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Abstract

We study the problem of fairly allocating heterogenous items, pri-
orities, positions, or property rights to participants with equal claims,
in an incomplete information environment. We introduce a dynamic
auction for solving this problem and we characterize both Bayes Nash
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terizations we show that: (i) equilibrium play converges to maxmin
perfect play as bidders become infinitely risk averse, and (ii) each bid-
der obtains his Shapley value when every bidder follows his maxmin
perfect strategy. Hence, the equilibrium allocation converges to the
Shapley value allocation as bidders become more risk averse. Together
these results provide both noncooperative and decision theoretic foun-
dations for the Shapley value in an environment with incomplete in-
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1 Introduction

This paper studies the problem of allocating heterogeneous items, priorities,

positions, or rights to participants who have equal claims. Examples of this

type of problem include allocating items to heirs in an estate, allocating the

priority of service in a queue, allocating the position of an ad on a webpage

or assigning faculty to o¢ces, or allocating fishing rights to di§erent geo-

graphical areas. In our environment, participants have unit demands and a

common ranking of the items/priorities/positions/rights, which we hereafter

simply refer to as “positions.” All participants agree that one position is

the most desirable, a second position is the next most desirable, and so on.

Despite the common ranking of positions, participants vary in the intensity

of their preferences and these intensities are private information. The prob-

lem is to find an allocation that is e¢cient, budget balanced, and fair, with

those participants receiving more desirable positions compensating the ones

receiving less desirable positions.

We introduce a dynamic auction for solving this problem and we charac-

terize its equilibrium when participants (hereafter “bidders”) are risk neutral

and when they are risk averse. The auction takes place over rounds, where

at each round the worst remaining position is allocated via an ascending

clock auction. A bidder who drops out is allocated the position at auction in

the current round and receives compensation equal to the price at which he

dropped, with the compensation paid shared equally among the remaining

bidders, all of whom will ultimately obtain better positions. The auction

ends when one bidder remains. He receives the most desirable position, but

pays compensation to every other bidder. Thus a bidder pays compensation

to bidders allocated positions worse than his own and receives compensation

from bidders allocated positions better than his own.

We provide general necessary conditions for a bidding strategy to form

a symmetric equilibrium in increasing and di§erentiable strategies. We give

closed-form solutions for the unique such equilibrium when bidders are risk

neutral and when they are CARA risk averse. We show that bidders drop
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out earlier, accepting less compensation, as they become more risk averse.

An alternative approach to modelling behavior in our auction is from a

decision-theoretic perspective, with each bidder acting to maximize his min-

imum payo§. We will say a strategy is “maxmin perfect” if it maximizes

a bidder’s minimum payo§ at every history of play. Maxmin perfection is

a natural refinement of maxmin for dynamic games. We characterize the

unique maxmin perfect strategy. The strategy has a natural fairness inter-

pretation as it calls for a bidder to demand equal shares of the incremental

benefits obtained by bidders who are allocated better positions. Thus the de-

mands resemble the Talmudic solution to the well-known contested garment

problem.

We have three main results. First, the equilibrium bidding strategy of

CARA risk averse bidders converges to the maxmin perfect bidding strategy

as bidders become infinitely risk averse. Second, when every bidder follows

his maxmin perfect strategy, then each bidder obtains his Shapley value

allocation. Our third result, an immediate consequence the first two, is that

the equilibrium allocation of the auction coincides with the Shapley value

allocation as bidders become infinitely risk averse. Hence our results provide

non-cooperative and decision theoretic foundations for the Shapley value in

an environment with incomplete information.

Shapley (1953) introduced the notion of a value for a cooperative game,

now called the Shapley value. The Shapley value is a fundamental solution

concept in cooperative game theory with the Shapley allocation often taken

as the benchmark for a fair allocation (see Myerson (1977), Roth (1988),

Moulin (1992), and Moulin (2004, Chapter 5)). To our knowledge, this paper

is the first to provide non-cooperative foundations for the Shapley value in a

setting with incomplete information.

Related Literature

Our paper connects to a variety of literatures in non-cooperative and

cooperative game theory.

The Assignment Problem: The problem of allocating positions is the as-
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signment problem for the special case where all the players rank assignments

in the same way, as is natural for example when assignments correspond to

priorities, e.g., first priority, second priority, etc. Both cooperative and non-

cooperative solutions to the general assignment problem have been studied.

Moulin (1992) shows that the Shapley value has several desirable properties

in cooperative models of assignment games.1

Early examples of non-cooperative approaches to the assignment prob-

lem include Leonard (1983) and Demange, Gale, Sotomayor (1986). Leonard

(1983) provides a mechanism for which it is a dominant strategy for each

player to report his preferences over assignments truthfully and which imple-

ments the e¢cient assignment; he shows it generates Vickrey-Clark-Groves

prices. Demange, Gale, Sotomayor (1986) provide a dynamic auction which

implements the e¢cient assignment. In the context of internet advertising,

important papers by Edelman, Ostrovsky, and Schwarz (2007) and Varian

(2007) study the use of the generalized second-price sealed-bid auction to

allocate positions under complete information. Edelman, Ostrovsky, and

Schwarz (2007) study, in addition, a generalized English auction with incom-

plete information and show that payo§s (both to bidders and to the seller)

are the same as in the Vickrey-Clarke-Groves mechanism.

In all these papers, the seller collects the auction revenue. We study, in

contrast, a setting where there is no seller and the only payments are transfers

between the bidders. Budget balancedness is a fundamental requirement

since the positions are the common property of the bidders.

Non-cooperative Foundations of the Shapley Value: In bargaining games

with complete information, non-cooperative foundations of the Shapley value

have been provided by Gul (1989) and Hart and Mas Colell (1996). Gul

(1989) provides a game with bilateral bargaining and the random selection of

the proposer and shows that, in the e¢cient equilibrium of the game, players

1The Shapley value is not the only notion of fairness for assignment games. Alkan, De-

mange, and Gale (1991), for example, study existence of e¢cient and envy-free allocations

in the assignment problem.
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receive their Shapley value payo§s in the limit as they become perfectly

patient. Hart and Mas Colell (1996) studies a multilateral bargaining game

and shows that players receive their Shapley value payo§s in the limit as

each player’s probability of exogenously exiting from bargaining vanishes.

By contrast, we obtain Shapley value payo§s as bidders become infinitely

risk averse in an environment with incomplete information.

Bidding Rings, Bankruptcy, and Cost Sharing: The Shapley value also

appears in the literature on collusion in auctions. Graham, Marshall, and

Richard (1990) shows that bidders receive their Shapley value payo§s in a

nested knockout auction when bidding rings are perfectly nested. In their

setting, the bidders’ values for the item are commonly known and bidders

are assumed to remain active in the knockout auction until the bid reaches

their value (although this is not equilibrium behavior).2

Aumann and Maschler (1985) shows that the solutions provided in the

Talmud of three di§erent bankruptcy problems coincide with the nucleoli

of the corresponding cooperative games. These solutions are generalizations

of the solution to the contested garment problem: “Two hold a garment;

one claims it all, the other claims half. Then the one is awarded three-

fourths, the other one-fourth.” In this solution, the lesser claimant concedes

the uncontested half the garment to the greater one, and the remainder is split

equally. In our auction, at each round all but the worst remaining position

are contested. The maxmin bid at each round can be interpreted as a demand

for equal shares of the incremental benefits of the contested positions, and

in this respect resembles the solution to the contested garment problem.

Finally, the rules of our auction are reminiscent of serial cost sharing.

Moulin and Shenker (1992) studies the problem of allocating costs when

agents face a production technology with decreasing returns to scale. It

proposes a cost sharing rule in which participants pay equal shares of incre-

mental costs (defined in a particular way) and show that, given this rule,

2Littlechild and Owen (1973) obtain the same payo§s when allocating costs to the users

of an airport runway.
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the game in which the participants announce quantities is dominance solv-

able and equilibrium has several nice properties.3 The cost sharing rule is

a primitive, part of the description of the game, whereas here the surplus

shares are endogenously determined. In our setting, equilibrium demands

for compensation can be interpreted as (inflated) demands for equal shares

of the incremental benefits of contested positions.

The rest of the paper proceeds as follows: We provide in Section 2 a

description of the position allocation problem and we identify the Shapley

value of the associated cooperative game. Section 3 describes the compen-

sated position auction and the private values environment. Our equilibrium

results are in Section 4, while Section 5 identifies maxmin perfect strategies.

Section 6 relates equilibrium, maxmin, and the Shapley value. We conclude

with a discussion in Section 7. All proofs are in the Appendix.

2 Allocating Positions Cooperatively — The

Shapley Value

N ≥ 2 positions are to be allocated to N players, one to each, who have

equal claims.4 The positions have inherent values, denoted by α1, ...,αN ,

which are commonly known. We order the positions so that α1 ≥ ... ≥ αN .
Positions may be desirable or undesirable, i.e., we allow a mixture of positive

and negative α’s.5 Let x1, ..., xN be the profile of player values. In this

section it is convenient to order the players so that x1 ≥ ... ≥ xN . The payo§
3The serial cost sharing rule is similar in spirit to one of the Talmudic procedures

described in Aumann and Maschler (1985, p. 203). Specifically, the procedure suggested

by Rabad for compensating a seller at an auction where all of the bidders renege on their

bids.
4This is without loss of generality since, if there are more players than positions, one

can create dummy positions, with α’s equal to zero, until the number of positions equals

the number of players.
5Bogomolnaia, Moulin, Sandomirskiy, and Yanovskaya (2017) study a fair division

problem when the goods to be divided are a mixture of both goods and bads.
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to a player whose value is x and who receives position t is αtx plus any net

transfer he receives. The problem is to e¢ciently and fairly allocate positions

to players, while respecting budget balance.

Cooperative game theory suggests a solution: allocate positions to max-

imize surplus and make transfers among the players so that each player re-

ceives his Shapley value. The Shapley solution is appealing since it the only

solution satisfying (i) e¢ciency, (ii) additivity, (iii) symmetry, and (iv) no

surplus to dummy players. For a general characteristic function v, the Shap-

ley value φi of player i is

φi =
X

S⊆{1,...,N}

(|S|− 1)!(N − |S|)!
N !

[v(S)− v(S\{i})] ,

where v(S) gives the value of coalition S. Player i’s Shapley value can be

interpreted as his expected marginal contribution when the grand coalition

is formed by adding players, one at a time, in a random order.

We now describe the Shapley solution to the position allocation problem.

For any coalition S 2 2N , let y(S)1 , ..., y
(S)
|S| be a rearrangement of the values

{xi|i 2 S} of the members of S such that y(S)1 ≥ ... ≥ y
(S)
|S| . Surplus is

maximized by assigning players with lower indexes to positions with lower

indexes. Following Moulin (1992), the characteristic function

v(S) =

|S|X

j=1

αjy
(S)
j

defines the cooperative game.

Proposition 1 characterizes Shapley values for the position allocation

problem.

Proposition 1: The Shapley value φi of player i in the position allocation
problem is

φi =
1

i

 
iX

m=1

αm

!

xi −
N−iX

m=1

1

i+m− 1

"
i+m−1X

r=1

r

i+m
(αr − αr+1) xi+m

#

.
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Following the interpretation of the Shapley value as the expected marginal

contribution of a player, the first term in the expression for φi is the expected

gross contribution of player i, while the second term captures the expected

negative externality that i imposes on the other players.

Example 1 provides the Shapley values for the N = 3 problem.

Example 1: Suppose N = 3 and x1 > x2 > x3. The players’ Shapley values

are:

φ1 = α1x1 −
1

2
(α1 − α2) x2 −

1

6
(α1 − α2) x3 −

1

3
(α2 − α3) x3,

φ2 =
1

2
(α1 + α2) x2 −

1

6
(α1 − α2) x3 −

1

3
(α2 − α3) x3,

φ3 =
1

3
(α1 + α2 + α3) x3.

If α1 = 6, α2 = 4, and α1 = 2, and x1 = 3/4, x2 = 1/2, and x3 = 1/4,

then φ1 = 15/4, φ2 = 9/4, and φ3 = 1. In the Shapley allocation, player i

receives position i. Players 1, 2, and 3, receive transfers of −3/4, 1/4, and
1/2, respectively.

The next section introduces a non-cooperative game for allocating posi-

tions. We will continue to develop Example 1 to illustrate our results.

3 The Compensated Position Auction

Here we propose an auction for solving the position allocation problem when

the bidders’ values are private information, and we characterize its equi-

librium. The bidders’ values are independently and identically distributed

according to cumulative distribution function F with support [0, x̄], where

x̄ < 1 and f ≡ F 0 is continuous and positive on [0, x̄]. Bidders have a

common utility function u, where u0 > 0 and u00 ≤ 0.
Let X1, . . . , XN be N independent draws from F . Let Z(N)1 , . . . , Z

(N)
N be

a rearrangement of the Xi’s such that Z
(N)
1 ≤ Z(N)2 ≤ . . . ≤ Z(N)N . The joint
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density of Z(N)1 , . . . , Z
(N)
N is

g
(N)
1,...,N(z1, . . . , zN) = N !

YN

i=1
f(zi)

for z1 ≤ z2 ≤ . . . ≤ zN and g
(N)
1,...,N(z1, . . . , zN) = 0 otherwise. Let G

(N)
t denote

the c.d.f. of Z(N)t , i.e., G(N)t is the distribution of the t-th lowest of N draws.

The conditional density of Z(N)t+1 given Z
(N)
1 = z1, . . . , Z

(N)
t = zt is

g
(N)
t+1(zt+1|zt) = (N − t)f(zt+1)

[1− F (zt+1)]N−(t+1)

[1− F (zt)]N−t

if 0 ≤ z1 ≤ . . . ≤ zt+1 and is zero otherwise. Define

λNt (z) ≡ g
(N)
t+1(z|z) = (N − t)

f(z)

1− F (z)

to be the hazard function.

The Auction

The auction takes place over N −1 rounds, where at each round the least
desirable remaining position, i.e., the remaining position with the highest

index, is allocated. At each round t, the price starts at zero and rises con-

tinuously. A bidder may drop out at any point. A bidder who drops out

at price pt is allocated position N − t + 1 and he receives compensation of
pt/(N − t) from each of the remaining N − t bidders. Hence, the payo§ of a
bidder with value x who drops at round t at price pt is

u

 

αN−t+1x+ pt −
t−1X

s=1

ps
N − s

!

,

where
t−1X

s=1

ps
N − s

is the compensation he pays to bidders who dropped at prior rounds. After

N − 1 bidders have dropped, the remaining bidder is allocated position 1,
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he receives no compensation, and for each s ≤ N − 1 he pays compensation
ps/(N − s). His payo§ when his value is x is

u

 

α1x−
N−1X

s=1

ps
N − s

!

.

In sum, a bidder who drops out surrenders his claim to more desirable posi-

tions and receives compensation from the bidders who maintain their claims

to these positions, while he pays compensation to bidders who have accepted

less desirable positions.

A strategy is a list ofN−1 functions β = (β1, ..., βN−1), where βt(x; p1, ..., pt−1)
gives the dropout price in the t-th round of a bidder whose value is x, when

t − 1 bidders have previously dropped out at prices p1, . . . , pt−1. We write
pt−1 for (p1, . . . , pt−1).

4 Equilibrium

Necessary Conditions for Equilibrium

Proposition 2 provides necessary conditions for β to be a symmetric equi-

librium in strictly increasing and di§erentiable bidding strategies. These

conditions are also su¢cient for risk neutral and CARA bidders, as we es-

tablish in Propositions 3 and 4.

Proposition 2:Any symmetric equilibrium β in increasing and di§erentiable

bidding strategies satisfies the following system of N−1 di§erential equations:

u0
(
αN−t+1x+ βt(x;pt−1)−

Xt−1

j=1

pj
N − j

)
β0t(x;pt−1)

= −

2

4
u
(
αN−tx+ βt+1(x;pt−1, βt(x;pt−1))−

1
N−tβt(x;pt−1)−

Pt−1
j=1

pj
N−j

)

−u
(
αN−t+1x+ βt(x;pt−1)−

Pt−1
j=1

pj
N−j

)

3

5λNt (x),

for each t 2 {1, . . . , N − 1} where βN(x;pN−1) ≡ 0.
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Risk Neutral Bidders

Proposition 3 identifies the equilibrium when bidders are risk neutral. We

write β0t for the equilibrium bid function.

Proposition 3: Suppose that bidders are risk neutral. The unique sym-

metric equilibrium in increasing and di§erentiable strategies is given, for

t = 1, . . . , N − 1, by

β0t (x) =
N − t

N − t+ 1
E
h
(αN−t − αN−t+1)Z

(N)
t + β0t+1(Z

(N)
t )|Z(N)t > x > Z

(N)
t−1

i

where β0N ≡ 0. Equivalently, it is given by

β0t (x) =
N−tX

m=1

m

N − t+ 1
E
h
(αm − αm+1)Z

(N)
N−m|Z

(N)
t > x > Z

(N)
t−1

i
.

Equilibrium bids at each round are independent of prior dropout prices.

Observe from the second expression for β0t that if at some round t all the

remaining positions have the same α’s, i.e., α1 = . . . = αN−t+1, then bids are

zero at round t and every subsequent round. This is intuitive since when the

remaining positions are identical and the number of positions is equal to the

number of remaining bidders, then no position is contested.

Example 2: IfN = 3 and values are distributed U [0, 1], then the equilibrium

bid functions for risk neutral bidders are

β01(x) = (α1 − α2)
(
1

6
x+

1

6

)
+ (α2 − α3)

(
1

2
x+

1

6

)

and

β02(x) = (α1 − α2)
(
1

3
x+

1

6

)
.

CARA Bidders

The next proposition characterizes equilibrium when bidders have con-

stant absolute risk aversion (CARA), i.e., utility is given by

uθ(x) =
1− e−θx

θ
,
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where θ > 0 is the common index of risk aversion. Note that limθ!0 u
θ(x) =

x, i.e., bidders are risk neutral in the limit as θ approaches zero. Denote by

βθt the equilibrium bid function in round t when bidders have CARA index

of risk aversion θ.

Proposition 4: Suppose that bidders are CARA risk averse with index of

risk aversion θ > 0. The unique symmetric equilibrium in increasing and

di§erentiable strategies is given recursively, for t = 1, . . . , N − 1, by

βθt (x) = −
N − t

(N − t+ 1) θ
ln
n
E
h
e−θ[(αN−t−αN−t+1)Z

(N)
t +βθt+1(Z

(N)
t )]|Z(N)t > x > Z

(N)
t−1

io

where βθN ≡ 0. Equilibrium bids at each round are independent of prior

dropout prices.

Example 3: IfN = 3 and values are distributed U [0, 1], then the equilibrium

bid functions for CARA risk averse bidders are

βθ1(x) = −
2

3θ
ln

(R 1
x
e−θ[(α2−α3)z+β

θ
2(z)]3(1− z)2dz

(1− x)3

)

and

βθ2(x) = −
1

2θ
ln

(R 1
x
e−θ(α1−α2)z2(1− z)dz

(1− x)2

)

.

Bounds and Comparative Statics

Proposition 5 provides upper and lower bounds for the CARA equilibrium

bid functions. The risk neutral bid function β0t is an upper bound for the

equilibrium bid function of a CARA risk averse bidder: a risk averse bidder

drops out earlier, and thus accepts less compensation than a risk neutral

bidder. The lower bound β
t
, defined below, will be central in the next section

of the paper.
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Proposition 5: Suppose that bidders are CARA risk averse with index of

risk aversion θ > 0 and α1 > α2. Then for each t = 1, . . . , N − 1 we have
that

β
t
(x) < βθt (x) < β

0
t (x) for x < x̄,

where

β
t
(x) =

N−tX

m=1

m

N − t+ 1
(αm − αm+1) x.

The lower bound β has a natural fairness interpretation akin to the so-

lution to the contested garment problem as it calls for a bidder to demand

equal shares of the incremental benefits obtained by the bidders allocated

contested positions. At round 1, for example, positions 1 though N − 1 are
contested. (Position N is uncontested as it is the worst position.) There are

N − 1 bidders who will be allocated position N − 1 or better and who will
each enjoy an incremental benefit of αN−1 − αN (see row N − 1 of Table 1).
A bidder i with value x demands an equal share, 1/N -th, of this total benefit

as he values it, i.e., he demands N−1
N
(αN−1 − αN) x. There are N−2 bidders

who will obtain position N − 2 or better and who will each enjoy an incre-
mental benefit of αN−2−αN−1. Bidder i demands an equal share of this total
benefit too, i.e., N−2

N
(αN−2 − αN−1) x. Continuing in this fashion, one bidder

will obtain position 1 and enjoy an incremental benefit of α1 − α2. Bidder
i demands an equal share. Adding up these shares of incremental benefits

for contested positions yields β
1
(x), bidder i’s demand for compensation at

round 1, as

1

N
(α1 − α2) x+ · · ·+

N − 2
N

(αN−2 − αN−1) x+
N − 1
N

(αN−1 − αN) x.

The lower bound β
t
has an interpretation analogous to β

1
, where equal shares

are relative to the N − t+ 1 bidders remaining in the auction.
The risk neutral bid function β0t , given in Proposition 3, has a similar

form and interpretation to β
t
. At round t > 1, positions are 1, . . . , N − t are

contested. The m-th term in β
t
, for m 2 {1, . . . , N − t}, i.e.,

m

N − t+ 1
(αm − αm+1) x,
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is an equal share (among the N − t+1 active bidders at round t) of the total
benefit obtained by the m bidders allocated position m or better, as a bidder

with value x values it. The m-th term in β0t ,

m

N − t+ 1
(αm − αm+1)E

h
Z
(N)
N−m|Z

(N)
t > x > Z

(N)
t−1

i
,

is the same except that bids are based on values that are inflated relative to

the bidder’s true value.6

Example 4 gives β
1
(x) and β

2
(x) when there are three positions.

Example 4: If N = 3 then

β
1
(x) =

1

3
(α1 − α2) x+

2

3
(α2 − α3) x

β
2
(x) =

1

2
(α1 − α2) x.

Proposition 6 shows that dropout prices decrease as bidders become more

risk averse and that the lower bound provided in Proposition 5 is tight.

Proposition 6: Suppose that bidders are CARA risk averse with index of

risk aversion θ > 0. Then for each t = 1, . . . , N − 1 we have that βθt (x) is
decreasing in θ, and βθt converges uniformly to βt on [0, x̄] as θ !1.

Figure 1 illustrates propositions 5 and 6 when N = 3, values are dis-

tributed U [0, 1], and α1 = 6, α2 = 4, and α3 = 2. In the figure, the bold

solid lines are the risk neutral bid functions (i.e., θ = 0) for rounds 1 and 2,

which are the upper bounds for CARA risk averse bidders. The dashed lines

give β
1
and β

2
, which are the lower bounds. The thin solid lines are the bid

6We have Z(N)N−m ≥ Z
(N)
t since m ≤ N − t.
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functions when bidders have CARA index of risk aversion of θ = 10.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

x

bid

Round 1: θ = 0, 10, and 1.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

x

bid

Round 2: θ = 0, 10, and 1.

Figure 1: CARA Bounds

5 Maxmin

For a bidder who remains in the auction at round t (i.e., an “active” bidder),

let vt(xi, x−i, β
i, β−i;pt−1) be the bidder’s payo§ when his value is xi and he

follows the strategy βi, and x−i and β
−i are the values and strategies of the

remaining bidders, and pt−1 is the sequence of prior dropout prices.

Definition: A strategy βi guarantees bidder i with value xi a payo§ of v̄t
at round t, given pt−1, if vt(xi, x−i, β

i, β−i;pt−1) ≥ v̄t 8x−i, β−i.

Let v̄t(xi;pt−1) be the largest payo§ that bidder i with value xi can guar-

antee at round t given pt−1.

Definition: A strategy βi is a maxmin perfect strategy for bidder i if βi

guarantees v̄t(xi;pt−1) for each t, xi 2 [0, x̄], and pt−1.
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Proposition 7: The bidding strategy β = (β
1
, . . . , β

N−1
) given in Propo-

sition 5 is the unique maxmin perfect strategy of the compensated position

auction. In particular, β guarantees a bidder with value x a payo§ at round

t of

v̄t(x;pt−1) =

 
N−t+1X

m=1

αm
N − t+ 1

!

x−
t−1X

i=1

pi
N − i

,

when pt−1 is the sequence of dropout prices.

An immediate implication of Proposition 7 is that participation in the

auction is individually rational. Following his maxmin perfect strategy, a

bidder with value x guarantees himself a payo§ of at least 1
N

PN
m=1 αmx

and a utility of at least u( 1
N

PN
m=1 αmx). His equilibrium expected utility is

therefore at least u( 1
N

PN
m=1 αmx). Concavity of u implies that

u(
1

N

NX

m=1

αmx) ≥
1

N

NX

m=1

u(αmx),

and thus bidders would rather participate in the auction than not, when the

alternative is the random allocation of positions.

6 Equilibrium, Maxmin, and the Shapley Value

Proposition 8 provides the decision theoretic foundation of the Shapley value

in the compensated position auction.

Proposition 8: If each bidder follows his maxmin perfect strategy then each
bidder obtains his Shapley value allocation.

Example 5 illustrates Proposition 8 when N = 3.

Example 5: Suppose, as in Example 1 that x1 > x2 > x3. If each bidder
follows his maxmin perfect strategy β, given in Example 4, then Bidder 3

drops first at β
1
(x3), he wins position three, and his payo§ is

α3x3 + β1(x3) =
1

3
(α1 + α2 + α3) x3 = φ3.
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Bidder 2 drops second at β
2
(x2), he wins position two, he receives compen-

sation β
2
(x2) and he pays compensation 1

2
β
1
(x3). His payo§ is

α2x2 + β2(x2)−
1

2
β
1
(x3)

=
1

2
(α1 + α2) x2 −

1

6
(α1 − α2) x3 −

1

3
(α2 − α3) x3

= φ2.

Bidder 1 wins position 1 and pays total compensation of β
2
(x2) +

1
2
β
1
(x3).

His payo§ is

α1x1 − β2(x2)−
1

2
β
1
(x3)

= α1x1 −
1

2
(α1 − α2) x2 −

1

6
(α1 − α2) x3 −

1

3
(α2 − α3) x3

= φ1.

Thus, each bidder receives his Shapley value.

By Proposition 6, as bidders become infinitely risk averse, the equilibrium

bid function converges to the maxmin perfect bid function β. By Proposition

8, when each bidder follows his maxmin perfect strategy, then each obtains

his Shapley value allocation. Combining these two results yields the following

Corollary.

Corollary 1: As bidders become infinitely risk averse, the equilibrium allo-

cation approaches the Shapley-value allocation.

The next example and the associated figure illustrate Corollary 1, showing

that the bidders’ realized payo§s converge to their Shapley value payo§s as

bidders become infinitely risk averse.

Example 6: Figure 2 shows the equilibrium payo§ of each bidder as a

function of θ, when α1 = 6, α2 = 4, α3 = 2 and the bidders’ values are

x1 = 3/4, x2 = 1/2, and x3 = 1/4. The payo§ of bidder 3 is

y3(θ) := α3x3 + β
θ
1(x3),
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of bidder 2 is

y2(θ) := α2x2 + β
θ
2(x2; β

θ
1(x3))−

1

2
βθ1(x3),

of bidder 1 is

y1(θ) := α1x1 − βθ2(x2; β
θ
1(x3))−

1

2
βθ1(x3).

The dashed lines are the bidders’ Shapley values.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

y3›Sfi

y2›Sfi

y1›Sfi

S

d1

d2

d3

Figure 2: Equilibrium Payo§s as a Function of θ.

Since the auction is e¢cient, each bidder is allocated the same position he

would receive in the Shapley allocation. As θ approaches infinity, each bidder

also receives the same transfer that he would receive in the Shapley alloca-

tion: Bidder 3 receives compensation of β
1
(1/4) = 1/2. Bidder 2 receives

compensation of β
2
(1/2) = 1/2 from Bidder 1, but pays compensation of

1
2
β
1
(1/4) to Bidder 3, for a net transfer of 1/4. Bidder 1 pays compensation

of 1
2
β
1
(1/4) to Bidder 3 and β

2
(1/2) to Bidder 2, for a net transfer of −3/4.

These are exactly the transfers identified in Example 1.

17



7 Discussion

This paper proposes a solution to the problem of fairly allocating heteroge-

neous items, priorities, positions, or rights among participants who have

equal claims. The auction we propose is e¢cient and budget balanced.

From a purely theoretical perspective it is of interest since it provides non-

cooperative and decision theoretic foundations for the Shapley value in an

environment with incomplete information.

While we have framed the compensated position auction as multi-round

ascending bid auction, it is strategically equivalent to the multi-round sealed

bid auction in which, at each round, the bidders simultaneously make bids

(i.e., demand compensation), and the bidder with the lowest bid is allocated

the worst remaining position and receives his bid as compensation. The

reasoning is the same as for the strategic equivalence of the Dutch and first

price sealed bid auction.

There may be other auctions whose Bayes Nash equilibria converge to

the Shapley value as bidders become infinitely risk averse and which gen-

erate Shapley value allocations under maxmin play. It is easy, however, to

construct auctions that do not have these properties. Consider, for example,

the auction in which all bidders simultaneously make sealed bids, the highest

bidder gets the best position, the second highest bidder gets the second best

position, and so on. In the auction, only the highest bidder pays his bid and

his bid is divided equally among all the bidders. If the auction has a sym-

metric equilibrium in increasing strategies, then the auction will be e¢cient

and budget balanced. It cannot, however, generate the Shapley allocation

as all the bidders (except the highest) receive the same net transfer, namely

1/N -th of the highest bid. As Example 1 illustrates, the Shapley allocation

requires di§erent bidders receive di§erent net transfers.

The cooperative game we study admits a non-empty anti-core and the

Shapley value is a member of this set. Given a characteristic function v, a

payo§ vector (π1, . . . ,πN) is in the anti-core if (i)
P

i2N πi = v(N) and (ii) for

every coalition S ⊂ N we have that
P

i2S πi ≤ v(S). In other words, a payo§

18



vector is in the anti-core if no coalition of players receives more than what

it could obtain if the coalition had complete command over the allocation

of resources. A payo§ to S that exceeds v(S) requires a subsidy from N\S,
which would object on fairness grounds. (Observe that the anti-core of a

cooperative game is motivated by normative/fairness considerations, in con-

trast to the core which is motivated by strategic considerations. See Moulin

(1995, Chapter 7).) Moulin (1992, Theorem 2) established that the general

assignment game is concave, and thus the problem of assigning players to

positions is also concave. It follows, by Shapley (1971, Theorems 4 and 7),

that the anti-core of the game is non-empty and contains the Shapley value.

These results imply that the compensated position auction produces alloca-

tions in the anti-core when bidders are su¢ciently risk averse or when each

bidder follows the maxmin perfect strategy.

8 Appendix

The proof of Proposition 1 involves combinatorial arguments that play no

role in the remaining proofs. It is included for completeness, but the reader

is invited to skip it.

Proof of Proposition 1: We compute the Shapley value directly using that

φi =
NX

s=1

(N − s)!(s− 1)!
N !

2

4
X

Bi(s)

(v(S)− v(S\{i}))

3

5

where

Bi(s) = {S|i 2 S and |S| = s}.

We first compute the marginal contribution of player i to coalition S. If
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i 2 S has the j-th highest value in coalition S (i.e., xi = y
(S)
j ) then

v(S)− v(S\{i}) = αjy
(S)
j −

|S|−jX

m=1

(αj+m−1 − αj+m) y
(S)
j+m

= αjxi −
|S|−jX

m=1

(αj+m−1 − αj+m) y
(S)
j+m.

This follows since in coalition S player i is assigned the j-th position, players

in S with a smaller index than i stay in the same position they occupied in

S\{i}, and players with a higher index than i move down one position.
Player i’s Shapley value can be written as

φi = c
ixi −

N−iX

m=1

dimxi+m,

where ci is of the form

ci = ci1α1 + · · ·+ c
i
iαi,

and dim is of the form

dim = dim1 (α1 − α2) + · · ·+ dimi+m−1(αi+m−1 − αi+m).

The term ci is the expected contribution of player i and dimxi+m is the

expected externality that i imposes on player i+m.

We now compute cir for 1 ≤ r ≤ i, which is the contribution of player i
when allocated position r. For each coalition size s, we count the number of

coalitions of size s where i is in position r and multiply this number by the

appropriate Shapley weight. The coe¢cient cir is the sum of these terms over

all s.

The smallest coalitions where i is in position r are coalitions of size r,

and consist of player i and r − 1 players with a smaller index. The largest
coalitions where i is in position r are coalitions of size N − i+ r, and consist
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of player i, r−1 players with a smaller index, and N− i players with a larger
index. The number of coalitions of size s where i is placed in position r is

(
i− 1
r − 1

)(
N − i
s− r

)
,

where
(
i−1
r−1

)
is the number of ways of choosing r−1 players with index smaller

than i from i− 1 players, and
(
N−i
s−r

)
is the number of ways of choosing s− r

players with index larger than i from N − i players. The Shapley weight for
coalitions of size s is

(s− 1)!(N − s)!
N !

,

and therefore

cir =
N−i+rX

s=r

(s− 1)!(N − s)!
N !

(
i− 1
r − 1

)(
N − i
s− r

)
.

Summing across positions where player i can be placed yields

ci =
iX

r=1

"
N−i+rX

s=r

(s− 1)!(N − s)!
N !

(
i− 1
r − 1

)(
N − i
s− r

)#

αr

=
iX

r=1

"
1

N

N−i+rX

s=r

(
i−1
r−1

)(
N−i
s−r

)

(
N−1
s−1

)

#

αr

=
1

i

iX

r=1

αr,

where the last equality holds by Claim 4 in the Supplemental Appendix.

Next, we compute dimr for 0 < m ≤ N − i and 1 ≤ r < i + m. The

term dimr (αr−αr+1)xi+m will be the expected externality player i imposes on
player i+m by pushing player i+m from r to r+ 1. For each player i+m,

position r, and coalition size s, we count the number of coalitions of size s

where player i pushes player i+m from position r to position r + 1 and we

multiply this number by the appropriate Shapley weight. The coe¢cient dimr
is the sum of these terms over all s.
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The smallest coalitions where i pushes i+m from position r to position

r + 1 are coalitions of size r + 1, and consist of player i, player i +m, and

r − 1 other players with smaller index than i + m. The largest coalitions
where i pushes i +m from position r to position r + 1 are coalitions of size

r+1+N − (i+m), and consist of player i, player i+m, r− 1 other players
with index smaller than i +m, and the N − (i +m) players with an index
larger than i +m. The number of coalitions of size s where i pushes i +m

from position r to position r + 1 is
(
i+m− 2
r − 1

)(
N − (i+m)
s− (r + 1)

)
,

where
(
i+m−2
r−1

)
is the number of ways of choosing r − 1 players (excluding

player i) with index smaller than i+m, and
(
N−(i+m)
s−(r+1)

)
is the number of ways

of choosing s− (r+1) players with index larger than i+m from N − (i+m)
players. The Shapley weight for coalitions of size s is

(s− 1)!(N − s)!
N !

,

and therefore,

dimr =

r+1+N−(i+m)X

s=r+1

(s− 1)!(N − s)!
N !

(
i+m− 2
r − 1

)(
N − (i+m)
s− (r + 1)

)
.

Summing across positions where player i+m can be placed yields

dim =
i+m−1X

r=1

2

4
r+1+N−(i+m)X

s=r+1

(s− 1)!(N − s)!
N !

(
i+m− 2
r − 1

)(
N − (i+m)
s− (r + 1)

)3

5 (αr − αr+1)

=
i+m−1X

r=1

2

4 1
N

r+1+N−(i+m)X

s=r+1

(
i+m−2
r−1

)(
N−(i+m)
s−(r+1)

)

(
N−1
S−1

)

3

5 (αr − αr+1) .

The identity in Claim 4 holds for all i ≤ N . Replacing i with i+m and

r with r + 1 in this identity, and noting that i+m ≤ N also, we obtain the
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following new identity

1

N

N+(r+1)−(i+m)X

s=(r+1)

(
(i+m)− 1
(r + 1)− 1

)(N−(i+m)
s−(r+1)

)

(
N−1
s−1

) =
1

i+m
.

Applying this new identity to dim yields

dim =
i+m−1X

r=1

(
i+m−2
r−1

)

(
(i+m)−1
(r+1)−1

)

2

4 1
N

r+1+N−(i+m)X

s=r+1

(
(i+m)−1
(r+1)−1

)(
N−(i+m)
s−(r+1)

)

(
N−1
S−1

)

3

5 (αr − αr+1)

=
1

i+m

i+m−1X

r=1

(
i+m−2
r−1

)

(
i+m−1
r

) (αr − αr+1) .

The total expected externality that player i imposes on the other players

is

N−iX

m=1

dimxi+m =
N−iX

m=1

"
1

i+m

i+m−1X

r=1

(
i+m−2
r−1

)

(
i+m−1
r

) (αr − αr+1)

#

xi+m

=
N−iX

m=1

1

i+m− 1

"
i+m− 1
i+m

i+m−1X

r=1

(
i+m−2
r−1

)

(
i+m−1
r

) (αr − αr+1)

#

xi+m.

Noting that

(i+m− 1)

(
i+m−2
r−1

)

(
i+m−1
r

) = (i+m− 1)
(i+m−2)!

(i+m−2−(r−1))!(r−1)!
(i+m−1)!

(i+m−1−r))!r!

= (i+m− 1)
(i+m−2)!

(i+m−1−r)!(r−1)!
(i+m−1)!

(i+m−1−r))!r!
= r,

we can write

N−iX

m=1

dimxi+m =
N−iX

m=1

1

i+m− 1

"
i+m−1X

r=1

r

i+m
(αr − αr+1) xi+m

#

.
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Collecting terms, the Shapley value of player i is

φi =
1

i

 
iX

m=1

αm

!

xi −
N−iX

m=1

1

i+m− 1

"
i+m−1X

r=1

r

i+m
(αr − αr+1) xi+m

#

.

!

Proof of Proposition 2: Let β = (β1, . . . , βN−1) be a symmetric equi-

librium in increasing and di§erentiable strategies. Since equilibrium is in

increasing strategies, the sequence of dropout prices (p1, . . . , pt−1) at round t

reveals the t− 1 lowest values (z1, . . . , zt−1). In the proof it is convenient to
write the round t equilibrium bid as a function of the prior dropout values

rather than as a function of the prior dropout prices. In particular, we write

βt(x|zt−1) rather than βt(x;pt−1).
For each t < N , let πt(y, x|zt−1) be the expected payo§ to a bidder with

value x who in round t deviates from equilibrium and bids as though his

value is y (i.e., he bids βt(y|zt−1)), when zt−1 is the profile of values of the
t − 1 bidders to drop so far. In this case we will sometimes say the bidder
“bids y”. Let

Πt(x|zt−1) = πt(x, x|zt−1)

be the equilibrium payo§ of a bidder in round t when his value is x and zt−1
is the profile of values of the t− 1 bidders to drop in prior rounds.
We now derive the necessary conditions in Proposition 2. Let zt−1 be

arbitrary. Consider a bid y. If zt 2 [zt−1, y] the bidder continues to round
t + 1 and has an expected payo§ of Πt+1(x|zt−1, zt). If zt ≥ y he obtains a

payo§ of αN−t+1x + βt(y|zt−1) − Σ
t−1
j=1

1
N−jpj in round t. Hence his expected

payo§ is

πt(y, x|zt−1) =
R y
zt−1

Πt+1(x|zt−1, zt)g
(N−1)
t (zt|zt−1)dzt

+
R x̄
y
u
(
αN−t+1x+ βt(y|zt−1)− Σ

t−1
j=1

1
N−jpj

)
g
(N−1)
t (zt|zt−1)dzt.

Di§erentiating with respect to y yields

@πt(y, x|zt−1)
@y

= [Πt+1(x|zt−1, y)− u
(
αN−t+1x+ βt(y|zt−1)− Σ

t−1
j=1

1
N−jpj

)
]g
(N−1)
t (y|zt−1)

+u0
(
αN−t+1x+ βt(y|zt−1)− Σ

t−1
j=1

1
N−jpj

)
β0t(y|zt−1)(1−G

(N−1)
t (y|zt−1)).
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A necessary condition for equilibrium is that @πt(y, x|zt−1)/@y|y=x = 0, i.e.,

[Πt+1(x|zt−1, x)− u
(
αN−t+1x+ βt(x|zt−1)− Σ

t−1
j=1

1
N−jpj

)
]g
(N−1)
t (x|zt−1)

+u0
(
αN−t+1x+ βt(x|zt−1)− Σ

t−1
j=1

1
N−jpj

)
β0t(x|zt−1)(1−G

(N−1)
t (x|zt−1)) = 0.

Since

Πt+1(x|zt−1, x) = πt+1(x, x|zt−1, x)

= u

(
αN−tx+ βt+1(x|zt−1, x)−

1

N − t
βt(x|zt−1)− Σ

t−1
j=1

1

N − j
pj

)

the necessary condition can be written as

u0
(
αN−t+1x+ βt(x|zt−1)− Σ

t−1
j=1

1

N − j
pj

)
β0t(x|zt−1)

= −

2

4
u
(
αN−tx+ βt+1(x|zt−1, x)−

1
N−tβt(x|zt−1)− Σ

t−1
j=1

1
N−jpj

)

−u
(
αN−t+1x+ βt(x|zt−1)− Σ

t−1
j=1

1
N−jpj

)

3

5λNt (x),

where βN(x; zN−1) ≡ 0. Replacing zt−1 with pt−1 and the x in βt+1(x|zt−1, x)
with βt(x|pt−1) yields the di§erential equation given in the Proposition for
round t. !

Proof of Proposition 3: We first show that the bidding functions in Propo-
sition 3 satisfies the system of di§erential equations in Proposition 2. The

proof is by induction. Consider round N − 1. The di§erential equation for
round N − 1 is

β00N−1(x|zN−2) = −[(α1 − α2)x− 2β
0
N−1(x|zN−2)]λ

N
N−1(x). (1)

The unique solution is

β0N−1(x) =
1

2

R x̄
x
(α1 − α2) z2f(z)(1− F (z))dz

(1− F (x))2

=
1

2
E
h
(α1 − α2)Z

(N)
N−1|Z

(N)
N−1 > x > Z

(N)
N−2

i
,

which is β0N−1(x), as given in Proposition 3.
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Suppose β0t+1, . . . , β
0
N−1 are as given in Proposition 3 for round t+1, . . . , N−

1. Consider round t. The di§erential equation in Proposition 2 for round t,

using the notation from the proof of Proposition 2, is

β00t (x|zt−1) = −
[
(αN−t − αN−t+1)x+ β0t+1(x|zt−1, x)−

N − t+ 1
N − t

β0t (x|zt−1)
]
λNt (x).

Since β0t+1(x|zt−1, x) is independent of (zt−1, x), we can write

β00t (x) = −
[
(αN−t − αN−t+1)x+ β0t+1(x)−

N − t+ 1
N − t

β0t (x)

]
λNt (x).

The unique solution is

β0t (x) =
N − t

N − t+ 1

Z x̄

x

(
(αN−t − αN−t+1)z + β0t+1(z)

)
(N − t+ 1)f(z)(1− F (z))N−t

(1− F (x))N−t+1
dz

=
N − t

N − t+ 1
E
h
(αN−t − αN−t−1)Z

(N)
t + β0t+1(Z

(N)
t )|Z(N)t > x > Z

(N)
t−1

i

=
N−tX

m=1

m

N − t+ 1
E
h
(αm − αm+1)Z

(N)
N−m|Z

(N)
t > x > Z

(N)
t−1

i
,

where the second equality restates the first equality as an expected value.

The third equality is established as Claim 5 in the Supplemental Appendix.

This establishes the result for round t and hence, by induction, the result for

all t.

Next we establish that the bidding strategies are an equilibrium. It is

su¢cient to show that the following three-part claim holds for every t:

1. If x ≥ zt−1 then x 2 argmaxy πt(y, x|zt−1), i.e., it is optimal for a
bidder with value x to bid β0t (x) in round t.

2. If x < zt−1 then zt−1 2 argmaxy πt(y, x|zt−1).

3. dΠt(x|zt−1)
dx

≥ αN−t+1.
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Parts 2 and 3 are ancillary results needed to establish Part 1 for rounds

prior to the last round. Part 2 is necessary to evaluate the consequence at

round t of a bid y greater than the equilibrium bid x. In this case, a rival

bidder with value zt > x may drop out before the bidder, and we need to

evaluate the consequence for his optimal bid in round t + 1. Part 2 shows

that in this event it is optimal for the bidder to bid zt (rather than x) in

round t+ 1.

The proof is by induction. Consider round N − 1. Any bid below zN−2
is strictly dominated by a bid of zN−2 since both bids result in the same

position while a bid of zN−2 yields higher compensation. Suppose y ≥ zN−2.
When bidders are risk neutral we have

πN−1(y, x|zN−2) =
yR

zN−2

(
α1x− β0N−1(zN−1)− Σ

N−2
j=1

1
N−jpj

)
g
(N−1)
N−1 (zN−1|zN−2)dzN−1

+
x̄R

y

(
α2x+ β

0
N−1(y)− Σ

N−2
j=1

1
N−jpj

)
g
(N−1)
N−1 (zN−1|zN−2)dzN−1.

Di§erentiating with respect to y yields @πN−1(y, x|zN−2)/@y =

(α1x− β0N−1(y)− Σ
N−2
j=1

1
N−jpj)g

(N−1)
N−1 (y|zN−2)

− (α2x+ β
0
N−1(y)− Σ

N−2
j=1

1
N−jpj)g

(N−1)
N−1 (y|zN−2)

+ β00N−1(y)(1−G
(N−1)
N−1 (y|zN−2)).

Substituting the di§erential equation (1)

β00N−1(y) = −[(α1 − α2)y − 2β
0
N−1(y)]λ

N
N−1(y) (2)

into the expression for @πN−1(y, x|zN−2)/@y yields

@πN−1(y, x|zN−2)/@y = (α1 − α2)(x− y)g
(N−1)
N−1 (y|zN−2).

If y < x then @πN−1(y, x|zN−2)/@y > 0, and if y > x then @πN−1(y, x|zN−2)/@y <
0. Thus x ≥ zN−2 implies x 2 argmaxy πN−1(y, x|zN−2), which establishes
Part 1.
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If x < zN−2, then any bid below zN−2 is strictly dominated. For any bid

y ≥ zN−2 then y > x and the above argument establishes @πN−1(y, x|zN−2)/@y <
0 for all y ≥ zN−2, i.e., zN−2 2 argmaxy πN−1(y, x|zN−2). This establishes
Part 2.

By the Envelope Theorem

dΠN−1(x|zN−2)
dx

=
@πN−1(y, x|zN−2)

@x

∣∣∣∣
y=x

= α1G
(N−1)
N−1 (x|zN−2) + α2(1−G

(N−1)
N−1 (x|zN−2))

≥ α2,

which establishes Part 3. This completes the claim for round N − 1.
Assume the three-part claim is true for rounds t+ 1 through N − 1. We

show it is true for round t. Let zt−1 be a sequence of dropout values. Suppose

x ≥ zt−1. Consider an active bidder in the t-th round whose value is x and
who bids y. A bid below zt−1 is dominated. Since his payo§ function di§ers

in each case, we need to distinguish (i) y 2 [zt−1, x] and (ii) y > x. In what
follows, we denote the payo§ to a bid of y as πLt (y, x|zt−1) if y 2 [zt−1, x] and
as πHt (y, x|zt−1) if y ≥ x.
Case (i): Consider a bid y 2 [zt−1, x]. If the next highest value of a rival

bidder is zt 2 [zt−1, y], then the bidder continues to round t+1 where, by the
induction hypothesis, he optimally bids x and he has an expected payo§ of

Πt+1(x|zt−1, zt). If zt ≥ y he obtains a payo§ of αN−t+1x+β0t (y)−Σ
t−1
j=1

1
N−jpj

in round t. Hence his payo§ is

πLt (y, x|zt−1) =
R y
zt−1

Πt+1(x|zt−1, zt)g
(N−1)
t (zt|zt−1)dzt

+
R x̄
y

(
αN−t+1x+ β

0
t (y)− Σ

t−1
j=1

1
N−jpj

)
g
(N−1)
t (zt|zt−1)dzt.

Di§erentiating with respect to y yields

@πLt (y, x|zt−1)
@y

= [Πt+1(x|zt−1, y)−
(
αN−t+1x+ β

0
t (y)− Σ

t−1
j=1

1
N−jpj

)
]g
(N−1)
t (y|zt−1)

+β00t (y)(1−G
(N−1)
t (y|zt−1)).
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By the induction hypothesis we have

@2πLt (y, x|zt−1)
@x@y

=

(
dΠt+1(x|zt−1, y)

dx
− αN−t+1

)
g
(N−1)
t (y|zt−1) ≥ 0.

Case (ii): Consider a bid y ≥ x. If the next highest value of a rival bidder
is zt 2 [zt−1, x], then the bidder continues to round t+1 and, by the induction
hypothesis, he bids x and obtains Πt+1(x|zt−1, zt). If zt 2 [x, y], then he

continues to round t + 1 and, by the part 2 of the induction hypothesis, he

optimally bids zt, he wins position N− t, and obtains compensation β0t+1(zt).
His payo§ is αN−tx+ β0t+1(zt) −

1
N−tβ

0
t (zt) − Σ

t−1
j=1

1
N−jpj. If zt > y, then in

round t his payo§ is αN−t+1x+ β
0
t (y|zt−1) − Σ

t−1
j=1

1
N−jpj. Thus his expected

payo§ at round t is

πHt (y, x|zt−1) =
R x
zt−1

Πt+1(x|zt−1, zt)g
(N−1)
t (zt|zt−1)dzt

+
R y
x

(
αN−tx+ β

0
t+1(zt)−

1
N−tβ

0
t (zt)− Σ

t−1
j=1

1
N−jpj

)
g
(N−1)
t (zt|zt−1)dzt

+
R x̄
y

(
αN−t+1x+ β

0
t (y)− Σ

t−1
j=1

1
N−jpj

)
g
(N−1)
t (zt|zt−1)dzt.

Di§erentiating with respect to y yields

@πHt (y, x|zt−1)
@y

=

[(
(αN−t − αN−t+1)x+ β0t+1(y)−

N − t+ 1
N − t

β0t (y)

)]
g
(N−1)
t (y|zt−1)

+β00t (y)(1−G
(N−1)
t (y|zt−1)).

Since αN−t − αN−t+1 ≥ 0 then

@2πHt (y, x|zt−1)
@x@y

= (αN−t − αN−t+1)g
(N−1)
t (y|zt−1) ≥ 0.

We have shown that

@πHt (y, x|zt−1)
@y

∣∣∣∣
y=x

=
@πLt (y, x|zt−1)

@y

∣∣∣∣
y=x

= 0

and

@2πLt (y, x|zt−1)
@x@y

≥ 0 for y ≤ x and
@2πHt (y, x|zt−1)

@x@y
≥ 0 for y ≤ x.
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hence by Lemma 0 in Van Essen andWooders (2016) we have x 2 argmaxy2[zt−1,x̄] πt(y, x|zt−1).
This establishes Part 1 for round t.

Suppose x < zt−1. Any y < zt−1 is strictly dominated by a bid of zt−1.

For y ≥ zt−1 we can write

πt(y, x|zt−1) =
R y
zt−1

(
αN−tx+ β

0
t+1(zt)−

1
N−tβ

0
t (zt)− Σ

t−1
j=1

1
N−jpj

)
g
(N−1)
t (zt|zt−1)dzt

+
R x̄
y

(
αN−t+1x+ β

0
t (y)− Σ

t−1
j=1

1
N−jpj

)
g
(N−1)
t (zt|zt−1)dzt.

Di§erentiating with respect to y and replacing β0
0

t (y) with the equilibrium

di§erential equation yields

@πt(y, x|zt−1)
@y

= (αN−t − αN−t+1) (x− y) g
(N−1)
t (y|zt−1) ≤ 0

since y > x and αN−t − αN−t+1 ≥ 0. Hence, if x < zt−1 then zt−1 2
argmaxy πt(y, x|zt−1). This establishes Part 2 for round t.
Finally, by the Envelope Theorem, we have

dΠt(x|zt−1)
dx

=
@πLt (y, x|zt−1)

@x

∣∣∣∣
y=x

=
@πHt (y, x|zt−1)

@x

∣∣∣∣
y=x

=

Z x

zt−1

dΠt+1(x|zt−1, zt)
dx

g
(N−1)
t (zt|zt−1)dzt + αN−t+1(1−G

(N−1)
t (x|zt−1)

≥ αN−tG
(N−1)
t (x|zt−1) + αN−t+1(1−G

(N−1)
t (x|zt−1)

≥ αN−t+1

where the first inequality follows from the induction hypothesis and the sec-

ond inequality follows since αN−t ≥ αN−t+1. This establishes Part 3 for round
t, and completes the proof by induction. !

Proof of Proposition 4: We first show that the bidding functions given in
Proposition 4 are the unique solution to the system of di§erential equations

in Proposition 2 when bidders have CARA utility. The proof is by induction.

Consider round N − 1. The di§erential equation for round N − 1 is

−θe−θ[α2x+β
θ
N−1(x|zN−2)−Σ

N−2
j=1

1
N−j pj ]βθ0N−1(x|zN−2) =

[e−θ[α2x+β
θ
N−1(x|zN−2)−Σ

N−2
j=1

1
N−j pj ] − e−θ[α1x−β

θ
N−1(x|zN−2)−Σ

N−2
j=1

1
N−j pj ]]λNN−1(x).
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Dividing both sides by e−θ[α2x−β
θ
N−1(x|zN−2)−Σ

N−2
j=1

1
N−j pj ] yields

−θe−2θβ
θ
N−1(x|zN−2)βθ0N−1(x|zN−2) = [e

−2θβθN−1(x|zN−2) − e−θ(α1−α2)x]λNN−1(x).

Multiplying both sides by 2(1− F (x))2 yields

−2(1− F (x))2θe−2θβ
θ
N−1(x|zN−2)βθ0N−1(x|zN−2)

= 2f(x)(1− F (x))[e−2θβ
θ
N−1(x|zN−2) − e−θ(α1−α2)x].

Rearranging

−2θ(1− F (x))2e−2θβ
θ
N−1(x|zN−2)βθ0N−1(x|zN−2)− 2f(x)(1− F (x))e

−2θβθN−1(x|zN−2)

= −e−θ(α1−α2)x2f(x)(1− F (x)).

or

d

dx

(
e−2θβ

θ
N−1(x|zN−2)(1− F (x))2

)
= −e−θ(α1−α2)x2f(x)(1− F (x)).

By the Fundamental Theorem of Calculus

e−2θβ
θ
N−1(x|zN−2)(1− F (x))2 =

Z x

0

−e−θ(α1−α2)s2f(s)(1− F (s))ds+ C.

Since the LHS is zero at x = x̄ then

C =

Z x̄

0

e−θ(α1−α2)s2f(s)(1− F (s))ds.

The unique solution βθN−1(x|zN−2) therefore satisfies

e−2θβ
θ
N−1(x|zN−2)(1− F (x))2 =

Z x̄

x

e−θ(α1−α2)s2f(s)(1− F (s))ds.

Rearranging yields

βθN−1(x) = −
1

2θ
ln

 R x̄
x
e−θ[(α1−α2)s]2f(s)(1− F (s))ds

(1− F (x))2

!

= −
1

2θ
ln
(
E
h
e−θ(α1−α2)Z

(N)
N−1 |Z(N)N−1 > x > Z

(N)
N−2

i)
,
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which is βθN−1(x), as given in Proposition 4.

Suppose βθt+1, . . . , β
θ
N−1 are as given in Proposition 4 for rounds t +

1, . . . , N − 1. Consider round t. The di§erential equation in the proof of
Proposition 2 for round t is

u0
(
αN−t+1x+ β

θ
t (x|zt−1)−

Xt−1

j=1

1

N − j
pj

)
βθ0t (x|zt−1)

= −

2

4
u
(
αN−tx+ β

θ
t+1(x)−

1
N−tβ

θ
t (x|zt−1)−

Pt−1
j=1

1
N−jpj

)

−u
(
αN−t+1x+ β

θ
t (x|zt−1)−

Pt−1
j=1

1
N−jpj

)

3

5λNt (x),

where we have used that βθt+1(x) is independent of zt by the induction hy-

pothesis. We have

θe−θ[αN−t+1x+β
θ
t (x|zt−1)−

Pt−1
j=1

1
N−j pj ]βθ0t (x|zt−1)

= −
h
e−θ[αN−t+1x+β

θ
t (x|zt−1)−

Pt−1
j=1

1
N−j pj ] − e−θ[αN−tx+β

θ
t+1(x)−

1
N−tβ

θ
t (x|zt−1)−

Pt−1
j=1

1
N−j pj ]

i
λNt (x).

Dividing both sides by e−θ[αN−t+1x−
1

N−tβ
θ
t (x|zt−1)−

Pt−1
j=1

1
N−j pj ] yields

−θe−θ
N−t+1
N−t βθt (x|zt−1)βθ0t (x|zt−1)

= [e−θ
N−t+1
N−t βθt (x|zt−1) − e−θ[(αN−t−αN−t+1)x+β

θ
t+1(x)]](N − t)

f(x)

1− F (x)
.

Multiplying both sides by N−t+1
N−t (1− F (x))

N−t+1 yields

−θ
N − t+ 1
N − t

(1− F (x))N−t+1e−θ
N−t+1
N−t βθt (x|zt−1)βθ0t (x|zt−1)

= [e−θ
N−t+1
N−t βθt (x|zt−1) − e−θ[(αN−t−αN−t+1)x+β

θ
t+1(x)]](N − t+ 1)(1− F (x))N−tf(x).

This equation can be rewritten as

−θ
N − t+ 1
N − t

(1− F (x))N−t+1e−θ
N−t+1
N−t βθt (x|zt−1)βθ0t (x|zt−1)

−e−θ
N−t+1
N−t βθt (x|zt−1)(N − t+ 1)(1− F (x))N−tf(x)

= −e−θ[(αN−t−αN−t+1)x+β
θ
t+1(x)](N − t+ 1)(1− F (x))N−tf(x),

i.e.,
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d

dx
((1−F (x))N−t+1e−θ

N−t+1
N−t βθt (x|zt−1)) = −e−θ[(αN−t−αN−t+1)x+β

θ
t+1(x)](N−t+1)(1−F (x))N−tf(x).

By the Fundamental Theorem of Calculus

(1− F (x))N−t+1e−θ
N−t+1
N−t βθt (x|zt−1)

=

Z x

0

−e−θ[(αN−t−αN−t+1)s+β
θ
t+1(s)](N − t+ 1)(1− F (s))N−tf(s)ds+ C.

Since the LHS is zero at x = x̄ then

C =

Z x̄

0

e−θ[(αN−t−αN−t+1)s+β
θ
t+1(s)](N − t+ 1)(1− F (s))N−tf(s)ds.

Hence the unique solution βθt (x|zt−1) satisfies

(1−F (x))N−t+1e−θ
N−t+1
N−t βθt (x|zt−1) =

Z x̄

x

e−θ[(αN−t−αN−t+1)s+β
θ
t+1(s)](N−t+1)(1−F (s))N−tf(s)ds.

Thus

βθt (x) = −
N − t

(N − t+ 1)θ
ln

(Z x̄

x

e−θ[(αN−t−αN−t+1)s+β
θ
t+1(s)](N − t+ 1)

(1− F (s))N−t

(1− F (x))N−t+1
f(s)ds

)

= −
N − t

(N − t+ 1)θ
ln

{
E

[
e
−θ
(
(αN−t−αN−t+1)Z

(N)
t +βθt+1(Z

(N)
t )

)

|Z(N)t > x > Z
(N)
t−1

]}
,

which establishes the result for round t and hence, by induction, the result

for all t.

Next we establish that the bidding strategies are an equilibrium. It is

su¢cient to show that the following two-part claim holds for every t:

1. If x ≥ zt−1 then x 2 argmaxy πt(y, x|zt−1), i.e., it is optimal for a
bidder with value x to bid βθt (x) in round t.

2. If x < zt−1 then zt−1 2 argmaxy πt(y, x|zt−1).
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The proof is by induction. Consider round N−1. Suppose that x ≥ zN−2.
Consider an active bidder whose value is x and who bids y. Any bid below

zN−2 is strictly dominated by a bid of zN−2 since both bids result in the same

position while a bid of zN−2 yields higher compensation. Hence consider bids

y ≥ zN−2.
With a bid of y the bidder wins Position 1 and obtains α1x−βθN−1(zN−1)−

ΣN−2j=1
1

N−jpj if y > zN−1, and he obtains α2x + β
θ
N−1(y) − Σ

N−2
j=1

1
N−jpj if

y < zN−1. Hence

πN−1(y, x|zN−2) =
yR

zN−2

u
(
α1x− βθN−1(zN−1)− Σ

N−2
j=1

1
N−jpj

)
g
(N−1)
N−1 (zN−1|zN−2)dzN−1

+
x̄R

y

u
(
α2x+ β

θ
N−1(y)− Σ

N−2
j=1

1
N−jpj

)
g
(N−1)
N−1 (zN−1|zN−2)dzN−1.

Di§erentiating with respect to y yields @πN−1(y, x|zN−2)/@y =

u(α1x− βθN−1(y)− Σ
N−2
j=1

1
N−jpj)g

(N−1)
N−1 (y|zN−2)

− u(α2x+ β
θ
N−1(y)− Σ

N−2
j=1

1
N−jpj)g

(N−1)
N−1 (y|zN−2)

+ u0(α2x+ β
θ
N−1(y)− Σ

N−2
j=1

1
N−jpj)β

θ0
N−1(y)(1−G

(N−1)
N−1 (y|zN−2)).

(3)

The necessary condition given in Proposition 2 for the general utility function

u is

u0
(
α2y + β

θ
N−1(y)−

XN−2

j=1

1

N − j
pj

)
βθ0N−1(y)

= −

2

4
u
(
α1y − βθN−1(y)−

PN−2
j=1

1
N−jpj

)

−u
(
α2y + β

θ
N−1(y)−

PN−2
j=1

1
N−jpj

)

3

5λNN−1(y).

Substituting this expression into @πN−1(y, x|zN−2)/@y yields

u(α1x− βθN−1(y)− Σ
N−2
j=1

1
N−jpj)g

(N−1)
N−1 (y|zN−2)

− u(α2x+ β
θ
N−1(y)− Σ

N−2
j=1

1
N−jpj)g

(N−1)
N−1 (y|zN−2)

−
u0(α2x+β

θ
N−1(y)−Σ

N−2
j=1

1
N−j pj)

u0(α2y+β
θ
N−1(y)−Σ

N−2
j=1

1
N−j pj)

2

4
u
(
α1y − βθN−1(y)−

PN−2
j=1

1
N−jpj

)

−u
(
α2y + β

θ
N−1(y)−

PN−2
j=1

1
N−jpj

)

3

5 g(N−1)N−1 (y|zN−2).
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This derivative has the same sign as

u(α1x− βθN−1(y)− Σ
N−2
j=1

1
N−jpj)− u(α2x+ β

θ
N−1(y)− Σ

N−2
j=1

1
N−jpj)

−
u0(α2x+β

θ
N−1(y)−Σ

N−2
j=1

1
N−j pj)

u0(α2y+β
θ
N−1(y)−Σ

N−2
j=1

1
N−j pj)

2

4
u
(
α1y − βθN−1(y)−

PN−2
j=1

1
N−jpj

)

−u
(
α2y + β

θ
N−1(y)−

PN−2
j=1

1
N−jpj

)

3

5 .

Using that u(x) has CARA we can write

u0(α2x+ β
θ
N−1(y)− Σ

N−2
j=1

1
N−jpj)

u0(α2y + β
θ
N−1(y)− Σ

N−2
j=1

1
N−jpj)

= e−θα2(x−y).

We can write

u(α1x− βθN−1(y)− Σ
N−2
j=1

1

N − j
pj)− u(α2x+ βθN−1(y)− Σ

N−2
j=1

1

N − j
pj)

as
e−θ[α2x+β

θ
N−1(y)−Σ

N−2
j=1

1
N−j pj ] − e−θ[α1x−β

θ
N−1(y)−Σ

N−2
j=1

1
N−j pj ]

θ
.

Hence the sign of the derivative is the same as the sign of

e−θ[α2x+β
θ
N−1(y)−Σ

N−2
j=1

1
N−j pj ] − e−θ[α1x−β

θ
N−1(y)−Σ

N−2
j=1

1
N−j pj ]

−e−θα2(x−y)
(
e−θ[α2y+β

θ
N−1(y)−Σ

N−2
j=1

1
N−j pj ] − e−θ[α1y−β

θ
N−1(y)−Σ

N−2
j=1

1
N−j pj ]

)
.

We can rewrite this as

−e−θ[α1x−β
θ
N−1(y)−Σ

N−2
j=1

1
N−j pj ] + e−θα2(x−y)e−θ[α1y−β

θ
N−1(y)−Σ

N−2
j=1

1
N−j pj ]

which has the same sign as

−e−θα1x + e−θα2(x−y)e−θα1y

which has the same sign as

−e−θα1(x−y) + e−θα2(x−y).

Since α1 > α2, this expression is positive if y < x and is negative if y > x.

Thus @πN−1(y, x|zN−2)/@y > 0 if y < x and @πN−1(y, x|zN−2)/@y < 0 if

y > x.
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We have shown if x ≥ zN−2 then x 2 argmaxy πN−1(y, x|zN−2), which
establishes part 1 of the two-part claim. If x < zN−2, then y ≥ zN−2 (since
any bid below zN−2 is strictly dominated) implies y ≥ zN−2 > x and the above
argument establishes bidding zN−2 is optimal since @πN−1(y, x|zN−2)/@y < 0
for all y ≥ zN−2, i.e., zN−2 2 argmaxy πN−1(y, x|zN−2). This establishes part
2 of the two-part claim for round N − 1.

Assume the two-part claim is true for rounds t + 1 through N − 1. We
show it is true for round t. Let zt−1 be arbitrary. Suppose x ≥ zt−1. Consider
an active bidder in the t-th round whose value is x and who bids as though

his value is y ≥ zt−1. A bid below zt−1 is not optimal. We need to distinguish
between two cases: (i) y 2 [zt−1, x] and (ii) y > x, since his payo§ function
di§ers in each case. In what follows, we denote the payo§ to a bid of y as

πLt (y, x|zt−1) if y 2 [zt−1, x] and as πHt (y, x|zt−1) if y ≥ x.
Case (i): Consider a bid y 2 [zt−1, x]. If zt 2 [zt−1, y] the bidder continues

to round t + 1 where, by the induction hypothesis, he optimally bids x and

he has an expected payo§ of Πt+1(x|zt−1, zt). If zt ≥ y he obtains a payo§ of
αN−t+1x+ β

θ
t (y)− Σ

t−1
j=1

1
N−jpj in round t. Hence his payo§ is

πLt (y, x|zt−1) =
R y
zt−1

Πt+1(x|zt−1, zt)g
(N−1)
t (zt|zt−1)dzt

+
R x̄
y
u
(
αN−t+1x+ β

θ
t (y)− Σ

t−1
j=1

1
N−jpj

)
g
(N−1)
t (zt|zt−1)dzt.

Di§erentiating with respect to y yields

@πLt (y, x|zt−1)
@y

= [Πt+1(x|zt−1, y)− u
(
αN−t+1x+ β

θ
t (y)− Σ

t−1
j=1

1
N−jpj

)
]g
(N−1)
t (y|zt−1)

+u0
(
αN−t+1x+ β

θ
t (y)− Σ

t−1
j=1

1
N−jpj

)
βθ0t (y)(1−G

(N−1)
t (y|zt−1)).

Rewriting

@πLt (y, x|zt−1)
@y

= [Πt+1(x|zt−1, y)− 1−e
−θ[αN−t+1x+β

θ
t (y)−Σ

t−1
j=1

1
N−j pj ]

θ
]g
(N−1)
t (y|zt−1)

+e−θ[αN−t+1x+β
θ
t (y)−Σ

t−1
j=1

1
N−j pj ]βθ0t (y)(1−G

(N−1)
t (y|zt−1)).
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Using the expression for βθ0t (y) from the necessary condition for equilibrium

from Proposition 2 for round t and substituting yields

@πLt (y, x|zt−1)
@y

= [Πt+1(x|zt−1, y)− 1−e
−θ[αN−t+1x+β

θ
t (y)−Σ

t−1
j=1

1
N−j pj ]

θ
]g
(N−1)
t (y|zt−1)

−e−θαN−t+1(x−y) 1
θ

"
e−θ[αN−t+1y+β

θ
t (y)−

Pt−1
j=1

1
N−j pj ]

−e−θ[αN−ty+β
θ
t+1(y)−

1
N−tβ

θ
t (y)−

Pt−1
j=1

1
N−j pj ]

#

g
(N−1)
t (y|zt−1).

Simplifying yields @πLt (y, x|zt−1)/@y as

(
Πt+1(x|zt−1, y)−

1

θ

h
1− e−θ[αN−ty+αN−t+1(x−y)+β

θ
t+1(y)−

1
N−tβ

θ
t (y)−

Pt−1
j=1

1
N−j pj ]

i)
g
(N−1)
t (y|zt−1).

We show that @πLt (y, x|zt−1)/@y > 0 for y < x. If the bid at round t is y,
then Πt+1(x|zt−1, y) is the equilibrium payo§ at round t+ 1 of a bidder with

value x. If he were to deviate from equilibrium and bid y at round t+1, then

he obtains position N − t (since y is the smallest value of a rival bidder) and
he receives βθt+1(y) at round t+ 1 and pays

1
N−tβ

θ
t (y) +

Pt−1
j=1

1
N−jpj. By the

induction hypothesis, this payo§ is less than his equilibrium payo§, i.e.,

Πt+1(x|zt−1, y) >
1

θ

h
1− e−θ[αN−tx+β

θ
t+1(y)−

1
N−tβ

θ
t (y)−

Pt−1
j=1

1
N−j pj ]

i
.

Since αN−t > αN−t+1 and x > y we have

αN−tx > αN−ty + αN−t+1(x− y)

and hence

1

θ

h
1− e−θ[αN−tx+β

θ
t+1(y)−

1
N−tβ

θ
t (y)−

Pt−1
j=1

pj
N−j ]

i

>
1

θ

h
1− e−θ[αN−ty+αN−t+1(x−y)+β

θ
t+1(y)−

1
N−tβ

θ
t (y)−

Pt−1
j=1

pj
N−j ]

i
.

Thus Πt+1(x|zt−1, y) is greater than the RHS of this inequality and hence
@πLt (y, x|zt−1)/@y > 0 for y < x.

Case (ii): Consider a bid y ≥ x. If zt 2 [zt−1, x], then the bidder continues
to round t+ 1 and, by part 1 of induction hypothesis, he bids x and obtains
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Πt+1(x|zt−1, zt). If zt 2 [x, y], then he continues to round t + 1 and, by part
2 of the induction hypothesis, he bids zt and obtains a payo§ of

αN−tx+ β
θ
t+1(zt)−

1

N − t
βθt (zt)− Σ

t−1
j=1

1

N − j
pj.

If zt > y then in round t he obtains position N − t + 1 and his payo§ is
αN−t+1x+ β

θ
t (y)− Σ

t−1
j=1

1
N−jpj. Thus his expected payo§ at round t is

πHt (y, x|zt−1) =
R x
zt−1

Πt+1(x|zt−1, zt)g
(N−1)
t (zt|zt−1)dzt

+
R y
x
u(αN−tx+ β

θ
t+1(zt)−

1
N−tβ

θ
t (zt)− Σ

t−1
j=1

1
N−jpj)g

(N−1)
t (zt|zt−1)dzt,

+
R x̄
y
u
(
αN−t+1x+ β

θ
t (y)− Σ

t−1
j=1

1
N−jpj

)
g
(N−1)
t (zt|zt−1)dzt.

Di§erentiating with respect to y yields

@πHt (y, x|zt−1)
@y

=

2

4
u
(
αN−tx+ β

θ
t+1(y)−

1
N−tβ

θ
t (y)− Σ

t−1
j=1

1
N−jpj

)

−u
(
αN−t+1x+ β

θ
t (y)− Σ

t−1
j=1

1
N−jpj

)

3

5 g(N−1)t (y|zt−1)

+u0
(
αN−t+1x+ β

θ
t (y)− Σ

t−1
j=1

1

N − j
pj

)
βθ0t (y)(1−G

(N−1)
t (y|zt−1)).

Using the expression for βθ0t (y) from the necessary condition for equilibrium

from Proposition 2 for round t and substituting gives @πHt (y, x|zt−1)/@y as
"
u(αN−tx+ β

θ
t+1(y)−

1
N−tβ

θ
t (y)− Σ

t−1
j=1

1
N−jpj)

−u(αN−t+1x+ βθt (y)− Σ
t−1
j=1

1
N−jpj)

#

g
(N−1)
t (y|zt−1)

−
u0(αN−t+1x+ β

θ
t (y)− Σ

t−1
j=1

1
N−jpj)

u0(αN−t+1y + β
θ
t (y)− Σ

t−1
j=1

1
N−jpj)

×

"
u(αN−ty + β

θ
t+1(y)−

1
N−tβ

θ
t (y)− Σ

t−1
j=1

1
N−jpj)

−u(αN−t+1y + βθt (y)− Σ
t−1
j=1

1
N−jpj)

#

g
(N−1)
t (y|zt−1).
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Since bidders have CARA preferences, then @πHt (y, x|zt−1)/@y is

1

θ

"
e−θ[αN−t+1x+β

θ
t (y)−Σ

t−1
j=1

1
N−j pj ]

−e−θ[αN−tx+β
θ
t+1(y)−

1
N−tβ

θ
t (y)−Σ

t−1
j=1

1
N−j pj ]

#

g
(N−1)
t (y|zt−1)

−e−θαN−t+1(x−y)
1

θ

"
e−θ[αN−t+1y+β

θ
t (y)−Σ

t−1
j=1

1
N−j pj ]

−e−θ[αN−ty+β
θ
t+1(y)−

1
N−tβ

θ
t (y)−Σ

t−1
j=1

1
N−j pj ]

#

g
(N−1)
t (y|zt−1).

=
1

θ

"
e−θ[αN−ty+αN−t+1(x−y)+β

θ
t+1(y)−

1
N−tβ

θ
t (y)−Σ

t−1
j=1

1
N−j pj ]

−e−θ[αN−tx+β
θ
t+1(y)−

1
N−tβ

θ
t (y)−Σ

t−1
j=1

1
N−j pj ]

#

g
(N−1)
t (y|zt−1).

This has the same sign as

e−θαN−t+1(x−y) − e−θαN−t(x−y),

which is negative since αN−t > αN−t+1 and y > x.

We have shown if x ≥ zt−1 then x 2 argmaxy πt(y, x|zt−1). If x < zt−1,
then y ≥ zt−1 (since any bid below zt−1 is strictly dominated) implies y ≥
zt−1 > x and the above argument establishes bidding zt−1 is optimal since

@πt(y, x|zt−1)/@y < 0 for all y ≥ zt−1, i.e., zt−1 2 argmaxy πt(y, x|zt−1).
This establishes the two-part claim for round t, and completes the proof by

induction. !

Proof of Proposition 5:We first show that for each t we have that β0t (x) >
βθt (x) for θ > 0 and x < x̄. Consider round t = N − 1. Since e−x is convex,
Jensen’s inequality implies

e
−E

h
θ(α1−α2)Z

(N)
N−1|Z

(N)
N−1>x>Z

(N)
N−2

i

< E
h
e−θ(α1−α2)Z

(N)
N−1 |Z(N)N−1 > x > Z

(N)
N−2

i
.

Taking the log of both sides and then dividing both sides by −2θ yields

β0N−1(x) =
1

2
E
h
(α1 − α2)Z

(N)
N−1|Z

(N)
N−1 > x > Z

(N)
N−2

i

> −
1

2θ
ln
n
E
h
e−θ(α1−α2)Z

(N)
N−1 |Z(N)N−1 > x > Z

(N)
N−2

io

= βθN−1(x).
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Assume that β0t+1(x) > β
θ
t+1(x) for x < x̄. We show that β

0
t (x) > β

θ
t (x) for

x < x̄. For z < x̄ we have

(αN−t − αN−t+1) z + β0t+1(z) > (αN−t − αN−t+1) z + β
θ
t+1(z).

Multiplying through by −θ and applying the exponential function to both
sides gives

e−θ[(αN−t−αN−t+1)z+β
0
t+1(z)] < e−θ[(αN−t−αN−t+1)z+β

θ
t+1(z)].

Hence

E

[
e
−θ
h
(αN−t−αN−t+1)Z

(N)
t +β0t+1(Z

(N)
t )

i

|Z(N)t > x > Z
(N)
t−1

]

< E

[
e
−θ
h
(αN−t−αN−t+1)Z

(N)
t +βθt+1(Z

(N)
t )

i

|Z(N)t > x > Z
(N)
t−1

]
.

By Jensen’s inequality, we have

e
−θE

h
(αN−t−αN−t+1)Z

(N)
t +β0t+1(Z

(N)
t )|Z(N)t >x>Z

(N)
t−1

i

< E

[
e
−θ
h
(αN−t−αN−t+1)Z

(N)
t +β0t+1(Z

(N)
t )

i

|Z(N)t > x > Z
(N)
t−1

]
,

and thus

e
−θE

h
(αN−t−αN−t+1)Z

(N)
t +β0t+1(Z

(N)
t )|Z(N)t >x>Z

(N)
t−1

i

< E

[
e
−θ
h
(αN−t−αN−t+1)Z

(N)
t +βθt+1(Z

(N)
t )

i

|Z(N)t > x > Z
(N)
t−1

]
.

Taking the log of both sides and then multiplying both sides by −(N −
t)/((N − t+ 1) θ) yields β0t (x) > βθt (x). We have shown for each t that

β0t (x) > β
θ
t (x) for θ > 0 and x < x̄.

Next we show that for each t we have that βθt (x) > βt(x) for θ > 0 and

x < x̄. Consider t = N − 1. For z > x we have

e−θ(α1−α2)z < e−θ(α1−α2)x,

and hence

E
h
e−θ(α1−α2)Z

(N)
N−1|Z(N)N−1 > x > Z

(N)
N−2

i
< e−θ(α1−α2)x.

40



Taking the log of both sides and then dividing both sides by −2θ yields

βθN−1(x) = −
1

2θ
ln
n
E
h
e−θ(α1−α2)Z

(N)
N−1 |Z(N)N−1 > x > Z

(N)
N−2

io
>
α1 − α2
2

x = β
N−1

(x).

Assume that βθt+1(x) > βt+1(x) for x < x̄. We show that β
θ
t (x) > βt(x)

for x < x̄. For z > x we have

e−θ[(αN−t−αN−t+1)z+β
θ
t+1(z)] < e

−θ
h
(αN−t−αN−t+1)x+βt+1(x)

i

,

and hence

E

[
e
−θ
h
(αN−t−αN−t+1)Z

(N)
t +βθt+1(Z

(N)
t )

i

|Z(N)t > x > Z
(N)
t−1

]
< e

−θ
h
(αN−t−αN−t+1)x+βt+1(x)

i

.

By the analogous argument as above, we obtain

βθt (x) = −
N − t

(N − t+ 1) θ
ln
n
E
h
e−θ[(αN−t−αN−t+1)Z

(N)
t +βθt+1(Z

(N)
t )]|Z(N)t > x > Z

(N)
t−1

io

>
N − t

N − t+ 1

h
(αN−t − αN−t+1) x+ βt+1(x)

i

= β
t
(x),

where the last equality follows since

N − t
N − t+ 1

h
(αN−t − αN−t+1) x+ βt+1(x)

i

=
N − t

N − t+ 1
(αN−t − αN−t+1) x+

N − t
N − t+ 1

 
N−t−1X

m=1

1

N − t
αm −

N − t− 1
N − t

αN−t

!

x

=

 
N−t−1X

m=1

1

N − t+ 1
αm −

N − t− 1
N − t+ 1

αN−t +
N − t

N − t+ 1
(αN−t − αN−t+1)

!

x

=

 
N−tX

m=1

1

N − t+ 1
αm −

N − t
N − t+ 1

αN−t+1

!

x

= β
t
(x).

!
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Proof of Proposition 6: We first show that for each t we have βθ
0

t (x) <

βθt (x) for θ
0 > θ and x < x̄. Consider round t = N − 1. Since f(s) = s

θ
θ0 is

concave, by Jensen’s inequality we have

(
E
h
e−θ

0(α1−α2)Z
(N)
N−1 |Z(N)N−1 > x > Z

(N)
N−2

i) θ
θ0
> E

h
e−θ(α1−α2)Z

(N)
N−1 |Z(N)N−1 > x > Z

(N)
N−2

i
.

Taking the log of both sides and then dividing both sides by −2θ yields

βθN−1(x) = −
1

2θ
ln
(
E
h
e−θ(α1−α2)Z

(N)
N−1 |Z(N)N−1 > x > Z

(N)
N−2

i)

> −
1

2θ0
ln
(
E
h
e−θ

0(α1−α2)Z
(N)
N−1 |Z(N)N−1 > x > Z

(N)
N−2

i)

= βθ
0

N−1(x).

Assume that βθ
0

t+1(x) < β
θ
t+1(x) for x < x̄. We show that β

θ0

t (x) < β
θ
t (x)

for x < x̄. By Jensen’s inequality we have

E
h
e−θ[(αN−t−αN−t+1)Z

(N)
t +βθ

0
t+1(Z

(N)
t )]|Z(N)t > x > Z

(N)
t−1

i

<
(
E
h
e−θ

0[(αN−t−αN−t+1)Z
(N)
t +βθ

0
t+1(Z

(N)
t )]|Z(N)t > x > Z

(N)
t−1

i) θ
θ0

and since βθ
0

t+1(x) < β
θ
t+1(x) then

E
h
e−θ[(αN−t−αN−t+1)Z

(N)
t +βθt+1(Z

(N)
t )]|Z(N)t > x > Z

(N)
t−1

i

< E
h
e−θ[(αN−t−αN−t+1)Z

(N)
t +βθ

0
t+1(Z

(N)
t )]|Z(N)t > x > Z

(N)
t−1

i
.

Hence

E
h
e−θ[(αN−t−αN−t+1)Z

(N)
t +βθt+1(Z

(N)
t )]|Z(N)t > x > Z

(N)
t−1

i

<
(
E
h
e−θ

0[(αN−t−αN−t+1)Z
(N)
t +βθ

0
t+1(Z

(N)
t )]|Z(N)t > x > Z

(N)
t−1

i) θ
θ0
.

Taking the log of both sides and multiplying both sides by−(N−t)/((N − t+ 1) θ)
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yields

βθ
0

t (x) = −
N − t

(N − t+ 1) θ0
ln
n
E
h
e−θ

0[(αN−t−αN−t+1)Z
(N)
t +βθ

0
t+1(Z

(N)
t )]|Z(N)t > x > Z

(N)
t−1

io

< −
N − t

(N − t+ 1) θ
ln
n
E
h
e−θ[(αN−t−αN−t+1)Z

(N)
t +βθt+1(Z

(N)
t )]|Z(N)t > x > Z

(N)
t−1

io

= βθt (x).

Next we show that for each t we have limθ!1 β
θ
t (x) = βt(x) for all x. For

t = N−1 the limit is obtained directly. Specifically, after applying l’Hopital’s
rule, we see that

lim
θ!1

βθN−1(x) =
1

2
(α1 − α2) lim

θ!1

R x̄
x
ze−θ(α1−α2)zg

(N)
N−1(z|x)dzR x̄

x
e−θ(α1−α2)zg

(N)
N−1(z|x)dz

where g(N)N−1(z|x) = 2f(z)(1 − F (z))/(1 − F (x))2. Van Essen and Wooders
(2016, p. 239) established that

lim
θ!1

R x̄
x
ze−θzg

(N)
N−1(z|x)dzR x̄

x
e−θzg

(N)
N−1(z|x)dz

= x,

which implies that

lim
θ!1

R x̄
x
ze−θ(α1−α2)zg

(N)
N−1(z|x)dzR x̄

x
e−θ(α1−α2)zg

(N)
N−1(z|x)dz

= x,

Hence,

lim
θ!1

βθN−1(x) =
1

2
(α1 − α2) x = βN−1(x).

Observe that βθN−1(x) is continuous in x on the compact set [0, x̄] for each

θ, it converges pointwise to β
N−1

(x), which is continuous on [0, x̄], and it

is decreasing in θ. Hence βθN−1 converges uniformly to βN−1 on [0, x̄] by

Theorem 7.12 of Rudin (1976).

Assume that βθt+1(x) converges uniformly to βt+1(x) on [0, x̄]. We show

that βθt (x) converges uniformly to βt(x). The CARA bid function in round

t is

βθt (x) = −
N − t

(N − t+ 1) θ
ln

(Z x̄

x

e−θ[(αN−t−αN−t+1)z+β
θ
t+1(z)]g

(N)
t (z|x)dz

)
.
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Let ∆ > 0 be arbitrary. Since βθt (x) is decreasing in θ and since β
θ
t+1 ! β

t+1

uniformly as θ !1, then there is a θ̄ such that for all θ ≥ θ̄ we have

βθt+1(x) ≤
N−t−1X

m=1

m

N − t
(αm − αm+1) x+∆

for x 2 [0, x̄]. Define

β̄
θ
t (x) ≡ −

N − t
(N − t+ 1) θ

ln

(Z x̄

x

e−θ[z(αN−t−αN−t+1+
PN−t−1
m=1

m
N−t (αm−αm+1))+∆]g

(N)
t (z|x)

)
dz.

Then βθt (x) ≤ β̄
θ
t (x) for θ ≥ θ̄ and x 2 [0, x̄]. By Proposition 5 we have

β
t
(x) ≤ βθt (x) and thus

β
t
(x) ≤ βθt (x) ≤ β̄

θ
t (x)

for θ ≥ θ̄ and x 2 [0, x̄].
We establish that βθt (x) converges pointwise to βt(x) for each x 2 [0, x̄].

Define

C = αN−t − αN−t+1 +
N−t−1X

m=1

m

N − t
(αm − αm+1) .

Applying L’Hopital’s rule and using the same argument as for round N − 1,
we have

lim
θ!1

β̄
θ
t (x) =

N − t
N − t+ 1

lim
θ!1

R x̄
x
(zC +∆)e−θ(zC+∆)g

(N)
t (z|x)dz

R x̄
x
e−θ(zC+∆)g

(N)
t (z|x)dz

=
N − t

N − t+ 1

 

C lim
θ!1

R x̄
x
ze−θzCg

(N)
t (z|x)dz

R x̄
x
e−θzCg

(N)
t (z|x)dz

+∆

!

=
N − t

N − t+ 1
(Cx+∆) ,

where the last inequality holds by Van Essen and Wooders (2016). Substi-

tuting for C and simplifying yields

lim
θ!1

β̄
θ
t (x) = βt(x) +

N − t
N − t+ 1

∆.
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Since the inequality

β
t
(x) ≤ lim

θ!1
βθt (x) ≤ lim

θ!1
β̄
θ
t (x) = βt(x) +

N − t
N − t+ 1

∆

holds for arbitrary ∆ > 0, it follows that limθ!1 β
θ
t (x) = βt(x). By the same

argument as for βθN−1, we have that β
θ
t converges uniformly to βt on [0, x̄].

!

Proof of Proposition 7: We first show following β guarantees a bidder
with value x a payo§ at round t of at least

v̄t(x;pt−1) =

 
N−t+1X

m=1

αm
N − t+ 1

!

x−
t−1X

m=1

1

N −m
pm,

when pt−1 is the sequence of dropout prices at prior rounds.

Consider round N − 1. A bidder with value x whose dropout price is

b either (i) drops at b and obtains a payo§ of α2x + b −
PN−2

m=1
1

N−mpm

or (ii) his rival drops first at pN−1 ≤ b and he obtains a payo§ of α1x −
pN−1 −

PN−2
m=1

1
N−mpm. In the second case, his payo§ is at least α1x − b −PN−2

m=1
1

N−mpm. The bidder maximizes his minimum payo§ when b satisfies

α2x+ b−
N−2X

m=1

1

N −m
pm = α1x− b−

N−2X

m=1

1

N −m
pm,

i.e., b = 1
2
(α1 − α2)x. Hence at round N − 1 the bidder guarantees himself a

payo§ of at least

v̄N−1(x;pN−2) =
α1 + α2
2

x−
N−2X

m=1

1

N −m
pm

following β
N−1

(x) = 1
2
(α1 − a2)x.

Suppose that at round t+1, given dropout prices pt, a bidder with value

x can guarantee himself at least

v̄t+1(x;pt) =

N−tX

m=1

αm
N − t

x−
tX

m=1

1

N −m
pm,
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by following

β
s
(x) =

 
N−sX

m=1

1

N − s+ 1
αm −

N − s
N − s+ 1

αN−s+1

!

x

for s = t+ 1, . . . , N − 1. We show that at round t he can guarantee himself
at least

v̄t(x;pt−1) =

N−t+1X

m=1

αm
N − t+ 1

x−
t−1X

m=1

1

N −m
pm,

by following

β
s
(x) =

 
N−sX

m=1

1

N − s+ 1
αm −

N − s
N − s+ 1

αN−s+1

!

x

for s = t, . . . , N − 1.
A bidder with value x whose dropout price is b at round t either (i) drops

at b and obtains a payo§ of αN−t+1x + b −
Pt−1

m=1
1

N−mpm or (ii) one of his

rivals drops first at pt ≤ b and, by induction, he obtains at least

v̄t+1(x;pt−1, pt) =
N−tX

m=1

αm
N − t

x−
1

N − t
pt −

t−1X

m=1

1

N −m
pm

≥
N−tX

m=1

αm
N − t

x−
1

N − t
b−

t−1X

m=1

1

N −m
pm.

The bidder maximizes his minimum payo§ when b satisfies

αN−t+1x+ b =

N−tX

m=1

αm
N − t

x−
1

N − t
b,

i.e.,

b =

 
N−tX

m=1

1

N − t+ 1
αm −

N − t
N − t+ 1

αN−t+1

!

x = β
t
(x).

Substituting b into αN−t+1x+ b−
Pt−1

m=1
1

N−mpm and simplifying shows that

his payo§ is at least v̄t(x;pt−1).

46



Next, we show that v̄t(x;pt−1) is the largest payo§ a bidder with value x

can guarantee at round t given dropout prices pt−1. Suppose to the contrary

he can guarantee himself v0t > v̄t(x;pt−1). If all active bidder have the same

value x then, since the game is symmetric, each such bidder can guarantee

himself at least v0t and hence the total guaranteed payo§s of the active bidders

is at least

(N − t+ 1)v0t > (N − t+ 1)

 
N−t+1X

m=1

αm
N − t+ 1

x−
t−1X

m=1

1

N −m
pm

!

=

N−t+1X

m=1

αmx− (N − t+ 1)
t−1X

m=1

1

N −m
pm,

which is a contraction since the RHS is the total surplus that can be obtained

by the active bidders at round t. The first term is the surplus realized from

allocating positions 1 through N− t+1 to the active bidders, and the second
term is the compensation they owe.

We have established that β is a maxmin perfect strategy. Next we show

that β is the unique maxmin perfect strategy. As a first step, we establish

at each round t that a bidder with value x can be held to a payo§ v̄t(x;pt−1)

given drop out prices pt−1.

Consider a bidder with value x at round N −1 with dropout prices pN−2.
Suppose his rival bids β

N−1
(x). If the bidder bids b < β

N−1
(x), then his

payo§ is

α2x+ b−
N−2X

m=1

pm
N −m

< α2x+ βN−1(x)−
N−2X

m=1

pm
N −m

= v̄N−1(x;pN−2).

If he bids b > β
N−1

(x) then his payo§ is

α1x− βN−1(x)−
N−2X

m=1

pm
N −m

= v̄N−1(x;pN−2).

In both case, his payo§ is at most v̄N−1(x;pN−2), which establishes he is held

to v̄N−1(x;pN−2).
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Suppose the claim is true for rounds t + 1, . . . , N − 1. We show it holds
for round t. Consider a bidder with value x at round t with dropout prices

pt−1. Suppose at each round s = t, . . . , N − 1 that each of his rivals bids
β
s
(x) at round s given drop out prices ps−1. If at round t the bidder bids

b < β
t
(x) his payo§ is

αN−t+1x+ b−
t−1X

m=1

pm
N −m

< αN−t+1x+ βt(x)−
t−1X

m=1

pm
N −m

= v̄t(x;pt−1).

If he bids b > β
t
(x), then he continues to round t + 1 and by the induction

hypothesis his rivals hold him to v̄t+1(x;pt−1, βt(x)). Straight forward algebra

establishes that

v̄t+1(x;pt−1, βt(x)) = v̄t(x;pt−1).

This establishes the claim holds for all rounds.

Finally, we show that β is the unique maxmin perfect strategy. Suppose

that there is another maxmin strategy β̂ 6= β. Then for some x, t, and pt−1
we have that β̂t(x;pt−1) 6= βt(x). Consider a bidder with value x at round
t, given dropout prices pt−1, who follows β̂. Suppose that at each round

s = t, . . . , N − 1 that his rivals bid β
s
(x) at round s. If β̂t(x;pt−1) < βt(x)

then bidder i drops out at round t and obtains the payo§

αN−t+1x+β̂t(x;pt−1)−
t−1X

m=1

pm
N −m

< αN−t+1x+βt(x)−
t−1X

m=1

pm
N −m

= v̄t(x;pt−1).

If β̂t(x;pt−1) > β
t
(x) and his rivals bid (β̂t(x;pt−1) + βt(x))/2 at round t

and bids β
s
(x) at each round s = t + 1, . . . , N − 1 then the bidder’s payo§

at round t is at most

v̄t+1(x;pt−1,
1

2
(β̂t(x;pt−1) + βt(x)))

by the immediately prior claim. Since v̄t+1(x;pt−1, pt) is decreasing in pt we

have

v̄t+1(x;pt−1,
1

2
(β̂t(x;pt−1) + βt(x))) < v̄t+1(x;pt−1, βt(x)) = v̄t(x;pt−1),
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which contradicts that β̂ is a security strategy. !

Proof of Proposition 8: Consider a bidder with value x who follows β. If
he drops out at round t his payo§ is

αN−t+1x+βt(x)−
t−1X

m=1

pm
N −m

=

 
N−t+1X

m=1

αm
N − t+ 1

!

x−
t−1X

m=1

pm
N −m

= v̄t(x;pt−1),

when pt−1 is the sequence of drop out prices in prior rounds. In other words,

a bidder who follows the security strategy obtains exactly his security payo§

if he drops.

Order the bidders so that x1 > . . . > xN . When all the bidders follow β,

since β
t
is increasing for each t, then bidder N drops in round 1 and wins

position N , bidder N − 1 drops in round 2 and wins position N − 1, and so
on. Bidder i drops in round N − i+ 1, wins position i, and obtains

v̄N−i+1(xi;pt−1) =

 
iX

m=1

αm
i

!

xi −
N−iX

j=1

pj
N − j

.

Reversing the order of the terms in the second sum by reindexing and setting

j = N − (i+m) + 1, we can write

v̄N−i+1(xi;pt−1) =

 
iX

m=1

αm
i

!

xi −
N−iX

m=1

pN−(i+m)+1
i+m− 1

.

Since all the bidders follow β then bidder i+m wins position i+m in round

N − (i+m) + 1 and the dropout price is

pN−(i+m)+1 = βN−(i+m)+1(xi+m) =
i+m−1X

r=1

r

i+m
(αr − αr+1) xi+m.

Substituting yields that the payo§ of bidder i is

v̄N−i+1(xi;pt−1) =
1

i

 
iX

m=1

αm

!

xi−
N−iX

m=1

1

i+m− 1

"
i+m−1X

r=1

r

i+m
(αr − αr+1) xi+m

#

,

which from Proposition 1 is his Shapley value payo§. !
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