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Abstract

As the COVID-19 outbreak progresses, increasing numbers of researchers are examining how an

array of factors either hurt or help the spread of the disease. Unfortunately, the majority of available

data, primarily confirmed cases of COVID-19, are widely known to be biased indicators of the spread

of the disease. In this paper we present a retrospective Bayesian model that is much simpler than

epidemiological models of disease progression but is still able to identify the effect of covariates on the

historical infection rate. The model is validated by comparing our estimation of the count of infected to

projections from expert surveys and extant disease forecasts. To apply the model, we show that as of

April 20th, there are approximately 3 million infected people in the United States, and these people are

increasingly concentrated in states with more wealth, better air quality, fewer smokers, more residents

under the age of 18, more public health funding and a history of more cardiovascular deaths. On the

other hand, the timing of state declarations of emergency and the proportion of people who voted for

President Trump in 2016 are not clear predictors of COVID-19 trends. In addition, we find that the

US states have increased testing at approximately the same level in line with infections, suggesting that

testing has not yet increased significantly above infection trends.1
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As more and more data has become available on observed case counts of the SARS-CoV2 coronavirus,

there have been increasing attempts to infer how contextual factors like government policies, partisanship,

and temperature affect the disease’s spread (Carleton and Meng 2020; Sajadi et al. 2020; Dudel et al.

2020; Tasnim, Hossain, and Mazumder 2020; Seth Flaxman 2020; Brzezinski et al. 2020). The temptation

to make inferences from the observed data, however, can result in misleading conclusions. For example,

some policy makers have publicly questioned whether the predictions of epidemiological models are far

worse than the observed case count.2 By contrast, in this paper we show that the unobserved infection

rate is a confounding variable affecting any estimates of covariates on the observed counts of COVID-

19 cases and tests. For this reason, in this paper we present a retrospective Bayesian model that can

adjust for this bias by estimating the unseen infection rate up to an unidentified constant. Furthermore, by

incorporating informative priors from the susceptible-infected-recovered (SIR)/susceptible-exposed-infected-

recovered (SEIR) papers on SARS-CoV2 (Peak et al. 2020; Riou et al. 2020; Robert Verity 2020; Perkins et

al. 2020; Jose Lourenco 2020; Ruiyun Li 2020; Neil M Ferguson 2020), it is possible to put an informative

prior on the unobserved infection rate and estimate both recent disease trends and the effect of covariates

on the historical spread of the disease.

We also show how the model can be applied by measuring the association between U.S. state-level factors

and the disease as of April 20th, 2020, including the timing of state of emergency declarations, vote share in

the 2016 election for President Donald Trump, the percentage of foreign born and younger residents, gross

domestic product (GDP) per capita, and health-related factors. The results show that as of April 20th,

there are approximately 3 million infected people in the United States, and these people are increasingly

concentrated in U.S. states with more wealth, better air quality, fewer smokers, more people under the age

of 18, and a history of more cardiovascular deaths per capita. On the other hand, the proportion of people

who voted for President Trump in 2016, the amount of public health funding in a state and the date that a

state declared an emergency are not clear predictors of COVID-19 trends.

In addition, the model is able to capture the relationship between the unobserved number of infected individ-

uals and US states’ testing capacity. It shows that testing capacity has increased in tandem with infections,

suggesting that the growth in tests has not yet exceeded growth in infections.

1 Methods

In this section we present an intuitive overview of the model, and we refer the interested reader to the

supplemental materials for a more complete exposition combined with Monte Carlo simulations showing
2See article available at https://www.realclearpolitics.com/video/2020/03/26/dr_birx_coronavirus_data_d
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recovery of the latent infection rate.

Compartmental models employed by epidemiologists to study disease, and in particular SARS-CoV2 (Peak

et al. 2020; Riou et al. 2020; Robert Verity 2020; Perkins et al. 2020; Jose Lourenco 2020; Ruiyun Li 2020;

Neil M Ferguson 2020), suppose different classes (compartments) of individuals in the population, denoted

S for susceptible, I for infectious, and R for removed (other compartments may be added such as E for

exposed). The model is usually written in the form of a system of ordinary differential equations (ODEs)

and assumes a fixed population size, as seems reasonable during a relatively quick epidemic. The number

infected individuals can then be obtained from the solution of the ODE system for the I compartment.

These models guide our understanding of the disease and its progression, and have made warnings about

the disease’s spread that are proving true on a daily basis.

By contrast, this paper endeavors to estimate a much simpler quantity than the entire evolution of the

outbreak. Many researchers and the general public often want to learn about what has already happened,

or the empirical infection rate (also called the attack rate in the epidemiological literature). For a number

of time points t ∈ T since the outbreak’s start and countries/regions c ∈ C, we aim to identify the following

quantity:

ft

(
Ict

Sct + Rct

)
Assuming a fixed population size, this quantity is simply the marginal rate of infections in the population up

to the present. The function ft determines the historical time trend of the rate of infection (which is assumed

to be same across countries/regions) in the population up to time T , the present. Because the denominator

is shifting over time due to disease progression dynamics, this model is only useful for retrospection, i.e.,

to examine factors that may be influencing the empirical time trend ft. As Sct and Rct are exogenous to

the model, the model cannot predict future prevalence of the disease given that it does not determine these

crucial factors. In other words, this model can be seen as a local linear approximation to the Ict curve from

an SIR model.

However, we do not have estimates of the actual infected rate Ict, only positive COVID-19 cases act and

numbers of COVID-19 tests qct. Given this limitation, the aim of the model is to backwards infer the

infection rate Ict as a latent process given observed test and counts. Modeling the latent process is necessary

to avoid bias in using only observed case counts as a proxy for Ict. The reason for this is shown in Figure 1

in which a covariate Xct, such as temperature, is hypothesized to affect the infection rate Ict. Unfortunately,

increasing infection rates can cause both increasing numbers of observed counts act and tests qct. As more

people are infected, more tests are likely to be done, which will increase the number of cases independently
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of the infection rate. As a result, due to the back-door path from the infection rate Ict to case counts act via

the number of tests qct, it is impossible to infer the effect of Xct on Ict from the observed data alone without

modeling the latent infection rate.

Figure 1: Directed Acyclic Graph Showing Confounding of Covariate Xct on Observed Tests qct and Cases

act Due to Unobserved Infection Rate Ict

Xct Ict

qct

act

Figure shows the relationship between a covariate Xct representing a policy or social factor influencing the infection rate Ict.

Because the infection rate Ict influences both the number of reported tests qct and reported cases act, any regression of a

covariate Xct on the reported data will be biased.

The Bayesian model presented in the supplementary materials provides a full explanation of how to model

the infection rate’s influence on both cases and tests simultaneously. We further show in the supplementary

materials that two restrictions are necessary to identify the sign and rank of the effect of covariates Xct on

Ict: the paths Ict → qct and Ict → act must be strictly positive so that an increasing infection rate will have

a non-decreasing effect on cases and tests. Given these restrictions and weakly informative priors on the

parameters, it is possible to know whether Xct is associated with increasing or decreasing Ict, though not

with respect to the actual number of infected people, only in terms of the covariate’s sign or rank relative

to other covariates.

Furthermore, we show in the supplementary materials that if further prior information can be put on the

ratio between the true number of infected individuals Ict and the number of tests qct, it is possible to

transform inferences from the model to approximate counts of infected people up to the present. Thankfully,

this information is available through epidemiological models of the disease, which offer inferences on the

number of un-diagnosed cases (Ruiyun Li 2020; Peak et al. 2020). Based on these estimates, we can put an

informative prior in the model that the number of tests is likely to be at least 10% of the total number of

infected individuals, reaching as high as 10 times the number of infected. With this prior information from

disease simulations, it is possible to obtain an empirical estimate of infected rates and covariate effects that

are more useful to the general public than solely observed tests and cases, as we demonstrate in the next

section.

Finally, we note that an advantage of this framework is providing a way to measured the count of infected

adjusting for known biases in the number of tests. By comparing numbers of tests per capita and growth

rates in cases across regions, the model is able to backwards infer a likely number of infected individuals

4



in a given area. As such it exploits both within-area and between-area variance to adjust for the biases of

imperfect testing.

2 Results

The only data required to fit the model, in addition to the covariates of interest, are observed cases and tests

for COVID-19 by day. In this section, we fit the model to numbers of COVID-19 case counts on US states

and territories provided by The New York Times. By doing so, we can use the differences in trajectories

across states to help identify the effect of state-level covariates on the infection rate. We supplement these

observed case counts with testing data by day from the COVID-19 Tracking Project. The testing data starts

at March 4th, so we impute the testing data back in time by assuming that the average case/tests ratio stays

the same to the origin of the outbreak. Furthermore, as there are discrepancies where the reported number

of tests in some states like New Jersey is less than the total number of cases, we impute the number of tests

via the case/test ratio for the sample as a whole.

To analyze the effect of suppression policies, we proxy for preparedness to fight the epidemic by including

the date that states of emergencies were declared across U.S. states and territories in the model.3 The

suppression covariate is then equal to a vector of days. We further add in state-level data on Donald

Trump’s vote share for the 2016 election from the MIT Election Lab, a 2019 estimate of state GDP from the

Bureau of Economic Analysis, the 2018 percentage of foreign born residents from the U.S. Census Bureau,

and 2019 state-level average data on air pollution,4 cardiovascular deaths per capita, percentage of residents

under age 18, number of dedicated health care providers, public health funding, and smoking rates provided

by the United Health Foundation (“America’s Health Rankings 2019 Report” 2019). All variables are mean-

centered and standardized.

In this section we first fit a partially-identified model without any information about the true number of

infected people to demonstrate that it is possible to obtain an estimate of the infection trend, though with

substantial uncertainty. We then show how we can use insight from SIR/SEIR models to add in informative

prior information on the likely number of infected people and translate the estimates into probable infection

rates. We then show that these estimates in fact closely track the predictions of SIR/SEIR models for the

U.S. population from March 2020, providing external validity for the method and for these predictions.

Figure 2 shows the 5% - 95% high posterior density (HPD) intervals of the latent infection rate by state
3See this site for dates and relevant sources: https://en.wikipedia.org/wiki/U.S._state_and_local_government_response_

to_the_2020_coronavirus_pandemic
4Defined as average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micro-

grams per cubic meter (3-year estimate).
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since January 1st. The intervals are shaded by the relative time when a state declared a state of emergency,

which reveals that state of emergency declarations are correlated with higher infection rates. As can be seen,

there is a sharp discontinuity in the plot around March 1st when infection rates began to increase. While

it would appear that the rate of increase has leveled off in the last week, that is not a supported inference

as the scale is the logit scale, which is similar to the log scale in that higher numbers are farther away than

they appear visually. Because the latent scale is not identified, the figure is only showing how the infection

rates have evolved from zero to the true but unknown top infection rate. As such, it appears to be slowing

as it reaches the top of the scale, but that is simply an illusion of the underlying sigmoid function.

Estimated Infected:
3,844,164 − 4,293,296

Total Reported Cases:
726,973

Li et al. March 8th
Perkins et al. March 26th

Expert Survey
2020−03−23

Expert Survey
2020−03−30
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Blue 5% − 95% HPD intervals show estimated infected and the black line
shows observed cases from the New York Times.

These estimates are based on the assumption that as few as 10% of cases
may be reported based on SIR/SEIR models.

Figure 3: Approximate Total Number of COVID-19 Infected Individuals in the U.S. as of April 20th

By comparison, Figures 3 and 4 show fully-identified models incorporating informative prior information

suggesting that the ratio of tests to infected ratio individuals is probably no less than 10% of those infected

(though it could very high). This information, as previously mentioned, was derived from simulation and

statistical modeling of COVID-19 outbreaks so far suggesting that a large proportion of infected individuals
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are undetected (Ruiyun Li 2020; Peak et al. 2020). Based on this information, the scale of the latent infection

process shown in Figure 2 can be further identified. Figure 3 shows that the likely cumulative number of

infected cases, including those who may have recovered or died, is likely approaching 4 million infected

individuals in the United States, in line with SIR/SEIR and expert survey projections released recently.5

Furthermore, Figure 4 shows significant state by state heterogeneity, with New York showing the greatest

number of infected, followed by California. There is some suggestive evidence that California’s infected count

growth may be slowing, though the large uncertainty interval suggests that this inference would be unwise

without more data or assumptions.

As described in the modeling section, the model does not provide estimates that can be extrapolated into

the future. Because the model is estimating empirical infection rates, it is primarily useful for adjusting

empirical data, or the count of tests and cases and other background factors. However, because the model

is substantively different than the SIR/SEIR simulations used to guide policy choices, it provides helpful

external validation of these models incorporating observed information with minimal assumptions.

Figure 7 shows the marginal effect of covariates in the model on the latent infection rate, expressed as the

marginal increase in proportions for a standard deviation increase in the covariate. Each covariate has two

kinds of marginal effects: a cumulative effect in the top panel and a time-varying effect in the bottom panel,

where time is coded as a linear counter since the start of the outbreak (at least one case recorded) in each

state. As can be seen, the cumulative effects are generally less precise, but the over-time effects show clear

trends. States with larger young and foreign-born populations, a higher GPD per capita and more health care

providers are seeing increasingly higher infection rates. By contrast, states with more smokers and better

air quality are seeing increasingly fewer infections. These set of associations are not necessarily causal, as

they are influenced by the spatial spread of the disease thus far, with outbreaks starting in wealthy coastal

states and progressively moving inland. As the disease continues, we expect these associations to shift as we

learn more about the effect of suppression policies targeting the disease.

However, it is important to note that state-level Trump vote share is not associated with increasing COVID-19

infections, despite public opinion polling showing that Americans who are more conservative tend to discount

the danger posed by the virus.6 In addition, those states that declared an earlier state of emergency have

not yet witnessed a slowing infection rate. It is important to notice, however, that there is a roughly 14 day

lag between action and effect. Anything states do, be it beneficial or detrimental, and however big is its

effect, will take about a fortnight to manifest itself in the data. At present, however, there is no reason to

believe that states that declared emergencies later or have more Trump voters are facing increasing disease
5See https://www.nytimes.com/2020/04/01/world/coronavirus-news.html?action=click&module=Spotlight&pgtype=

Homepage for a recent overview.
6See https://www.vox.com/2020/3/15/21180506/coronavirus-poll-democrats-republicans-trump.
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trends. While we expect these trends to change over time, it is important to note what the empirical data

support at present.

While the use of informative priors is very helpful for obtaining estimates that can be mapped back to

actual number of infected persons, as we show in the supplementary information, we can in fact identify

covariate effects (or at least their signs) without information about the ratio of tests to infected persons.

To demonstrate this, we calculate time-varying marginal effects on the latent infected rate from both the

partially-identified and fully-identified models and show them in Figure 6. While there are certainly effect

size and uncertainty differences between the models, the estimates are quite similar, and the signs are always

in the same direction. For these reasons, we believe this model to be useful even in the case where there is

no useful or credible information about the ratio of testing to infected.

Finally, Figure 7 compares the underlying parameter estimates from the latent Bayesian model and a binomial

model of the observed case counts with the same covariates as predictors (including time trends). As can

be seen, the estimates of these models can wildly diverge, with the observed case count model showing far

larger and implausibly precise associations between covariates and case counts. Of particular worry is when

covariates are correlated with a state’s ability or willingness to test for the virus.7

For example, the coefficient for per capita GDP shows an implausibly large positive association (+20 on the

logit scale) in the observed cases model, suggesting that the more wealth in a state, the lower the infection

rate. To show the potential confounding in this result, Figure 8 plots GDP per capita against state COVID-

19 tests per capita, revealing states with more infected people–Washington and New York–have implemented

many tests and are also more wealthy on average. As such, the observed data model is likely obfuscating the

strength of the correlation between GDP per capita and the number of tests with the spread of the disease.

In addition to the estimation of covariates, the model provides further useful information by parameterizing

the relationship between the unobserved infection rate and the number of tests conducted in a given state.

These individual parameters are shown in Figure 9. The scale of the y axis shows how much tests will

increase for a unit increase of the infection rate on the logit scale. Given the multiplicative nature of the

logit scale, the best way to understand the parameter is given a particular infection rate. For example, if we

use a recent estimate of the US population at 330 million, and take the recent observed case count (700,000)

as the quite conservative estimate of infected, then we have an infected rate of 0.002 for the US population.

Given a testing parameter of 1.03 and a baseline of equal testing/infection capacity, then a unit increase

(logit scale) in the infection rate from 0.002 to 0.0057451 would increase the testing rate to 0.006. As such,

the model provides a relatively nuanced relationship that can help provide insight into how much states are
7We note that testing may be conducted for the virus using PCR, or for the disease, which would also include serology. This

also may explain why the observed model in Figure 7 shows such a high effect of GDP per capita on reducing infection counts.
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able to increase tests in proportion to infection rates.

Testing More
Than Infection Growth

Testing Less
Than Infection Growth

Louisiana
New York

New Jersey
Connecticut

California
Pennsylvania

Washington
Delaware

Rhode Island
Utah

North Dakota
Michigan

Maine
New Mexico

Minnesota
Tennessee

Nevada
Indiana

Wyoming
Idaho

Colorado
Arizona

South Dakota
Oregon

Vermont
Iowa
Ohio

South Carolina
Kentucky
Nebraska

Alaska
Florida

Georgia
Kansas
Virginia

Arkansas
Illinois

Mississippi
Hawaii

Missouri
North Carolina

Alabama
West Virginia

Texas
Wisconsin

Montana
Oklahoma

Massachusetts
New Hampshire

District of Columbia
Maryland

Ahead of
Curve

.98 Keeping
Up

1.02 1.04 Behind
Curve

Proportion Tested Relative to Proportion Infected (Lower Numbers = Higher Testing Rate)
Scale of the estimates shows how increases in the infection rate increase
the number of tests in a given state. Higher numbers indicate fewer tests

conducted for a unit increase in the infection rate (on the logit scale).
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We would note that this information is also helpful to policy makers and others trying to make sense of

observed case counts given the limitation in testing thus far. Our estimates help take into account these

known biases and adjust them based on differences between states and within states in terms of disease

trajectories. We believe this model can be used to help understand disease trends and factors associated

with it even in the relatively data-poor environment many countries find themselves in.
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3 Conclusion

This model was devised to permit the identification of suppression measures and social, political and economic

factors on the spread of COVID-19. It is not intended to be a replacement or alternative to the disease

forecasting literature, especially as this model relies on SIR/SEIR estimates for full identification. If anything,

this modeling exercise shows why explicit mechanistic epidemiological models are so important: without them

it is literally impossible to know the total number of infected people on a given day. This model’s simplicity

and ability to use empirical data are its main features, and the hope is that it can be used and extended

by researchers looking at government policies and other tertiary factors on the spread of the disease. At

the very least, the model provides realistic uncertainty intervals taking into account very real biases in the

observed data.

In addition, the model provides insight into how the number of tests undertaken by a given country or

area compares to the probably number of infections. These parameter estimates can be used to understand

whether a state’s testing exceeds, is the same as or is less than the number of infected individuals. Given

the wide problem of data scarcity in understanding the disease’s spread, we hope this model can be used to

make the most of empirical evidence.

To fit the model, it is necessary to have at least an estimate of how many tests have been conducted. The

CoronaNet project is currently working to obtain testing data, in addition to information about government

policy responses to COVID-19, in an effort to better understand the role and success of variation in country

policy responses to date.
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