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Abstract

We develop a model of strategic network formation of collaborations to analyze the consequences

of an understudied but consequential form of heterogeneity: differences between actors in the

form of their production functions. We also address how this interacts with resource hetero-

geneity, as a way to measure the impact actors have as potential partners on a collaborative

project. Some actors (e.g. start-up firms) may exhibit increasing returns to their investment

into collaboration projects, while others (e.g. established firms) may face decreasing returns.

Our model provides insights into how actor heterogeneity can help explain well-observed col-

laboration patterns. We show that if there is a direct relation between increasing returns and

resources, start-ups exclude mature firms and networks become segregated by types of produc-

tion function, portraying dominant group architectures. On the other hand, if there is an

inverse relation between increasing returns and resources, networks portray core-periphery

architectures, where the mature firms form a core and start-ups with low-resources link to them.
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1 Introduction

Collaboration is key to realize outcomes that are difficult to achieve individually. Examples of

mutually beneficial collaboration can be found in joint ventures between firms (Goyal and Moraga-

González 2001) as well as in scientific co-authorships (Jackson and Wolinsky 1996), among many

other cases. A key question underlying collaboration choices is under which conditions engaging in

a collaborative project with a specific partner becomes mutually beneficial, and how do such con-

ditions affect choices in a network of collaborations where there are multiple partners and multiple

projects at the same time. In this paper, we focus on how two characteristics of collaboration part-

ners affect the way collaboration networks are shaped. Namely, we focus on the relation between

the endowment of resources actors have and the production functions governing the way they can

make use of such resources.

Resource endowments play a key role in how attractive actors are as potential collaborative

partners (Blau 1964; Homans 1958; Cook and Emerson 1978; Molm 1994). Wealthier potential

partners are more appealing than poorer ones to form alliances with (Cook et al. 1983; Emerson

1962). Yet, screening potential partners only for the size of their resource endowment neglects an-

other key source of productivity: their ability to put those resources to productive use. This ability

is captured by an actor’s production function. An actor’s production function can yield increas-

ing or decreasing marginal returns to his investment into a collaborative project. Consequently,

the relation of the production function and available resources represents the potential impact an

actor can make on a collaborative project. That is, actors can potentially have a high impact on

a collaboration either because they have large amounts of resources despite being less productive

(i.e., decreasing marginal returns) or because they are more productive (i.e., increasing marginal

returns) despite having smaller endowments.

Differences in production functions can arise from differences between actors in terms of skills,

talents, or available technology (Collins 1990; Sellinger and Crease 2006). For example, a startup

with an innovative technology that is in its early stages of development represents an actor whose

production function generates increasing marginal returns, because further investments into it yield

increasingly fast progress. An example of an actor whose production function generates decrease

marginal returns would be a firm operating with a mature technology, for which investments into

new technology do not yield significant productivity gains. For example, in the realm of inter-firm

collaboration, consider Campbell Soup Co., which invested $125 million in January 2016 to finance

food start-ups, hoping that this would allow them to keep up with small companies increasingly
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dominating the food trends in the United States.1 A mature firm like Campbell has ample resources,

and yet aimed for alliances with smaller partners, whose “start-up” production functions, promised

higher returns on investment than collaboration with another equally large firm, or scaling up its

own business. Notably, in a case such as this, having large available resources can compensate for

having a decelerating production function, allowing large firms to occupy a central position in the

collaboration network.

We propose a model of network formation to study the way individual heterogeneity in available

resources and actors’ production functions impact collaboration choices. Thus, the first aim of the

paper is to formalize how the distribution of heterogeneous individuals in the population shapes

the strategic formation of collaborations and the network architectures that emerge. Specifically,

we model collaboration networks as weighted graphs were actors simultaneously choose with whom

to collaborate and how much of their resources to allocate into each collaborative project. Actors

can also keep resources to allocate into in-house production, for which they do not require any

partners. To illustrate the strategies players follow, contingent on their type (production function),

we provide a progressive characterization of equilibrium outcomes. We start with the simplest case

of collaborations in a 2-person game, which allows us to look at all possible combinations of types

of players and endowments of resources. We then move to the more general case of n-person games,

where we focus on Nash as well as pairwise stable Nash equilibria.

The intuition of our main results is as follows: In terms of strategies, there are mixed effects

of joint collaboration strategies with substantial differences between types of actors. Actors with

production functions that yield decreasing marginal returns (dmr), e.g. mature firms, are better

off diversifying their resources into multiple collaborations, while actors with increasing marginal

returns (imr), e.g. start-ups, are better off following an all-or-nothing strategy. This is so because

imr actors are only attracted to partners that can make a high impact on the collaborative project,

otherwise they are better off investing all their resources into in-house production, while dmr actors

benefit by establishing collaborative projects of different sizes.

Consequently, the way resource endowments are distributed between types of actors will impact

the emerging patterns of collaborations. For instance, when resources are such that imr actors can

make a high impact into a collaborative project while dmr actors can only make a low impact,

networks become segregated between types of players. These resulting networks resembling domi-

nant group architectures, where imr types only collaborate between them or stay isolated, while

dmr actors end up excluded and forming multiple collaborations between them (see Figure 1a).

On the other hand, when resources are distributed in such as way that dmr actors can make a

1“Campbell Invests $125 Million in Project to Fund Food Startups”. The Wall Street Journal. February 17, 2016.
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a. Dominant group b. Core-periphery

Figure 1. Examples of prominent collaboration networks.

Note: The color inside a node represents its type: dmr (light blue) or imr (dark red). The letter inside the node
represent the impact a node can have in the collaborative projects with his partners: Low, Medium or High impact.
Nodes with a thick black border allocate resources to in-house production. A link between two nodes represents a
collaborative project.

high impact on the collaborative projects they form, while imr actors can only make a low impact,

networks resemble core-periphery architectures. Specifically, the well-endowed dmr actors form

a core between them and also establish collaborations with imr actors, who are unattractive to

each other (see Figure 1b). Both of these classes of networks are prominent in the literature and

provide evidence that our focus on variations of resources and production functions has valuable

insights into real-world networks for different domains. This is further discussed in the following

section.

In the remainder, we first highlight our contribution to the existing literature and then outline

the model. Subsequently, we characterize equilibrium outcomes as a result of the interactions of

actors with different resources and production functions. We then close the analysis by focusing on

networks that are pairwise stable Nash equilibria. We conclude with a discussion of the implications

and limitations of the study.

2 Relation to the literature

Our study draws on and contributes to the research on collaboration as well as on the literature on

endogenous network formation.

First, its theoretical point of departure is the formation of collaboration projects, also referred

to as strategic alliances (Belderbos et al. 2006) or productive exchanges (Molm 1994, 1997). Col-

laborations refer to interactions in which actors join their resources, aiming at outcomes greater

than the aggregation of what each could have gotten separately (for a survey see Cook and Cheshire

2013). Notably, research on collaborations has singled out resource heterogeneity as a major an-

tecedent of collaboration network structures: the larger an actor’s resource endowment, the more
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attractive this actor becomes as a collaboration partner (Goyal and Joshi 2003; Galeotti et al.

2006).

Our work is closely related to Flache and Hegselmann (1999) and Hegselmann (1998) who study

how heterogeneity in resources shapes social support network. Their main findings indicate that

resource heterogeneity can result in exclusion and segregated networks. Specifically, they observe

that resource rich actors need little help but can give a lot of help to those in need, while resource

poor actors need a lot of help but have little to give. Resource rich actors seeking to optimize

their collaborative relations prefer to form partnerships with other resource rich actors, thereby

indirectly excluding resource poor actors from their collaboration choices. For the latter, only

other resource poor actors remain as potential partners, leaving resource poor actors with less

favorable collaboration opportunities (see also Flache 2001). An implicit assumption behind these

resource heterogeneity approaches is that everyone has the same production function. Whereas in

such cases resource rich actors may indeed be the most attractive collaborative partners. Our work

extends this analysis by modeling heterogeneity of collaboration partners’ production functions.

The interaction between resources and production functions shows conditions under which resource

rich actors do not acquire a central position.

A second indication from the empirical work on collaboration is that there seems to be a positive

impact of the establishment of various collaborations, e.g., R&D ventures, on firm performance (see

e.g., Goyal and Moraga-González 2001). In this sense, a key contribution of our work is to provide a

framework that allows for differences in the production functions firms have. In this framework, we

find that there are mixed effects of joint collaboration strategies with substantial differences between

types of firms, due to their production functions. Namely, large firms benefit from diversification

while smaller firms face diseconomies when pursuing multiple collaborations at the same time.2 In

this sense, our work is closely related to Belderbos et al. (2006), who observe empirical evidence

showing that in many sectors and industries some firms diversify while others do not, and the main

driver of these differences is the size, i.e., productive capacity, of the firms. Also to Baker et al.

(2008) who found these patterns of “unstructured collaborations” in the pharmaceutical industry.

We model the collaboration strategies as resulting from actors strategically optimizing their

investments across several collaborative projects. In this sense, we build on the literature on en-

dogenous network formation (Jackson and Wolinsky 1996; Snijders and Doreian 2010), investigating

2There is a stream of literature in sociology looking at collaboration interactions. However, their focus is on

exogenously imposed networks (Cook and Emerson 1978; Bienenstock and Bonacich 1992; Molm and Cook 1995;

Dijkstra and van Assen 2006) or restricted to the activation of a single collaboration at a time (Willer 1999), which

impedes the analysis of collaboration strategies.
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which structures (i.e., patterns of relations) emerge from rational actors’ attempts to optimize their

exchange relations (Jackson and Wolinsky 1996; Jackson and Watts 2001; Buskens and van de Rijt

2008; Braun and Gautschi 2006; Dogan and van Assen 2009; Dogan et al. 2011; Doreian 2006;

Hummon 2000; Raub et al. 2014). We specifically combine in a single choice network formation

and endogenous effort and in this sense our work closely relates to some relevant work in economics

(see e.g., Galeotti and Goyal 2010; Goyal and Joshi 2003; Jackson and Watts 2002). Most of this

models, however, treat actors as homogenous and disregard differences in attributes, which is a

main contribution of our work.

Our main findings are closely related to the results in Konig et al. (2014) and Belhaj et al.

(2016), both of which identify that in settings of strategic complementarities, such as collaboration

networks, the emerging pattern of strategic alliances resembles nested-split graphs. Two structures

that are prominently observed: dominant-group and core-periphery architectures. Our model

indicates how the relation between actors production functions and available resources may lead to

either of these patterns of collaborations. The dominant-group architecture is observed when big

firms have limited resources, which makes them unattractive for innovative firms, such as start-ups.

The consequence of the dominant-group network is that the network segregates by types of firms.

Another way interpret this segregated structures is that if firms do not manage to accumulate

enough resources when they reach maturity, they are likely to be precluded from collaborating with

innovative partners. On the other hand, the core-periphery architecture is observed when big

firms have accumulated enough resources to become central while start-ups that have the potential

to be innovative and productive do not have the capital to make it happen, and depend on the

collaboration with mature firms.

In summary, our model contributes to the research on collaboration networks in two main

ways: First, we study actor heterogeneity in terms of both resource endowments and production

functions (e.g. expertise, skills, creativity, talent, or technology). This allows us to extend the

analysis that has been widely focused only on differences in wealth, and to evaluate the effect of

how actors’ ability to use such wealth in collaborative projects makes them more or less attractive

as potential partners. Second, we advance strategic network formation models by conceptualizing

actors’ investments as a continuous rather than a dichotomous variable. This allows us to study

the problem of collaboration in weighted networks where the intensity of the interaction, and not

just its existence, is evaluated. By means of this, we can show that the particular choice of a

Cobb-Douglas payoff function for our model provides results in line with more general forms. But

additionally, its specificity allows us to tackle a problem that is of utmost interest in the literature on

networks, and specifically in the literature on collaborations: the relation of link existence and link
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a b c

Figure 2. Production functions.

Note: The horizontal axis represents units of resources allocated by an actor to a collaborative project and the
vertical axis represents levels of outputs (i.e., impact) achieved with these resources, given a fixed and strictly
positive allocation by a collaborative partner.

intensity. That is, our specificity in the payoff function provides useful insights into the unexplored

framework of weighted networks. As a result, we are able to show how some network structures

that have been persistently observed in theoretical and empirical work, namely dominant group

and core-periphery networks, arise as weighted networks, and how they depend on the relation

between productive functions and available resources in the network.

3 The model

The model rests on two general assumptions. First, players differ in their resource endowments

and in their production functions, which can yield increasing or decreasing marginal returns to

investments. Second, players can form collaborations with others, in pairs, by pooling resources

with their partners. They can establish multiple collaborative projects at a time, distributing

their resources across partners. We elaborate on both assumptions below, proceeding to the game

theoretic analysis thereafter.

3.1 Heterogeneity in resources and in production functions

Whether a collaborative project is mutually attractive to a pair of players depends on their resource

endowments, their production functions, and the production functions and endowments of alter-

native collaborative partners. We distinguish production functions with decreasing or increasing

marginal returns to their allocation of resources, which represents a player’s type in the game. This

is summarized in the definitions below.

Definition 1. Decreasing marginal returns to own investments (dmr): A player has type

dmr if his production function is such that for each extra unit of resources allocated to a collaborative
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project, the resulting output will be less valuable than that of the previous unit, keeping the allocation

of the partner fixed.

Definition 1 indicates that for a dmr player the first units of resources invested in a project

have the greatest impact and subsequent units invested in the same project are less valuable, as

illustrated in Figure 2.b.

Definition 2. Increasing marginal returns to own investments ( imr): A player has type

imr if his production function is such that for an extra unit of resources allocated to a collabora-

tive project, the resulting output will be more valuable than that of the previous unit, keeping the

allocation of the partner fixed.

Definition 2 indicates that the first units of resources invested by an imr player into a col-

laborative project have negligible impact, and only after a certain amount of resources have been

invested, the additional investments make a big difference, as illustrated in Figure 2.c.

The shapes of the production functions in the model can be understood as giving a snapshot

of “short run” situations in which technology is fixed. Thus, firms may be in different stages of a

more general production processes such that the usual s-shaped curve (see Figure 2.a) for marginal

returns does not apply. Instead, firms production functions can be in the accelerating (imr) or

decelerating (dmr) part of the curve.3

3.2 Strategic link formation

Our model portrays collaboration networks as weighted graphs. A link in this graph represents

a dyadic collaborative project. The weight of a link represents the output of the collaboration.

The size of this output is determined by the joint impact of the parties involved. The impact is

expressed as the partners’ allocations to the relation and the combined effect of their production

functions. That is, we integrate two choices actors make: with whom they connect and how much of

their resources they allocate to each of their connections. These choices are decided simultaneously

by the pair of allocation decisions made by two (potential) collaboration partners. If at least one

of them allocates no resource to the collaborative project, the project does not take place. If both

allocate resources to the project, the output of these allocations determines the link weights and

3The effects of production functions have been studied before, especially in Marwell and Oliver’s work on critical

mass in collective action (Marwell et al. 1985; Marwell and Oliver 1993). In their work, however, the shape of a

production function is a property of the collective good, rather than a property of (potential) individual contributors,

as in our study. In our approach, both partners’ production functions jointly affect the output of the collaborative

project.
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the outcome of the collaboration for each partner. The total amount of resources an actor possesses

puts a constraint on how much can be invested in a single project.

Decision making about link formation and resource allocations is modeled in terms of a one-

shot non-cooperative game. The set N = {1, . . . , n}, where |N | ≥ 2, represents the players in the

collaboration network game, denoted by Γ. Every player i ∈ N is ex-ante and exogenously endowed

with a fixed individual amount of resources Ωi > 0, that can vary across players i. Also, players

are assigned a type expressed by his individual production function δi > 0. A player has type dmr

when his production function yields decreasing marginal returns to an additional unit of resources

invested in a collaborative project, δi < 1, and type imr when the marginal returns are increasing,

δi > 1.4

Prior to the start of the game, players are informed about the size of the set of players, which

is fixed throughout the analysis, and the endowments and types (i.e., production functions) of

all players. We represent the network by the set of undirected links, g, denoting collaborative

projects between connected players. A collaborative project between two players i and j is denoted

by ij ∈ g, whereas ij /∈ g indicates that there is no collaboration. Resources not invested in

collaborative projects are used by players for in-house production, denoted by the self-link ii ∈ g.

The set of partners a player i has is Ni(g) = {j : ij ∈ g}, for all j ∈ N . The cardinality of Ni(g) is

ni (the degree of node i in the network), and is endogenously determined through the simultaneous

choices of all players.

Each player can form more than one collaboration simultaneously and at most n − 1. In

addition, a player can establish a connection to himself (i.e., his in-house project). A player i

simultaneously chooses whom to collaborate with and the amount of resources to allocate into

each of his collaborative projects, expressed by the vector of allocations xi = {xi1, . . . , xii, . . . , xin},

where Ωi constrains the size of total investments player i can make. The allocation of resources by

i can be made to two types of projects: in-house, xii, and collaboration with a partner j, xij . We

denote x(Ni(g)) as the vector of allocations made to i by i’s partners. When a player j does not

wish to collaborate with i he simply allocates no resources to i.

Payoffs in the game are determined by a Cobb-Douglas production function, ui(Γ), which de-

pends on the allocation choices made by all players and the shapes of their individual production

functions, i.e., their types, as follows:

4Following the functions in Figure 2, players with δi < 1 are decelerating players, players with δi = 1 are linear

players, and players with δi > 1 are accelerating players. We focus our analysis on accelerating and decelerating

players. However, proofs account for linear players as well.
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ui(δi, δ−i, xi, xNi(g)) = ρxδiii +

n∑
j 6=i

xδiijx
δj
ji (1)

where δ−i is the vector of parameters of the production functions of players other than i, and

ρ > 0 is a premium on individual production, weighting the relation between in-house and collab-

orative outputs.5 Note how this production function captures the essential feature of productive

collaborations, in which players cannot produce any value unless both partners to a collaborative

project contribute.6 We assume that players’ payoffs are identical to the summed productiveness

of their projects, ui(Γ). Note that, in our setup, one and the same player can be part of multiple

collaborative projects without necessarily distributing his resources equally between them.7

As mentioned above, players can differ in the amount of resources they are endowed with, Ωi,

and in the shape of their production function, δi. We refer to the relation between resources and

production functions as the potential impact a player can make as a partner in a collaborative

project. Players’ impact can be either high, medium or low. Formally, we assign to the set

H = {i : Ωδi
i > ρ} those players whose impact is high because it is greater than the premium on

individual production. Conversely, we assign to sets M = {i : Ωδi
i = ρ} and L = {i : Ωδi

i < ρ} those

whose impact is medium or low, respectively. Given that potential impact is not contingent only

on available resources, players of type dmr need a larger amount of resources than those of type

imr to have a high impact on a collaborative project.

We call the collection of allocation vectors of all players (one for each player) an allocation

profile, and denote it by (x1, . . . , xn). When no player has incentives to unilaterally deviate from a

given allocation profile (x∗1, . . . , x
∗
n), this profile is a Nash equilibrium. Formally:

ui(δi, δ−i, x
∗
1, . . . , x

∗
n) ≥ ui(δi, δ−i, x∗1, . . . , x′i, . . . , x∗n) ∀ x∗i 6= x′i, i ∈ N.

The Nash equilibrium requirement can be seen as a minimal condition for a collaboration

outcome to be consistent with the rational self-interest of the players involved. If the outcome is

5Note that players do not bargain or negotiate the exchange of resources but participate in reciprocal (and

contingent) acts of giving resources (see e.g., Lawler 2001; Molm 1990, 1994).

6For two players i and j, if xij > 0 and xji = 0, no collaboration occurs between them and the resources invested

by i in the failed project are lost. That is, the interaction is valuable if resources from i and j are used together, in

coordinated fashion, as in Baker et al. (2008). However, the resources invested by a player in in-house production

are multiplied by ρ. Coleman (1990), in his study of social exchange, assumes ρ = 1. In our case, by allowing for

multiple values of the premium on individual production we cover a wider set of productive scenarios.

7This is a more general assumption than found in some existing models where every time a player forms a new

link their resources are re-distributed symmetrically between all partners (e.g., Jackson and Wolinsky 1996).
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not a Nash equilibrium, then at least some players could gain from reallocating their resources and

would do so.

4 Equilibrium

In this section, we describe the Nash equilibria for the one-shot network game with complete

information, NE(Γ). We first define the set of strategies players have and discuss the 2-person

game in Section 4.1. The 2-person game serves to explain which partners a player would prefer,

given their potential impact, i.e., available resources and production functions, and illustrates

the best response logic. This analysis is extended to the n-person case, for which we provide a

characterization of the Nash equilibria in Section 4.2. Finally, in Section 4.3 we focus on the

reduced set of equilibrium networks that are both Nash and pairwise stable.

4.1 Strategies

A player in the network game Γ chooses an allocation vector xi. He either allocates his entire

endowment into in-house production (xii = Ωi;
∑n

j 6=i xij = 0), into collaborative projects with

others (xii = 0;
∑n

j 6=i xij = Ωi), or into a combination of both in-house and collaborative projects

(xii > 0;
∑n

j 6=i xij > 0), where always xii+
∑n

j 6=i xij = Ωi. Lemma 1 describes the strategies players

follow given their type, imr or dmr, and their partner’s impact to the collaborative project in a

2-person game, as follows:

Lemma 1. Optimal allocation in the 2-person game: The optimal choice of a player i of type

imr (δi > 1) is to allocate all of his resources into in-house production if his partner’s impact to the

collaborative project is low, or to allocate all his resources in the joint collaboration if his partner’s

impact is medium or high. The optimal choice of a player i of type dmr (δi < 1) is to distribute

his resources between in-house and collaborative projects, adjusted to his partner’s impact.

Proof. Lemma 1 describes the optimal allocations for the interaction between two players in the

collaboration game Γ. Formally, in the proof we denote the set of resources a player i has as Ω̂, where

Ω̂ ≤ Ωi. This means that we can generalize the proof for any proportion of resources considered

from the entire endowment Ωi. This is a useful consideration for the extension of the results to

games of any size n ≥ 2. However, we specifically use Ωi when we want to make explicit that the

entire endowment is allocated. Consider the optimization problem below, where a player i decides

on the optimal way of allocating his resources between in-house and collaborative production:

maxxii ui = ρxδiii + (Ω̂− xii)δix
δj
ji

10



Note that the maximization is phrased in terms of the resources i keeps for in-house production.

The First Order Condition (FOC) implies:

∂ui
∂xii

= ρδix
(δi−1)
ii − δi(Ω̂− xii)(δi−1)x

δj
ji = 0,

and the Second Order Condition (SOC) implies:

∂2ui
∂x2

ii

= ρδi(δi − 1)x
(δi−2)
ii ∓ δi(δi − 1)(Ω̂− xii)(δi−2)x

δj
ji R 0

so that:


u
′′
i > 0 if δi > 1 : @ internal maximum

u
′′
i = 0 if δi = 1 : u′i = ρ− xδjji R 0

u
′′
i < 0 if δi < 1 : internal maximum is feasible

For the case of player i of type imr, whose production function yields increasing marginal returns

(δi > 1), no interior point can be a local maximum, thus neither a global one. Therefore, only the

corner solutions (xii = 0;xii = Ωi) are candidates for a global solution. The payoff functions for

each are ui(xii = 0) = Ωδi
i x

δj
ji and ui(xii = Ωi) = ρΩδi

i , respectively. Thus, i’s best response (BR)

is:

BR =

 x∗ii = 0 if x
δj
ji ≥ ρ

x∗ii = Ωi if x
δj
ji < ρ

(2)

with indifference between the two possibilities if x
δj
ji = ρ.

If a player i has a type that yields constant returns to scale (δi = 1) it follows immediately from

the FOC that:

BR =


x∗ii = 0 iff x

∗δj
ji > ρ

x∗ii ∈ [0,Ωi] iff x
∗δj
ji = ρ

x∗ii = Ωi iff x
∗δj
ji < ρ

(3)

If a player has type dmr, we know from the FOC that ρδix
δi−1
ii = δi(Ω̂ − xii)δi−1x

δj
ji , where

ρxδi−1
ii = (Ω̂− xii)δi−1x

δj
ji , so that Ω̂ = xii[1 + (1

ρ)
( 1
1−δi

)
x

δj
1−δi
ji ]:

BR =

{
x∗ii = Ω̂[1 + (1

ρ)
( 1
1−δi

)
x

δj
1−δi
ji ]−1 if x

∗δj
ji R ρ (4)

To ascertain that Eq. (4) leads to a global BR we compare it to the two corner solutions.

Substituting Eq. (4), in ui yields:
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ui(x
∗
ii) = ρ(Ωi[1 + (1

ρ)
1

1−δi x

δj
1−δi
ji ]−1)δi + [Ωi − (Ωi[1 + (1

ρ)
1

1−δi x

δj
1−δi
ji ]−1)]δix

δj
ji

ui(x
∗
ii) =

ρΩ
δi
i

[1+( 1
ρ

)
1

1−δi x

δj
1−δi
ji ]δi

+ [Ωi − Ωi

1+( 1
ρ

)
1

1−δi x

δj
1−δi
ji

]δix
δj
ji

ui(x
∗
ii) =

ρΩ
δi
i +Ω

δi
i [( 1

ρ
)

1
1−δi x

δj
1−δi
ji ]δix

δj
ji

[1+( 1
ρ

)
1

1−δi x

δj
1−δi
ji ]δi

=
Ω
δi
i (ρ+ρ

δi
δi−1 x

δjδi
1−δi

+δj

ji )

[1+( 1
ρ

)
1

1−δi x

δj
1−δi
ji ]δi

=
Ω
δi
i ρ(1+ρ

δi
δi−1 x

δj
1−δi
ji )

[1+( 1
ρ

)
1

1−δi x

δj
1−δi
ji ]δi

ui(x
∗
ii) = ρΩδi

i [1 + (1
ρ)

1
1−δi x

δj
1−δi
ji ]1−δi

Now, the question is when is ui(x
∗
ii) ≥ ui(xii = Ωi). We say this condition is satisfied when:

ρΩδi
i [1 + (1

ρ)
1

1−δi x

δj
1−δi
ji ]1−δi ≥ Ωδi

i x
δj
ji

ρ
1

1−δi [1 + (1
ρ)

1
1−δi x

δj
1−δi
ji ] ≥ x

δj
1−δi
ji

ρ
1

1−δi ≥ 0

which is always true.

The proof for Lemma 1 formalizes how imr and dmr players best respond to their partners in a

dyadic interaction. The intuition of Lemma 1 is depicted in Table 1, where all possible matchings of

2-player games are summarized. Table 1 shows that imr players have all-or-nothing best responses,

as a function of their partner’s impact. Thus imr players have at most one collaborative project

with a partner who has a medium or high impact on the collaboration. Moreover, if they have

such as project, they dedicate all their resources to it (see Table 1b and Table 1c). Note that this

is possible because a collaborative project is assumed to be always big enough to absorb all of a

player’s resources. Table 1 also shows how a player with type dmr is better off diversifying the

use of his resources, by allocating positive fractions of his endowment into different projects. This,

unlike with imr players, is not impeded by his own or his partner’s impact (see Tables 1a and 1c).

The intersections of the best responses presented in Lemma 1 result in the Nash equilibria of

the 2-person game (which are not necessarily unique in terms of link intensity), as illustrated in

Table 1. Specifically, the results of Lemma 1 generalize to n-person networks, given the solution

to the optimization problem can be applied to any part Ω̂ ≤ Ωi of i’s resources, i’s utility being

additive across all projects he is engaged in (see Eq. 1). This is of particular importance for dmr

players. Consider, for instance, a player i of type dmr involved in k collaborative projects. Since
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Table 1. Equilibrium outcomes in the 2-person game

Note: Each cell reports the combination of allocations made by player 1 (rows) and player 2
(columns) in a 2-player game where both players have type imr (Table 1a), both have type dmr
(Table 1b), or one has type imr and the other type dmr (Table 1c). Each table reports all
combination of cases where a player can make a high (H), medium (M) or low (L) impact to a
collaborative project. Allocations are reported as 1 if a player uses 100% of his endowment, 0 if he
uses none, or + when he allocates some resources to the joint project and keep some for in-house
production. The highlighted cells are the combination of players between whom a collaboration
will take place.

img - img

H M L

H (1,1) (1,1) (0,1)

M (1,1) (1,1) (0,1)

L (1,0) (1,0) (0,0)

(a)

dmg - dmg

H M L

H (+,+) (+,+) (+,+)

M (+,+) (+,+) (+,+)

L (+,+) (+,+) (+,+)

(b)

img - dmg

H M L

H (1,+) (1,+) (0,+)

M (1,+) (1,+) (0,+)

L (1,+) (1,+) (0,+)

(c)

the utility function of player i is additive in the k projects, we can consider any of the k projects

as an independent 2-person game, conditional on the k − 1 other projects. By Lemma 1, player i

will best respond in any of the k projects according to Eq. (4). In particular, player i will have

a non-zero self-allocation in any of the k projects, including in-house production. This is formally

presented in the following section.

4.2 Nash equilibria

To describe the set of Nash equilibria, NE(Γ), in terms of the resources players allocate, we

consider the general problem of optimizing the payoff function ui(Γ), subject to the constraint

xii +
∑n

j 6=i xij = Ωi.

Proposition 1. Best Responses in Γ: For a collaboration network game, the proportion of

resources player i allocates to a project is equal to the proportional productivity of the given project

compared to his total productive output in equilibrium. Therefore, the best response of player i to

the given allocations xji in terms of his allocation to in-house production, x∗ii, must satisfy the

condition:

x∗ii =
ρx∗δiii

ρx∗δiii +
∑n

j 6=i x
∗δi
ij x

∗δj
ji

Ωi (5)

The best response of player i in terms of his allocation to a collaborative project with j, x∗ij,

must satisfy the condition:
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x∗ij =
x∗δiij x

δj
ji

ρx∗δiii +
∑n

j 6=i x
∗δi
ij x

δj
ji

Ωi (6)

Proof. Proposition 1 presents the best response functions in the general n-person productive ex-

change game. The proof is the solution to the optimization problem of the payoff function in Eq.

(1):

maxxii ui(δi, δj , xi, xNi(g)) = ρxδiii +
n∑
j 6=i

xδiijx
δj
ji (7)

s.t. xii +

n∑
j 6=i

xij ≤ Ωi

The First Order Conditions (FOCs; Eq. 8 and Eq. 9) and the complementary slackness condi-

tion (C.S.C; Eq. 10) imply:

∂L

∂xii
= ρδix

(δi−1)
ii − λ = 0,

ρδix
δi
ii = λxii (8)

∂L

∂xij
= δix

(δi−1)
ij x

δj
ji − λ = 0,

δix
δi
ijx

δj
ji = λxij (9)

λ(xii +

n∑
j 6=i

xij − Ωi) = 0 (10)

where L is the Lagrange function and λ ≥ 0 is the Lagrange multiplier. From Eq. (8) and Eq.

(9) it follows that λ = 0 implies xii = 0 and xijxji = 0 for all pairs i and j, yielding a total utility

equal to zero. Since any player i can produce a strictly positive utility by working alone, this is

never a best reply. So, we must have λ > 0 and according to Eq. (10) the constraint must be

binding: xii +
∑ni

j=1 xij = Ωi. Summing Eq. (9) in j:

δi

n∑
j=1

xδiijx
δj
ji = (Ω− xii)λ (11)

Adding Eq. (8) and Eq. (11):
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δi(ρx
δi
ii +

n∑
j=1

xδiijx
δj
ji ) = λΩi (12)

Dividing Eq. (8) by Eq. (12), we obtain the best response of player i to the allocations of the

other players, in terms of his allocation to an individual project, x∗ii:

x∗ii =
ρxδiii

ρxδiii +
∑n

j 6=i x
δi
ijx

δj
ji

Ωi (13)

Dividing Eq. (9) by Eq. (12), we obtain the best response of player i on his allocation to a

combined project with j, x∗ij :

x∗ij =
xδiijx

δj
ji

ρxδiii +
∑n

j 6=i x
δi
ijx

δj
ji

Ωi (14)

The best response functions in Proposition 1 show that in the optimum the proportion of

resources a player i invests in a collaborative project (or to in-house production) equals the propor-

tional productivity of the given project compared to his total productive output. In other words,

the greater the output of a productive project, the more resources i allocates to such project. This

is a specification of the intensity of the links formed in the weighted networks, through the shares

of resources players devote to each collaborative project.

The main takeaway from the equilibrium outcomes is that there are mixed effects of joint col-

laboration strategies with substantial differences between types of players. Players with dmr types

perceive a positive impact by following diversification strategies, while players with imr types are

better off by specialization and focus on limited (i.e., a single) collaborative projects. The bottom

line is that dmr players create multiple collaborations, in addition to in-house production, while

imr players create but a single project, either in-house or joint collaboration. As discussed before,

our model provides consistent results to what has been observed in the literature on industrial

organizations, where strategies to establish multiple collaborations can be either detrimental or

beneficial depending on a firm’s size (e.g., its production function). Large firms benefit from diver-

sification while smaller firms face diseconomies when pursuing multiple collaborations at the same

time (see e.g., Belderbos et al. 2006). Our work further these results by looking at how collabora-

tion networks emerge given these strategies and different distributions of resources across types of

players.

Since a Nash equilibrium is any combination of best responses, it is clear there will be very many

different equilibria in any given network. An illustrative example is the empty network where each
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player allocates his entire endowment into in-house production. Such a network is a Nash equilib-

rium, given that unilateral deviations are not enough to establish collaborative projects. Moreover,

we know, from Lemma 1, that it would be better for dmr players to use part of their endowment

and form collaborative projects with others. Similarly, depending on their available resources, imr

players would also benefit by changing from in-house production to joint collaboration. Naturally,

the almost empty network where a pair of players are involved in a collaborative project can be a

Nash equilibrium, as well. But, as mentioned before, many of the unconnected players may be bet-

ter off establishing different collaborations. Because of cases like these, in the following section we

narrow down the set of network configurations that emerge in equilibrium by imposing a condition

of stability to bilateral deviations. That is, by allowing those players who would be better off not

staying isolated, for example, to jointly change their resources. This will conclude our analysis.

4.3 Pairwise stable Nash equilibria

Up until now, we have used Nash equilibrium as the solution concept. However, in social and

economic settings such as the collaboration networks studied here, players can be expected to bi-

laterally form relationships that are mutually beneficial. To realign models of strategic network

formation with this bilateral considerations Jackson and Wolinsky (1996) proposed pairwise stabil-

ity as an alternative capturing mutual consent (see also Jackson and Watts 2001, 2002; Emerson

1972), where a network is said to be a pairwise stable Nash equilibrium (PNE) if it is Nash and

pairwise stable.

Note that PNE has been widely used as a stability notion when links are either present or not.

However, when studying weighted networks such as the collaboration networks we look at, players

decide how much of their resources to devote to various collaborations, so that it is not only a

matter of whether a connection exists, but also what its intensity (i.e., weight) is. Thus, we adapt

the notion of pairwise stability as presented in Definition 3 below.

Definition 3. PNE in weighted collaboration networks: A network is PNE if no player i

would strictly benefit by any reallocation of his resources in vector xi, and no pair of players i and

j would both strictly benefit by a reallocation in xi and xj.

In Proposition 2 we present the main result of the paper, which summarizes the entire analysis

into specific network structures that conform the PNE set. Before presenting Proposition 2, we

describe some network structures that facilitate its illustration. The networks described below can

be grouped into the more general notion of nested split graphs (see e.g., Belhaj et al. 2016; Konig

et al. 2014), which we adapt to our model of collaboration networks with heterogeneous players.
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Specifically, while in nested-split graphs players are differentiated according to their degree, we

differentiate players according to their type (i.e., production functions), which is one of the main

variable of heterogeneity in our model. The first network of interest is the so-called dominant-

group architecture (see Goyal and Joshi 2003), presented in the definition below:

Definition 4. Dominant-group architecture: A network is a dominant-group architecture if

players of one type form a main component while players of the other type are isolated from the

main component.

The second network of interest is the core-periphery architecture (see Galeotti and Goyal

2010). This is a generalization of the star network with various central players in the core. Specif-

ically:

Definition 5. Core-periphery architecture: A network is a core-periphery architecture if play-

ers of one type form a main core while players of the other type are linked to someone in the core.

Now that the most relevant architectures have been introduced, we present the main result

of our paper: PNE networks. Proposition 2 characterizes the PNE configurations in our model,

taking into account the distribution of types of players in the population and the endowments

assigned to them.

Proposition 2. Pairwise stable Nash equilibria: The set of PNE(Γ) is a subset of NE(Γ),

composed predominantly by two classes of networks: (i) if resources are such that dmr players can

only make a low impact and imr players can make medium or high impact, dominant-group

architectures emerge where dmr players form the main component and imr players stay isolated

from the dmr players, or (ii) if resources are such that dmr players can make medium or high

impact and imr players can only make a low impact, core-periphery architectures emerge where

dmr players form the core and imr players are linked to them as peripherals.

Proof. We present the proof for each class of PNE networks described in Proposition 2. If a network

is PNE it is also a Nash equilibrium. Thus, it is straightforward that the set of PNE(Γ) is a subset

of NE(Γ). Now we discuss the specific patterns of collaborative projects that emerge.

1. Dominant group architectures: For this networks we show there are no links between types

(point 1.1.), there is a main component formed by dmr players (point 1.2.), and imr players

stay mostly isolated (point 1.3.).
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1.1. No links between types: Consider a player i of type δi > 1 (imr) and a player j of

type δj < 1 (dmr). Given that Ω
δj
j < ρ, we know from Lemma 1 that the impact

each player can have on a collaborative project leads to no links between imr and dmr

players. This is pairwise stable because player i strictly prefers staying isolated and

investing only into in-house production than creating a collaboration link with j, since

ui(xii = Ωi) = Ωδi
i ρ > Ωδi

i Ω
δj
j = ui(xii = 0). The same holds for every player i with type

imr in relation to any player j with type dmr.

1.2. Links between dmr types: Denote by D = {i ∈ N : δi < 1} the subset of dmr players in

the population. From Lemma 1 we know that for players in D the empty network where

each player only allocates resources into in-house production is not PNE, because any

two players i and j in D could strictly increase their utility by forming a collaborative

project. Now assume network g is a Nash network where some collaborative project

between dmr players are formed. From the proof of Proposition 1, in particular from

Eq. (14) we know that player i would increase an allocation to a new or existing project

with a partner j by taking out resources from (at least) another project with a partner

k. Given xij > 0 and xik > 0, we get
xij
xik

=
ρx
δi
ijx

δj
ji

x
δi
ikx

δk
ki

. Then, ∂xik
∂xji
≤ 0, and

∂xij
∂xji
≥ 0 ∀ i ∈

N and j, k ∈ Ni(g) : j 6= k, j 6= i, and i 6= k, which indicates that i would establish

new collaborations up to the point where the marginal gains from it are equal to the

marginal losses of reallocating resources from other projects. Moreover, we know from

Eq. (4) that these re-allocation are always fractions of the endowment, for it is never

a best response for i to use his entire endowment in a single project. Thus, the more

resources the more collaborations dmr players can have, up to the point where they

form a complete component.

1.3. Links between imr types: Denote by I = {i ∈ N : δi < 1} the subset of imr players in

the population, with cardinality k. If the impact each player can make is low, Ωδi
i < ρ,

players respond by staying alone as shown in point 1.1. However, if the impact imr

players can make is medium or high, Ωδi
i ≥ ρ, rank and label all imr players from 1 to k,

such that Ωδ1
1 ≥ Ωδ2

2 ≥ Ωδ3
3 ≥ . . . ≥ Ω

δk−1

k−1 ≥ Ωδk
k . Let pairs of players {1, 2}, {3, 4}, {5, 6},

etc., form collaborative projects in network g, where each invests his entire endowment.

If k is uneven, player k is left without a partner. By Lemma 1 this is a Nash configuration.

To see that it is pairwise stable first observe that Nash equilibrium guarantees that no

player will individually want to reallocate resources. Second, consider non-existing links

between players. Consider players i, j, l,m such that Ωδi
i ≥ Ω

δj
j ≥ Ωδl

l ≥ Ωδm
m , and i, j ∈ g

and l,m ∈ g. Suppose i proposes a link to player l, by allocating xδiil > Ωδm
m , then player l
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is better off reciprocating i and allocating xδlli = Ωδl
l . However, following the construction

of network g, Ω
δj
j ≥ Ωδl

l , which does not make i better off allocating any resources to

player l. Notice this is also true if player l is the kth player and is working alone, because

Ω
δj
j > ρ. Moreover, it is also true when considering a player n such that Ωδn

n ≤ ρ. Thus,

network g is PNE.8

Note that the patterns of interactions of imr and dmr players would be the same, even

if the population was homogenous such that all players were either in set D or set I.

2. Core-periphery architectures: For this networks we show that a main core is formed by

dmr players (point 2.1.), there are no links between imr players (point 2.2.), and imr players

only connect to dmr players (point 2.3.).

2.1. Links between dmr types: Given dmr players have endowments that allow them to make

a high impact into the projects they are involved in, players with dmr types collaborate

with both imr and dmr partners. Thus, forming a core where dmr players are connected

between them. The proof follows the arguments from point 1.2.

2.2. Links between imr types: There are no links between imr players given each can only

make a low impact on their collaborative projects. The proof follows from point 1.1.

2.3. Links between types: Given players with type dmr have enough resources to make a high

impact in the collaborative projects and players type imr only have resources enough to

make a low impact, imr players will only form collaborative projects with dmr partners.

The way this links are formed follows the same matching process presented in point 1.3.

In terms of efficiency in PNE networks, we know that bilateral deviations allow imr players to

pair in such a way that the most productive partners are matched, resulting in the highest output

possible. This is evident in the ranking and matching of players by their impact, as described in

point 1.3. in the proof. However, with respect to dmr players, the the pairwise stable outcomes

are not always efficient, given there can be identical networks in terms of link presence but varying

with respect to link intensity.

Finally, the intuition from Proposition 2 can be illustrated going back to our example of how

firms can decide on the R&D collaborations. The first case, dominat group networks, would mean

8Note that since some players in I might have identical levels of production functions, g is not a unique network,

but a unique configuration. In other words, if two players have identical production functions they are interchangeable,

leading to two equivalent PNE networks.
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that if start-up firms have enough resources, they would rather avoid firms with mature technologies

and instead dedicate to in-house production or specific collaborations with other start-up’s. The

second case, core-periphery networks, would mean that if firms with mature technology have

high levels of resources, they would be able to attract and maintain relationships with start-ups.

Moreover, the start-up firms would put all their efforts in their collaborations with the mature firms.

However, given mature firms are better off diversifying, they would also invest in collaborations

with other mature firms as well as with other start-ups.

5 Conclusion

We have examined how the problem of establishing collaboration projects in a network is impacted

by the interplay between resource heterogeneity and heterogeneity in production functions. Our

main findings indicates that different network structures emerge depending on whether mature

firms (those with decreasing marginal returns to own effort) have abundant or limited resources.

In the latter, they become unattractive partners to firms with the capacity to innovate (those with

increasing marginal returns to own effort), which results in dominant group networks where

actors are segregated by the type of production functions they have. However, if mature firms

have large amounts of resources, they are able to make a high impact on the collaborative projects

they establish, and thus, are able to attract different innovative firms. This is portrayed by a

core-periphery architecture.

We conclude by pointing out opportunities for further research. Empirical tests of our model

constitute an important next step to advance our insights into the impact of heterogeneity in

production functions on emergent network structures. Laboratory experiments offer powerful tech-

niques to do so (see Choi et al. 2016; Kosfeld 2014). Particularly, by studying how experimental

subjects interact, we can discover in more depth how certain network structures are more likely to

emerge than others, while controlling the distribution of players with respect to their production

functions and resources.

Statement: There are no conflicts of interests and the authors have nothing to disclose.
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