magnitudes of

these effects are not large: for example, the difference in proposal rates between A and

B for STEM students is only 8.4% larger (in absolute value) than non-STEM students

according to our linear model estimates (see the A × STEM interaction coefficient

in the “Linear” column). This is a small magnitude compared to the difference in

proposal rates between game A and game B for H-quality players: the coefficient on

the A × H interaction in our linear model suggests subjects are 62% less likely to

propose (conditional on an m signal) in game A than in game B when they play the

role of H-types. We summarize this discussion in the following:

Result 4 (BASE). Even after controlling for individual characteristics and experience

in the game, we find that the magnitude of the difference in (M,m) proposal rates

between game A and game B is much smaller than the difference in (H,m) proposal

rates.

4.2 BEL and COND Treatments

Results from the BASE treatment show subjects behave in a way consistent with

limited strategic thinking. The rate at which M -quality players propose conditional on

an m signal does not respond significantly to adverse selection. The BEL and COND

treatments allow us to observe how behavior changes when we remove scope for limits

in forming consistent beliefs and for limits in conditional thinking respectively. We

focus on the behavior of M -quality players who observe an m signal and analyze how

their proposal rate responds to variation in the degree of adverse selection across tasks.

Recall that the degree of adverse selection in BEL and COND tasks is determined by

the parameter p: when p is lower, the posterior probability that player 2’s quality is H

is lower. Thus, we use 1 − p as our measure of adverse selection. In both BEL and
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Figure 7: Proposal rates conditional on signal m in BEL and COND

COND, subjects experience five tasks corresponding to (1 − p) = 0, 0.25, 0.5, 0.75, 1

(each repeated multiple times).

In Figure 7 we plot the aggregate proposal rates of M -quality players conditional on

m signals in BEL and COND. As this figure shows, proposal rates appear responsive

to the degree of adverse selection (1−p). To provide further evidence of this we estimate

regressions of the probability of proposing in each treatment:

propose =
K∑
k=0

ak0X
k + a1AdverseSelection+ ε (4)

where the Xk variables include a constant and five observables (CRT , RiskAversion,

Female, STEM , Round) and AdverseSelection = (1− p). We estimate equation (4)

separately for BEL and COND. For each treatment we run a linear model and a

logit model, always clustering errors at the individual and group levels. The results

are reproduced in Table 7. The coefficient on AdverseSelection is negative and highly

significant, thus leading to the following:
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Result 5. Proposal rates of (M,m) types respond significantly to changes in the degree

of adverse selection (1− p) in both BEL and COND.

Dependent variable: propose
BEL COND

Linear Logit Linear Logit
AdverseSelection −0.600∗∗∗ −3.501∗∗∗ −0.617∗∗∗ −3.023∗∗∗

(0.024) (0.131) (0.014) (0.387)
Constant 1.085∗∗∗ 3.503∗∗∗ 1.321∗∗∗ 5.054∗∗∗

(0.151) (0.919) (0.234) (1.510)
Individual Characteristics Yes Yes Yes Yes
Clustering Yes Yes Yes Yes
Observations 624 624 579 579
Log Likelihood −316 −300 −338 −321
Akaike Inf. Crit. 648 617 693 658

Note: This table reports estimates from regression (4). The regressions are estimated us-
ing only observations of subjects in the role of player 1 with (M,m) type. The variable
AdverseSelection is given by the round-specific parameter 1 − p. All regressions control
for individual characteristics. Standard errors are clustered at individual and group level in
parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 7: Proposal decisions in BEL and COND

This result suggests that limited strategic thinking is an important driver of behavior

in BASE. In BASE behavior is unresponsive to changes in adverse selection induced

by manipulation of reservation values. When we provide information on strategies,

subjects are highly responsive. Back on the envelope calculations based on our estimates

of regression (4) imply that (M,m) proposal rates in BASE should change by more

than 20% points from game B to game A, when in fact we cannot find any significant

effect in our data.

The second observation about Figure 7 is that the differences between BEL and

COND appear to be small. This is also suggested by the fact that estimated coefficient

in regression (4) is very similar between BEL and COND. To formally test this

hypothesis, we run non parametric tests of differences in (M,m) proposal rates between

BEL and COND . For each value of the AdverseSelection parameter (i.e. 1 − p),

we use a Wilcoxon test to evaluate the null hypothesis that there are no differences
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in group-level proposal rates between BEL and COND. The results are reported in

Table 8. Only for two values of our AdverseSelection parameter (0.25 and 0.5) we can

reject the null hypothesis at the 10% significance level. We thus have the following

result:

Result 6. The differences in proposal rates of (M,m) types between BEL and COND

are small.

Providing information about the strategies of potential partners makes subjects

more responsive to adverse selection. Further removing the need for subjects to engage

in conditional thinking has small cumulative effects on behavior. This result suggests

that conditional thinking limits play a minor role in explaining deviations from equi-

librium relative to inconsistent beliefs.

AdverseSelection parameter 0 0.25 0.5 0.75 1

Wilcoxon test p-value 0.12 0.06 0.02 0.47 0.21

Note: This table reports p-values of a one-sided Wilcoxon test of differ-
ences in proposal rates between BEL and COND. For each value of
the AdverseSelection parameter, the null hypothesis is that there are
no differences in group-level proposal rates between BEL and COND.
The alternative hypothesis is that proposal rates are higher in BEL
than COND. For each of these tests, an observation is the average
proposal rate in a group. Thus, for each value of AdverseSelection, we
have 6 observations in BEL and 6 observations in COND.

Table 8: Differences in proposal rates between BEL and COND

4.3 Structural Estimation

The results presented in the previous sections suggest that limits in forming consistent

beliefs are an important driver of deviations from BNE in our game, while limited

conditional thinking plays a secondary role. To provide further evidence about the

relative importance of these two mechanisms, we adopt a structural estimation approach

based on the Cursed Quantal Response Equilibrium model. This framework allows us
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to quantify the subjects’ limits in anticipating adverse selection, as measured by the

cursedness parameter χ, while allowing for stochastic choice. By estimating different χ

parameters for different treatments, we can separately estimate the effect of inconsistent

beliefs and limited conditional thinking. In this approach, we interpret χ as a reduced-

form measure of limits in anticipating adverse selection that can potentially arise from

different mechanisms. This approach is also suggested by Eyster and Rabin (2005) who

note that, although the cursed equilibrium model can be given a literal interpretation in

terms of beliefs, the “primary motivation for defining cursed equilibrium is not based on

learning or any other foundational justification, but rather on its pragmatic advantages

as a powerful empirical tool to parsimoniously explain data in a variety of contexts.” To

further motivate this approach, recall that the key assumption of the cursed equilibrium

model is that posterior beliefs are a weighted average of the “naive” posterior belief

(which only conditions on signals) and the “sophisticated” posterior belief (which also

takes acceptance into account):

belief = χPr[qj = q′|si] + (1− χ) Pr[qj = q′|si, qi, aj = P ]

We argue that this assumption can be used to model both a player who wrongly believes

others do not fully use information and a player who fails to fully condition on the

hypothetical scenario in which others propose (as well as a player who suffers from

both mistakes).

In order to identify the effect of each mechanism, we exploit our treatment design.

Our estimate of cursedness in the BASE treatment, χBASE, reflects both limits in

forming consistent beliefs and limits in conditional thinking. On the other hand, our

estimate of cursedness in the BEL treatment, χBEL, only reflects limited conditional

thinking since it is derived from an environment where there is no scope for inconsis-

tent beliefs (subjects know the strategies of their potential partners). Thus, we can

interpret the difference χBASE−χBEL as a measure of limited ability to form consistent

beliefs. Note that our interpretation does not rely on estimates of χ in COND; indeed
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this parameter is unidentified because in COND the naive and sophisticated posterior

beliefs are identical by design (since player 2 always proposes).

The other structural parameter is λ, measuring the responsiveness of proposal prob-

abilities to the perceived gains from proposing. Lower values of λ results in proposal

rates closer to 50%. We assume the same value of λ across treatments BASE, BEL

and COND. Thus, even though data from COND does not directly identify the χ

parameters, it is used to estimate the model. We denote the three parameters to be

estimated by θ ≡ [λ, χBASE, χBEL].

Each observation, indexed by n ∈ {1, ..., N}, is at the round-subject level and

consists of variables yn, qn, sn, ωn. The variable yn ∈ {0, 1} is the proposal decision of

the subject in that round (in BEL and COND we use only active subjects who play the

role of player 1) while qn ∈ {H,M,L} and sn ∈ {h,m, l} denote the quality and signal

of the subject in that round.15 The variable ωn is an indicator for the treatment and

game/task (recall that there are two games in BASE and five tasks in BEL/COND,

indexed by p):

ωn ∈ {BASEA, BASEB, BELp=0, ..., BELp=1, CONDp=0, ..., CONDp=1}

We use ωn to link to treatment- and round-specific parameters of the game, such as

reservation values, match values, signal likelihoods and decision rules of automated

players. We estimate the parameters θ by maximum likelihood. With the notation

introduced above, the log-likelihood of our model can be written as:

` =
∑
n

{yn log σ(qn, sn, ωn; θ) + (1− yn) log[1− σ(qn, sn, ωn; θ)]}

where σ() is the predicted probability of proposing for observation yn, qn, sn, ωn, given

15While in the regressions presented in previous sections we have often restricted attention to rounds
in which M - or H-quality players observed m signals, we estimate the structural model using data for
all types. The only restriction is that we use data for rounds 21 to 60, as before.

34



parameters θ. In BASE, we compute σ() as a fixed-point solution of the QRE model.

In BEL and COND, player 2’s strategy is given and thus σ() can be computed directly.

We optimize ` numerically.

Parameter Estimate and s.e.
λ 0.074∗∗∗

(0.002)
χBASE 0.990∗∗∗

(0.121)
χBEL 0.265∗∗∗

(0.082)
-2 log Lik. 5257
Observations 5760

Note: This table reports maximum likelihood estimates of the
structural model parameters. Asymptotic standard errors are
reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 9: Maximum likelihood estimation results

Structural estimation results are reported in Table 9. The estimated λ parameter

is relatively low, implying stochastic decisions are an important feature of our data. It

is however statistically different from zero: thus, subjects respond to perceived payoffs.

More interestingly, we find that subjects behave as if they are nearly fully cursed in

BASE since χBASE is close to 1 (and highly significant). This is consistent with the fact

that the difference in (M,m) proposal rates between game A and game B is minimal.

Our estimate of cursedness in BEL is also statistically significant, but much lower in

magnitude: χBEL = 0.265. Thus, our estimates suggest that mistaken beliefs have a

large effect on cursedness, which can be measured as χBASE−χBEL = 0.725. This effect

is not only large but also statistically significant: we run a (one-sided) likelihood-ratio

test of the null hypothesis that χBASE = χBEL and reject with a p-value of 10−12. We

summarize our findings from the structural estimation in the following:

Result 7. Structural estimation shows that: 1) subjects behave as if they are fully

cursed in BASE, 2) they behave as if they are cursed to a much lower degree in BEL,

implying a large role of mistaken beliefs.
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5 Conclusion

Do people understand adverse selection in matching markets? If they fail, why? To an-

swer these questions, we have implemented a two-player, one-shot version of a vertically-

differentiated market where qualities are private information and agents receive noisy

signals about others’ qualities. We have found that subjects propose to form matches

when Bayes-Nash equilibrium predicts they should not and do not respond to changes

in reservation values of other types. These findings suggest most subjects fail to antici-

pate the acceptance curse in matching markets. To understand the driving mechanism,

we have designed two additional treatments. In one treatment, we remove scope for

mistaken beliefs by providing information about the strategies of automated players. In

this treatment, subjects are highly responsive to changes in adverse selection. Further

removing scope for limited conditional thinking has small additional effects on subjects’

behavior. Overall, our data show that mistaken beliefs are the key driver of failures to

anticipate adverse selection in two-sided matching, while limited conditional thinking

plays a secondary role.

In our experiment, providing information on others’ strategies seems to be very

effective in fixing the subjects’ failure to anticipate adverse selection. By contrast, sev-

eral papers have shown that deviations from equilibrium persist under similar “robot

protocols” (Charness and Levin, 2009; Ivanov et al., 2010; Esponda and Vespa, 2014).

Why is information about strategies so effective in our experiment compared to other

studies? One possible explanation is that using information about others’ strategies to

form conditional expectations is easier in two-sided matching markets than in previ-

ously studied environments, such as auctions and elections. We conjecture that once

subjects are informed about how selective are different types, it is easy for them to get

a sense of the posterior distribution of types conditional on matching. On the contrary,

deriving implications about adverse selection from information about others’ strategies

is a complex cognitive task in auctions and elections, since one needs to combine this
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information with market clearing rules or voting rules. Even bilateral trading settings

like the acquiring-a-company game (Charness and Levin, 2009) are more complicated

than our setting because the buyer’s offer affects payoffs both directly (as the price he

pays) and indirectly through selection. Matching with non-transferable utilities and

exogenous signals is a much easier problem in this respect.

In order to provide the clearest possible test of strategic thinking in matching mar-

kets, we have used a one-shot game. Although implementing a dynamic search-and-

matching market in the lab poses several challenges, it could shed light on issues that

we cannot explore within our static framework. In our static game, limited strategic

thinking can only result in players proposing when they should not. In a search and

matching market, limited strategic thinking can also result in players being excessively

selective. Cursed players may turn down profitable matches if they overestimate their

option-value of searching. For instance, a low-quality player who fails to anticipate ad-

verse selection and thus overestimates the expected payoff from matching conditional

on future m signals may choose to keep searching rather than proposing after observing

an l signal.16 Testing the implications of limited strategic thinking for search behavior

is clearly an interesting venue for future research.17

16A similar mechanism is formally analyzed in Antler and Bachi (2020).
17An interesting study on this topic is Araujo et al. (2018), whose findings show subjects fail to

understand the dynamics of adverse selection in a non-stationary environment.
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A Useful Expressions

In this Appendix we provide expressions for some of the key variables of the model,

namely π(q′, s), α(q, s) and β(q′, q, s).

First, the posterior probability of qj = q′conditional on signal si = s is given by:

π(q′, s) ≡ Pr[qj = q′|si = s] =
δ(q′, s)∑
q′′ [δ(q′′, s)]

where the second equality follows by Bayes’ rule.

Second, the acceptance probability, defined as the probability of player j proposing

conditional on player i’s type, is given by:

α(q, s) ≡ Pr[aj = P |qi = q, si = s] =
∑
q′

∑
s′

π(q′, s)δ(q, s′)σ(q′, s′)

Finally, the posterior belief that player j’s quality is q′, conditional on the observed

signal si = s, on own quality qi = q and on player j proposing, can be computed as:

β(q′, q, s) =

∑
s′ δ(q, s

′)σ(q′, s′)

α(q, s)
π(q′, s)

To derive this expression start with the definition of the posterior belief:

β(q′, q, s) ≡ Pr[qj = q′|si = s, aj = P, qi = q]

By Bayes’ Theorem we can rewrite the posterior probability as:

β(q′, q, s) =
Pr[aj = P |qj = q′, qi = q, si = s]

Pr[aj = P |qi = q, si = s]
Pr[qj = q′|qi = q, si = s]
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Getting rid of redundant conditioning variables, we can rewrite the posterior belief as:

β(q′, q, s) =
Pr[aj = P |qj = q′, qi = q]

Pr[aj = P |qi = q, si = s]
Pr[qj = q′|si = s] (A.1)

The probability of player j proposing conditional on the actual qualities of the players

is given by:

Pr[aj = P |qi = q, qj = q′] =
∑
z′

Pr[sj = s′|qi = q]Pr[aj = P |qj = q′, sj = s′]

Using this we can rewrite equation (A.1) as:

β(q′, q, s) =

∑
s′ Pr[sj = s′|qi = q]Pr[aj = P |qj = q′, sj = s′]

Pr[aj = P |qi = q, si = s]
Pr[qj = q′|si = s] (A.2)

Using our notation we rewrite equation (A.2) as:

β(q′, q, s) =

∑
s′ δ(q, s

′)σ(q′, s′)

α(q, s)
π(q′, s)

B Proof of Proposition 1

Proposition 1 has two parts. First, we prove that in game A, in any Bayes-Nash

equilibrium: σ(H,m) = 0 and σ(M,m) = 0.

By contradiction, assume there is a BNE where σ(H,m) > 0. In this case, proposing

conditional on an h signal is a best response for all types: σ(q, h) = 1 ∀q. Similarly, it is

a best response for L-quality players to propose upon receiving an m signal: σ(L,m) =

1.

For σ(H,m) > 0 to be part of a BNE, it must be ∆(H,m) ≥ 0. This condition
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implies:

α(H,m)[v(H,m)− ρ(H)] ≥ 0;

v(H,m) ≥ ρ(H);∑
q′

β(q′, H,m)µ(q′) ≥ ρ(H)

Substituting the actual matching and reservation values we get:

160β(H,H,m) + 80β(M,H,m) + 40β(L,H,m) ≥ 100

Because posterior beliefs sum to one, this can be rewritten as:

160[1− β(M,H,m)− β(L,H,m)] + 80β(M,H,m) + 40β(L,H,m) ≥ 100

which yields

4β(M,H,m) + 6β(L,H,m) ≤ 3 (B.1)

We then compute the two posterior beliefs in condition (B.1) using the expressions

provided in Appendix A, the given likelihoods and using the fact that σ(q, h) = 1 ∀q

and σ(L,m) = 1. This yields:

β(M,H,m) =
1

4

1 + σ(M,m)

α(H,m)

and

β(L,H,m) =
1

4

1

α(H,m)

where

α(H,m) =
5

8
+

1

8
σ(H,m) +

1

4
σ(M,m)
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Using the last three expressions and condition (B.1) gives:

5

8
+

1

4
σ(M,m) ≤ 3

8
σ(H,m)

This inequality cannot be satisfied if σ(M,m) and σ(H,m) are between 0 and 1. Thus,

we have reached a contradiction and we have proved that in any BNE of game A it

must be: σ(H,m) = 0.

The next step involves showing that in any BNE: σ(M,m) = 0. By contradiction

assume that σ(M,m) > 0. Then it must be ∆(M,m) ≥ 0. This condition implies:

α(M,m)[v(M,m)− ρ(M)] ≥ 0;

v(M,m) ≥ ρ(M);∑
q′

β(q′,M,m)µ(q′) ≥ ρ(M)

Substituting the actual matching and reservation values we get:

160β(H,M,m) + 80β(M,M,m) + 40β(L,M,m) ≥ 75 (B.2)

To compute the posterior beliefs in condition (B.2) we use the expressions provided in

Appendix A, the given likelihoods and the fact that σ(q, h) = 1 ∀q, σ(L,m) = 1 and

σ(H,m) = 0. This yields:

β(H,M,m) = 0

β(M,M,m) =
σ(M,m)

σ(M,m) + 1/2

β(L,M,m) =
1/2

σ(M,m) + 1/2

Substituting these expressions in condition (B.2) and solving for σ(M,m) we get:

σ(M,m) ≥ 7

2
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which is not possible. Having reached a contradiction, it must be σ(M,m) = 0.

The second part of Proposition 1 states that in game A the pure-strategy BNE

where most types propose is such that: PH = {h},PM = {h},PL = {h,m, l}. We have

already shown that in any pure-strategy BNE m /∈ PH and m /∈ PM . Moreover, l /∈ PH
and l /∈ PM because proposing after observing l is not a best response for H- and

M -types. We can show that the other strategies are part of a BNE. For type (H, h), P

is the best response because: v(H, h) = µ(H) = 160 > ρ(H) = 100. For type (M,h),

P or N are both best responses (because H types do not accept m signals). For type

(L, si), P is the best response for any signal si, because µ(q) > ρ(L)∀q.

C Proof of Proposition 2

In game B, the pure-strategy BNE where most types propose is such that: PH =

{h,m},PM = {h,m},PL = {h,m, l}. To show this first note that in any pure-strategy

BNE l /∈ PH and l /∈ PM because proposing after observing l is not a best response

for H- and M -types. Then we show that the other strategies in this profile are best

responses. For type (H, h), P is the best response because: v(H, h) = µ(H) = 160 >

ρ(H) = 100. For type (H,m), P is now the best response because: v(H,m) = 0.25 ×

µ(H) + 0.5 × µ(M) + 0.25 × µ(L) = 90 > ρ(H) = 80. For type (M,h), P or N are

both best responses (because H types do not accept m signals). For type (M,m), P is

the best response because: v(M,m) = 0.25× µ(H) + 0.5× µ(M) + 0.25× µ(L) = 90 >

ρ(M) = 75. For type (L, s), P is the best response for any signal s.

D Proof of Proposition 3

In game A, for χ ≥ 5
14

, there is a cursed equilibrium such that: PH = {h},PM =

{h,m},PL = {h,m, l}. To prove this, we check whether this strategy profile satisfies
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the conditions for a cursed equilibrium. First, proposing is a best response for type

(L, s) for all s and for any χ ∈ [0, 1].

Next, consider an H-quality type. As before, P is the best response for type (H, h)

and N is the best response for type (H, l), for any χ ∈ [0, 1]. To show that N is the

best response of type (H,m), we first compute the cursed posterior beliefs. These are

given by:

βc(H,H,m) =
1

7
+

3

28
χ

βc(M,H,m) =
4

7
− 1

14
χ

βc(L,H,m) =
2

7
− 1

28
χ

Then it is possible to show that ∆c(H,m) ≥ 0 only if χ ≥ 2. Thus, N is the best

response of type (H,m) for any χ ∈ [0, 1].

Finally, consider an M -quality type. As before, P is a best response for type (M,h)

and N is the best response for type (M, l), for any χ ∈ [0, 1]. We then check when P

is the best response of type (M,m). The cursed posterior beliefs are given by:

βc(H,M,m) =
1

4
χ

βc(M,M,m) =
2

3
− 1

6
χ

βc(L,M,m) =
1

3
− 1

12
χ

Then it is possible to show that ∆c(M,m) ≥ 0 only if χ ≥ 5
14

. Thus, P is the best

response of type (H,m) for χ ≥ 5
14

.

48



E Derivation of Likelihoods in the COND Treat-

ment

In this Appendix we provide expressions for the modified signal likelihoods used in

the design of the COND treatment. For each value of p ∈ {0, 0.25, 0.5, 0.75, 1}, we

calculate the COND-task likelihoods in the following way. First, we compute the

posterior probability in the BEL-task, denoted φ(p):

φ(p) ≡ Pr[q2 = H|s1 = m, q1 = M,a2 = P ;BEL-task]

Then we require the posterior belief in the COND-task to equal the posterior belief in

the BEL-task:

Pr[q2 = H|s1 = m;COND-task] = φ(p) (E.1)

To achieve this we only adjust the likelihoods of observing h and m signals when player

2’s quality is H, while leaving all other likelihoods unchanged.

Applying Bayes’ rule on equation (E.1) we obtain:

Pr[s1 = m|q2 = H;COND-task]× 1/3

Pr[s1 = m|q2 = H;COND-task]× 1/3 + 1× 1/3 + 0.5× 11/3
= φ(p)

It follows that:

Pr[s1 = m|q2 = H;COND-task] =
3
2
φ(p)

1− φ(p)

Since Pr[s1 = l|q2 = H;COND-task] = 0, then we also know:

Pr[s1 = h|q2 = H;COND-task] = 1− Pr[s1 = m|q2 = H;COND-task] =
1− 5

2
φ(p)

1− φ(p)
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F Experiment Instructions

F.1 BASE

This appendix reproduces the instructions for the BASE treatment of the experi-

ment.
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INSTRUCTIONS 
 
 
 
You are about to participate in an experiment in the economics of decision-making. If you follow 
these instructions carefully, you can earn an amount of money which will be paid to you in cash 
at the end of the experiment. 
 
Your computer screen will display useful information. Remember that the information on your 
computer screen is private. To insure best results for yourself and accurate data for the 
experimenters, please do not communicate with the other participants at any point during the 
experiment. If you have any questions, or need assistance of any kind, raise your hand and one 
of the experimenters will come. 
 
 
 

PARTS and PAYMENTS 
 
This experiment will consist of four parts. At the end of the experiment, you will be paid 5€, plus 
earnings based on the points you have earned during the experiment. Your points will be 
converted to Euros at an exchange rate of 1/6 Euro per point. To sum up, your final payment in 
Euros is given by the following formula: 
 

𝑌𝑜𝑢𝑟	𝑝𝑜𝑖𝑛𝑡𝑠/6 + 5			€ 
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 2 

PART 1 
 
 

THE BASIC IDEA 
 
In this part, you have to decide whether to form a partnership with other players. The benefit of 
forming a partnership with another player will depend on the other player’s type, which is 
randomly assigned by the computer. During the experiment, you will not know the type of your 
potential partners. However, you will receive clues about their types before you decide to form 
a partnership. If you form a partnership, you receive an amount of points that depends on your 
partner’s type.  If you do not form a partnership, you receive an amount of points that depends 
only on your own type. 
 

ROUNDS 
 
The experiment will be divided into 60 rounds. In each round, you are randomly paired with 
another player. Decisions and points you make in one round do not affect other rounds. 
 
 

PLAYERS AND TYPES 
 
In each round, each participant is randomly assigned a type. A participant’s type can be X, Y, or 
Z. In each round your type is equally likely to be X, Y or Z. In each round, you will have an 
opportunity to form a partnership with another player. The computer will randomly pair you and 
another player. The way in which pairs are formed is random and does not depend on the players’ 
types. This means that you are equally likely to be paired with an X, Y, or Z-type player, 
independently of your own type. 
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CLUES 
 
You will not know the type of the participant you are paired with in a round. However, you will 
receive a clue about your potential partner’s type. Clues are determined in the following way. 
The computer will digitally draw a random ball from a box containing 24 balls of different 
colors. Each ball can be either blue, yellow or red. The number of blue, yellow and red balls in 
the box depends on your partner’s type. The boxes used in the experiment are illustrated in the 
figure below. 
 

 

 
 

If your partner’s type is X, the box contains no blue balls, 12 yellow balls and 12 red balls. If your 
partner’s type is Y, the box contains 24 yellow balls but no blue or red balls. If your partner’s type 
is Z, the box contains 12 blue balls, 12 yellow balls and no red balls. To give you a clue about the 
type of your potential partner, the computer will first determine which box to use given your 
partner’s type. Then it will digitally draw a random ball: each single ball in the box has the same 
probability of being selected, equal to 1/24. The clue you receive is the color of this randomly 
drawn ball. 
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 4 

 
FORMING A PARTNERSHIP 

 
After you have received a clue about your potential partner’s type, you can decide whether you 
want to form a partnership or not. Only if you and the other player agree to form a partnership, 
a partnership is formed. For example, if you want to form a partnership but the other player 
does not, the partnership is not formed. 
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 5 

POINTS 
 
Every time you form a partnership, you earn an amount of points that depends only on the type 
of the other player. Whenever you do not form a partnership, you earn an amount of point that 
depends only on your own type. Consider the example illustrated in the following table. In this 
example, if you form a partnership with an X type you earn 160 points, if you form a partnership 
with a Y type you earn 80 points and if you form a partnership with a Z type you earn 40 points. 
If you do not form a partnership and your type is X, you earn 100 points. If you do not form a 
partnership and your type is Y, you earn 75 points. If you do not form a partnership and your type 
is Z, you earn 25 points. 
 
 

 
Points if you form a partnership: 

    
Partner’s type X Y  Z  

    
Your points  160 80 40 

 
Points if you do not form a partnership: 

    
Your type X  Y  Z  

    
Your points  100 75 25 

    
 

 
The exact amounts of points you can earn will depend on the game you are playing. There are 
two versions of this game, called A and B. There will be 30 rounds for each game, but the exact 
sequence of games will be random. The following table reports the actual amounts of points you 
can earn in each game. Note that Game A is the example discussed above. The only difference 
between game A and B is the payoff a type X player receives if he does not form a partnership. 
 

GAME A  
 

 GAME B 
 

         
Points if you form a partnership:  Points if you form a partnership: 

Partner’s type X Y Z  Partner’s type X Y Z 

Your points  160 80 40  Your points 160 80 40 

         
Points if you do not form a partnership:  Points if you do not form a partnership: 

Your type X Y Z  Your type X Y Z 

Your points  100 75 25  Your points 80 75 25 
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PAYMENT 
 
At the end of the experiment, your payment will depend on the points you have earned in this 
part. In particular, the computer will randomly select one round out of the 60 rounds in part 1. 
At the end of the experiment, the points you have earned in the selected round will be converted 
to Euros at an exchange rate of 1/6 Euros per point. 
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PART 1 APP PAGES 

 
The experiment app will show you several pages, described below. Between a page and the next 
you may have to wait for other participants to make their choices. At the beginning of Part 1 you 
will see a page like this. 
 

 
 
At the beginning of a new round, you will see a page informing you of whether you are playing 
game A or game B. 
 

 
 

In this page, you receive information about your own type. You are also given a clue about your 
potential partner’s type and you decide whether you want to form a partnership or not. 
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At the bottom of this page you can see a table with a history of all the previous rounds. 
 

 
 

If you do not click the “next” button on this page, after one minute the app will move you to the 
next page. In the next page you are told your points in this round and the actual type of your 
partner. 
 

 
 
When you have played the last round of Part 1, you will see a page informing you that this part 
is over. In this page you will find out the Part 1 paying round. At the bottom of this page you can 
see the history table summarizing all the rounds. 
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PART 2 
 
 
 
In this part, you will face 10 decisions listed on your screen. In each decision you have to choose 
between "Option A" and "Option B". If you choose Option A, you will earn either 6 or 5 points. If 
you choose Option B, you will earn either 10 points or 1 point. After you choose one option, 
whether you earn the higher payoff or the lower payoff is randomly determined by the computer. 
Before making a choice, you will know the exact probability of earning the higher payoff rather 
than the lower payoff in each option. For example, in one decision Option A will give you 6 points 
with a probability of 30% and 5 points otherwise, while Option B will give you 10 points with a 
probability of 30% and 1 point otherwise. 
 

 
 
As in this example, in any one of the 10 decisions, the probability you will earn the higher payoff 
(6 if Option A is chosen or 10 if Option B is chosen) is the same between option A and option B.  
In the first decision, at the top of the list, the probability you will earn the higher payoff is 10%. 
As you move down the table, the chances of the higher payoff for each option increase. In fact, 
for decision 10 in the bottom row, each option pays the highest payoff for sure. So, your choice 
in decision 10 is simply between 6 points (Option A) or 10 points (Option B).  
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For each of the ten decisions, you will be asked to choose Option A or Option B by clicking on the 
appropriate button. The computer will ensure that you switch at most once from Option A to 
Option B. If you choose Option A in one decision, the computer will automatically select Option 
A for all the previous decisions. If you choose Option B in one decision, the computer will 
automatically select Option B for all the following decisions. Once you have made a choice in all 
decisions, you can click on the Next button to submit your choices.  
 

 
 
After you have submitted your choices, one of the 10 decisions will be randomly chosen for your 
payment. For the option you chose, A or B, in this decision, the computer will randomly 
determine whether you earn the higher or lower payoff. To determine the outcome of your 
choice, the computer will digitally draw a random number between 0 and 100. If the random 
number is below the probability of earning the higher payoff, then you receive the higher payoff. 
If the random number is above the probability, then you receive the lower payoff. For example, 
assume you chose Option A in the first decision and this decision is selected for payment. If the 
computer randomly draws a 60, you will earn 5 points. 
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At the end of the experiment, the points you have earned in the selected decision will be 
converted to Euros at an exchange rate of 1/6 Euros per point. 
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PART 3 
 
 
 
In this part, you are asked to answer three questions. For each correct answer, you will receive 
two points. After you have submitted your answers, you will see the correct answers and the 
amount of points you have earned. At the end of the experiment, the points you have earned in 
this part will be converted to Euros at an exchange rate of 1/6 Euros per point. 
 
 
 
 

PART 4 
 
 
 
In this part, you are asked to provide some information about yourself (your sex and your 
undergraduate major). As stated before, your responses are completely confidential and 
anonymous. 
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F.2 BEL

This appendix reproduces the instructions for the BEL treatment of the experiment.
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INSTRUCTIONS 
 
 
 
You are about to participate in an experiment in the economics of decision-making. If you follow 
these instructions carefully, you can earn an amount of money which will be paid to you in cash 
at the end of the experiment. 
 
Your computer screen will display useful information. Remember that the information on your 
computer screen is private. To insure best results for yourself and accurate data for the 
experimenters, please do not communicate with the other participants at any point during the 
experiment. If you have any questions, or need assistance of any kind, raise your hand and one 
of the experimenters will come. 
 
 
 

PARTS and PAYMENTS 
 
This experiment will consist of four parts. At the end of the experiment, you will be paid 5€, plus 
earnings based on the points you have earned during the experiment. Your points will be 
converted to Euros at an exchange rate of 1/6 Euro per point. To sum up, your final payment in 
Euros is given by the following formula: 
 

𝑌𝑜𝑢𝑟	𝑝𝑜𝑖𝑛𝑡𝑠/6 + 5			€ 
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PART 1 
 
 

THE BASIC IDEA 
 
In this part, you have to decide whether to form a partnership with other players. The benefit of 
forming a partnership with another player will depend on the other player’s type, which is 
randomly assigned by the computer. During the experiment, you will not know the type of your 
potential partners. However, you will receive clues about their types before you decide to form 
a partnership. If you form a partnership, you receive an amount of points that depends on your 
partner’s type.  If you do not form a partnership, you receive an amount of points that depends 
only on your own type. 
 

ROUNDS 
 
The experiment will be divided into 60 rounds. In each round, you are randomly paired with 
another player. Decisions and points you make in one round do not affect other rounds. 
 
Each round you will be randomly assigned either an active role or a passive role. When you are 
assigned a passive role, you cannot make any decision. An active player is always paired with a 
passive player. 
 
 

PLAYERS AND TYPES 
 
In each round, every participant is assigned a type. A participant’s type can be X, Y or Z. The type 
of active players is always Y while the type of passive players will be randomly determined. This 
means that, in each of your active rounds, you are equally likely to be paired with an X, Y or Z 
type player. 
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CLUES 
 
When you are active, you will not know the type of the participant you are paired with. However, 
you will receive a clue about your potential partner’s type. Clues are determined in the following 
way. The computer will digitally draw a random ball from a box containing 24 balls of different 
colors. Each ball can be either blue, yellow or red. The number of blue, yellow and red balls in 
the box depends on your partner’s type. The boxes used in the experiment are illustrated in the 
figure below. 
 

 

 
 

If your partner’s type is X, the box contains no blue balls, 12 yellow balls and 12 red balls. If your 
partner’s type is Y, the box contains 24 yellow balls but no blue or red balls. If your partner’s type 
is Z, the box contains 12 blue balls, 12 yellow balls and no red balls. To give you a clue about the 
type of your potential partner, the computer will first determine which box to use given your 
partner’s type. Then it will digitally draw a random ball: each single ball in the box has the same 
probability of being selected, equal to 1/24. The clue you receive is the color of this randomly 
drawn ball. 
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FORMING A PARTNERSHIP 
  
When you are an active player, after you have received a clue about your potential partner’s 
type, you can decide whether you want to form a partnership or not.  
 
The computer will decide on behalf of the passive player whether he agrees to form a partnership 
or not. Specifically, if the passive player’s type is Z or Y, the computer will always agree to form 
a partnership. If the type of the passive player is X, the computer will agree to form a 
partnership with some probability, for example with 50% probability. There are five versions of 
this game, called A, B, C, D and E. There will be 12 rounds for each game but the exact sequence 
of games will be random. The following table reports the actual probability that the computer 
will propose to form a partnership on behalf of an X type player in different games. 
 

 Game 
 A B C D E 

Probability computer agrees to form 
a partnership when passive type is X. 100% 75% 50% 25% 0% 
Probability computer agrees to form 
a partnership when passive type is Y. 100% 100% 100% 100% 100% 
Probability computer agrees to form 
a partnership when type is Z. 100% 100% 100% 100% 100% 

 
To determine the choice for the passive player, the computer will digitally draw a random number 
between 0 and 100. If the random number is below the probability given in the table above, then 
the computer will agree to form a partnership. If the random number is above the probability, 
then the computer will not agree to form a partnership. For example, assume you are playing 
game D, the passive player’s type is X and the computer randomly draws a 40. Then, the 
computer will not agree to form a partnership (because 40>25). 
 
Only if the active player proposes to form a partnership and the computer acting on the passive 
player’s behalf agrees, then a partnership is formed. For example, if you are an active player 
and propose to form a partnership but the computer of the passive player does not agree, the 
partnership is not formed. 
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POINTS 
 
Every time you form a partnership, you earn an amount of points that depends only on the type 
of the other player. Whenever you do not form a partnership, you earn an amount of point that 
depends only on your own type. The actual points you can earn are reported in the following 
table. If you form a partnership with an X type you earn 160 points, if you form a partnership with 
a Y type you earn 80 points and if you form a partnership with a Z type you earn 40 points. If you 
do not form a partnership and your type is X, you earn 100 points. If you do not form a partnership 
and your type is Y, you earn 75 points. If you do not form a partnership and your type is Z, you 
earn 25 points. 
 
 

 
Points if you form a partnership: 

    
Partner’s type X  Y  Z  

    
Your points  160 80 40 

 
Points if you do not form a partnership: 

    
Your type X  Y  Z  

    
Your points  100 75 25 
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PAYMENT 
 
At the end of the experiment, your payment will depend on the points you have earned in this 
part. In particular, the computer will randomly select one round out of the 60 rounds in part 1. 
At the end of the experiment, the points you have earned in the selected round will be converted 
to Euros at an exchange rate of 1/6 Euros per point. 
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PART 1 APP PAGES 
 
The experiment app will show you several pages, described below. Between a page and the next 
you may have to wait for other participants to make their choices. At the beginning of Part 1 you 
will see a page like this. 
 

 
 
At the beginning of a new round, you will see a page informing you of whether you are playing 
game A, B, C, D or E. 
 

 
 

In this page, you are told your type and whether you are an active player or passive player. 
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If you are an active player in this round, you are also given a clue about your potential partner’s 
type and you decide whether you want to form a partnership or not. 
 

 
 

At the bottom of this page you can see a table with a history of all the previous rounds. 
 

 
 

If you do not click the “next” button on this page, after one minute the app will move you to the 
next page. In the next page you are told your points in this round and the actual type of your 
partner. 
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When you have played the last round of Part 1, you will see a page informing you that this part 
is over. In this page you will find out the Part 1 paying round. At the bottom of this page you can 
see the history table summarizing all the rounds. 
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PART 2 
 
 
 
In this part, you will face 10 decisions listed on your screen. In each decision you have to choose 
between "Option A" and "Option B". If you choose Option A, you will earn either 6 or 5 points. If 
you choose Option B, you will earn either 10 points or 1 point. After you choose one option, 
whether you earn the higher payoff or the lower payoff is randomly determined by the computer. 
Before making a choice, you will know the exact probability of earning the higher payoff rather 
than the lower payoff in each option. For example, in one decision Option A will give you 6 points 
with a probability of 30% and 5 points otherwise, while Option B will give you 10 points with a 
probability of 30% and 1 point otherwise. 
 

 
 
As in this example, in any one of the 10 decisions, the probability you will earn the higher payoff 
(6 if Option A is chosen or 10 if Option B is chosen) is the same between option A and option B.  
In the first decision, at the top of the list, the probability you will earn the higher payoff is 10%. 
As you move down the table, the chances of the higher payoff for each option increase. In fact, 
for decision 10 in the bottom row, each option pays the highest payoff for sure. So, your choice 
in decision 10 is simply between 6 points (Option A) or 10 points (Option B).  
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For each of the ten decisions, you will be asked to choose Option A or Option B by clicking on the 
appropriate button. The computer will ensure that you switch at most once from Option A to 
Option B. If you choose Option A in one decision, the computer will automatically select Option 
A for all the previous decisions. If you choose Option B in one decision, the computer will 
automatically select Option B for all the following decisions. Once you have made a choice in all 
decisions, you can click on the Next button to submit your choices.  
 

 
 
After you have submitted your choices, one of the 10 decisions will be randomly chosen for your 
payment. For the option you chose, A or B, in this decision, the computer will randomly 
determine whether you earn the higher or lower payoff. To determine the outcome of your 
choice, the computer will digitally draw a random number between 0 and 100. If the random 
number is below the probability of earning the higher payoff, then you receive the higher payoff. 
If the random number is above the probability, then you receive the lower payoff. For example, 
assume you chose Option A in the first decision and this decision is selected for payment. If the 
computer randomly draws a 60, you will earn 5 points. 
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At the end of the experiment, the points you have earned in the selected decision will be 
converted to Euros at an exchange rate of 1/6 Euros per point. 
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PART 3 
 
 
 
In this part, you are asked to answer three questions. For each correct answer, you will receive 
two points. After you have submitted your answers, you will see the correct answers and the 
amount of points you have earned. At the end of the experiment, the points you have earned in 
this part will be converted to Euros at an exchange rate of 1/6 Euros per point. 
 
 
 
 

PART 4 
 
 
 
In this part, you are asked to provide some information about yourself (your sex and your 
undergraduate major). As stated before, your responses are completely confidential and 
anonymous. 
 
 

77



F.3 COND

This appendix reproduces the instructions for the COND treatment of the experi-

ment.
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INSTRUCTIONS 
 
 
 
You are about to participate in an experiment in the economics of decision-making. If you follow 
these instructions carefully, you can earn an amount of money which will be paid to you in cash 
at the end of the experiment. 
 
Your computer screen will display useful information. Remember that the information on your 
computer screen is private. To insure best results for yourself and accurate data for the 
experimenters, please do not communicate with the other participants at any point during the 
experiment. If you have any questions, or need assistance of any kind, raise your hand and one 
of the experimenters will come. 
 
 
 

PARTS and PAYMENTS 
 
This experiment will consist of four parts. At the end of the experiment, you will be paid 5€, plus 
earnings based on the points you have earned during the experiment. Your points will be 
converted to Euros at an exchange rate of 1/6 Euro per point. To sum up, your final payment in 
Euros is given by the following formula: 
 

𝑌𝑜𝑢𝑟	𝑝𝑜𝑖𝑛𝑡𝑠/6 + 5			€ 
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PART 1 
 
 

THE BASIC IDEA 
 
In this part, you have to decide whether to form a partnership with other players. The benefit of 
forming a partnership with another player will depend on the other player’s type, which is 
randomly assigned by the computer. During the experiment, you will not know the type of your 
potential partners. However, you will receive clues about their types before you decide to form 
a partnership. If you form a partnership, you receive an amount of points that depends on your 
partner’s type.  If you do not form a partnership, you receive an amount of points that depends 
only on your own type. 
 
 

ROUNDS 
 
The experiment will be divided into 60 rounds. In each round, you are randomly paired with 
another player. Decisions and points you make in one round do not affect other rounds. 
 
Each round you will be assigned either an active role or a passive role. When you are assigned a 
passive role, you cannot make any decision. An active player is always paired with a passive 
player. 
 
 

PLAYERS AND TYPES 
 
In each round, every participant is assigned a type. A participant’s type can be X, Y or Z. The type 
of active players is always Y while the type of passive players will be randomly determined. This 
means that, in each of your active rounds, you are equally likely to be paired with an X, Y or Z 
type player. 
 
 
 
 
 
 
 
 
 
 
 
 

CLUES 
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 3 

 
When you are active, you will not know the type of the participant you are paired with. However, 
you will receive a clue about your potential partner’s type. Clues are determined in the following 
way. The computer will digitally draw a random ball from a box containing 24 balls of different 
colors. Each ball can be either blue, yellow or red. The number of blue, yellow and red balls in 
the box depends on your partner’s type. For example, consider the boxes illustrated in the figure 
below. 
 

 

 
 

In this example, if your partner’s type is X, the box contains no blue balls, 12 yellow balls and 12 
red balls. If your partner’s type is Y, the box contains 24 yellow balls but no blue or red balls. If 
your partner’s type is Z, the box contains 12 blue balls, 12 yellow balls and no red balls. To give 
you a clue about the type of your potential partner, the computer will first determine which box 
to use given your partner’s type. Then it will digitally draw a random ball: each single ball in the 
box has the same probability of being selected, equal to 1/24. The clue you receive is the color 
of this randomly drawn ball.  
 
The exact composition of the X box will change in each round. There are five versions of this 
game, called A, B, C, D and E. There will be 12 rounds for each game but the exact sequence of 
games will be random. Each game has a different number of yellow and red balls in the X box, as 
summarized in the following table and illustrated in the figure below. 
 

 Game 
 A B C D E 

Red balls in X box 12 15 18 21 24 
balls in X box 12 9 6 3 0 

Blue balls in X box 0 0 0 0 0 
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   Game A                                                             Game B                                                           Game C 

 

 
   Game D                                                         Game E 
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FORMING A PARTNERSHIP 

 
  
When you are an active player, after you have received a clue about your potential partner’s 
type, you can decide whether you want to form a partnership or not. Note that passive players 
cannot make any choice. Thus, a partnership is formed whenever the active player in the pair 
decides so. 
 
 
 

POINTS 
 
Every time you form a partnership, you earn an amount of points that depends only on the type 
of the other player. Whenever you do not form a partnership, you earn an amount of point that 
depends only on your own type. The actual points you can earn are reported in the following 
table. If you form a partnership with an X type you earn 160 points, if you form a partnership with 
a Y type you earn 80 points and if you form a partnership with a Z type you earn 40 points. If you 
do not form a partnership and your type is X, you earn 100 points. If you do not form a partnership 
and your type is Y, you earn 75 points. If you do not form a partnership and your type is Z, you 
earn 25 points. 
 

 
Points if you form a partnership: 

    
Partner’s type X Y  Z  

    
Your points  160 80 40 

 
Points if you do not form a partnership: 

    
Your type X  Y  Z  

    
Your points  100 75 25 
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PAYMENT 
 
At the end of the experiment, your payment will depend on the points you have earned in this 
part. In particular, the computer will randomly select one round out of the 60 rounds in part 1. 
At the end of the experiment, the points you have earned in the selected round will be converted 
to Euros at an exchange rate of 1/6 Euros per point. 
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PART 1 APP PAGES 
 
The experiment app will show you several pages, described below. Between a page and the next 
you may have to wait for other participants to make their choices. At the beginning of Part 1 you 
will see a page like this. 
 

 
 
At the beginning of a new round, you will see a page informing you of whether you are playing 
game A, B, C, D or E. 
 

 
 

In this page, you are told your type and whether you are an active player or passive player. 
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If you are an active player in this round, you are also given a clue about your potential partner’s 
type and you decide whether you want to form a partnership or not. 
 

 
 

At the bottom of this page you can see a table with a history of all the previous rounds. 
 

 
 

If you do not click the “next” button on this page, after one minute the app will move you to the 
next page. In the next page you are told your points in this round and the actual type of your 
partner. 
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When you have played the last round of Part 1, you will see a page informing you that this part 
is over. In this page you will find out the Part 1 paying round. At the bottom of this page you can 
see the history table summarizing all the rounds. 
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PART 2 
 
 
 
In this part, you will face 10 decisions listed on your screen. In each decision you have to choose 
between "Option A" and "Option B". If you choose Option A, you will earn either 6 or 5 points. If 
you choose Option B, you will earn either 10 points or 1 point. After you choose one option, 
whether you earn the higher payoff or the lower payoff is randomly determined by the computer. 
Before making a choice, you will know the exact probability of earning the higher payoff rather 
than the lower payoff in each option. For example, in one decision Option A will give you 6 points 
with a probability of 30% and 5 points otherwise, while Option B will give you 10 points with a 
probability of 30% and 1 point otherwise. 
 

 
 
As in this example, in any one of the 10 decisions, the probability you will earn the higher payoff 
(6 if Option A is chosen or 10 if Option B is chosen) is the same between option A and option B.  
In the first decision, at the top of the list, the probability you will earn the higher payoff is 10%. 
As you move down the table, the chances of the higher payoff for each option increase. In fact, 
for decision 10 in the bottom row, each option pays the highest payoff for sure. So, your choice 
in decision 10 is simply between 6 points (Option A) or 10 points (Option B).  
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For each of the ten decisions, you will be asked to choose Option A or Option B by clicking on the 
appropriate button. The computer will ensure that you switch at most once from Option A to 
Option B. If you choose Option A in one decision, the computer will automatically select Option 
A for all the previous decisions. If you choose Option B in one decision, the computer will 
automatically select Option B for all the following decisions. Once you have made a choice in all 
decisions, you can click on the Next button to submit your choices.  
 

 
 
After you have submitted your choices, one of the 10 decisions will be randomly chosen for your 
payment. For the option you chose, A or B, in this decision, the computer will randomly 
determine whether you earn the higher or lower payoff. To determine the outcome of your 
choice, the computer will digitally draw a random number between 0 and 100. If the random 
number is below the probability of earning the higher payoff, then you receive the higher payoff. 
If the random number is above the probability, then you receive the lower payoff. For example, 
assume you chose Option A in the first decision and this decision is selected for payment. If the 
computer randomly draws a 60, you will earn 5 points. 
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At the end of the experiment, the points you have earned in the selected decision will be 
converted to Euros at an exchange rate of 1/6 Euros per point. 
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PART 3 
 
 
 
In this part, you are asked to answer three questions. For each correct answer, you will receive 
two points. After you have submitted your answers, you will see the correct answers and the 
amount of points you have earned. At the end of the experiment, the points you have earned in 
this part will be converted to Euros at an exchange rate of 1/6 Euros per point. 
 
 
 
 

PART 4 
 
 
 
In this part, you are asked to provide some information about yourself (your sex and your 
undergraduate major). As stated before, your responses are completely confidential and 
anonymous. 
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