2nd-order topology and supersymmetry in 2D-topological insulators

H. Schoeller (RWTH Aachen University)

RWTH Aachen:	C. Weber	Univ. Basel:	Z. Hou
	M. Pletyukhov		J. Klinovaja
	D. Kennes		D. Loss

 \rightarrow arXiv:2212.01307, accepted by Physical Review B

- Second-order topology in two dimensions: BHZ model + Zeeman term
- Half-integer flux through a hole in the system: Supersymmetry (SUSY)
 → induced by anticommuting inversion and mirror symmetry
- Topological protection of zero-energy states by **SUSY** + **chiral symmetry**
- Universal low-energy theory in terms of an effective surface Hamiltonian
 → realization of the whole class of periodic Witten models in 1D
- Topological engineering with hole states

2nd-order topology:

bulk gap \rightarrow two counterpropagating helical edge modes at the boundary of the system

surface gap \rightarrow topological bound states at certain positions of the surface where the mass term changes sign

Minimal model for second-order TI in 2D: BHZ + Zeeman

Langbehn et al., PRL '17 Geier et al., PRB '18 Khalaf, PRB '18 Ren et al., PRL '20

Flux dependence of counter-propagating edge states:

Surface gap opening at finite Zeeman field: $E_{z}\neq 0$

Topological states and phase diagram for a Corbino disc

В

- 1

- 0

 $^{-1}$

3

 $|R_{>}-R_{<}| \gg \xi_{n} \sim \lambda_{so}$

exponentially small splitting of states localized at different surfaces

⇒ topological states have exponentially small energy

Hole in an infinite system:

topological states are exactly at zero energy

Supersymmetry at half-integer flux: f = 1/2

$$\underline{U\Pi = -\Pi U} : H | \psi \rangle = \epsilon | \psi \rangle \quad U | \psi \rangle = \pm | \psi \rangle \quad U^2 = 1$$

$$\Rightarrow \langle \psi | \Pi | \psi \rangle = \langle \psi | U \Pi U | \psi \rangle = -\langle \psi | \Pi U^{2} | \psi \rangle = -\langle \psi | \Pi | \psi \rangle = 0$$

unitary \Rightarrow $\Pi \mid \psi
angle
eq 0$ another eigenstate with the same energy

exact 2-fold degeneracy of all eigenstates

Π

 \Rightarrow

 $|\psi\rangle$ and $\Pi|\psi\rangle$ \rightarrow degenerate

• SUSY: pair of zero-energy states can not split topological \Rightarrow protection • Chiral symmetry: pair of zero-energy states can not shift

<u>n=1 SUSY representation for Witten Hamiltonian:</u>

$$H_w = H^2$$

$$Q = H \Pi = Q^{\dagger}$$

hermitian supercharge operator

$$H_{W} = Q^{2}$$
$$QU = -UQ$$
$$U^{2} = 1 \quad \text{involution}$$

one hermitian supercharge operator Q + involution U

 $[S, H_W] = [S, U] = [S, Q] = 0$

⇒ construction possible for each chiral sector separately

<u>For each chiral sector:</u> $|\psi\rangle$ and $Q|\psi\rangle \rightarrow$ degenerate SUSY partners if $H_w |\psi\rangle = Q^2 |\psi\rangle = \lambda |\psi\rangle$ $Q|\psi\rangle \neq 0 \iff \lambda > 0$

<u>But:</u> Q is not unitary \Rightarrow $Q | \psi^{(0)} \rangle = 0$ is possible for the ground state of H_w

 \Rightarrow single state with $\lambda = 0$ is possible in each chiral sector!

→ distinguishes between broken/unbroken SUSY

Hole in an infinite system:

TP:

bulk states

extended edge states

localized

zero-energy

bound states

topological states

0

u = +1

$$H_W = H^2$$

 $[S, H_W] = [U, H_W] = 0$ Witten model [S, U]=0

> 4-fold degeneracy of all bulk states

exist only in TP

 $\mu = -1$

states localized at the boundary \rightarrow can be calculated for a smooth surface from an effective surface Hamiltonian

Effective surface Hamiltonian

Separation in normal and tangential part:

$$\lambda_{\rm so} \sim \xi_n \ll \xi_t \sim I_B \sqrt{R/\lambda_{\rm so}} \ll R$$

Topological phase

$$\delta > E_Z$$

$$B$$

$$s = -1$$

$$u = -1$$

$$g$$

$$s = 1$$

$$u = 1$$

hole system

Effective surface Hamiltonian:

(half-integer flux)

Witten model:

$$H_{W} = (H_{surface}^{eff})^{2} = -\frac{\alpha^{2}}{R^{2}}\partial_{\varphi}^{2} + V_{W}^{-\sigma_{z}}(\varphi)$$

 $V_W^{\pm}(\mathbf{s}_t) = E_Z^2 \sin^2 \varphi \mp \frac{\alpha}{R} E_Z \cos \varphi$

double sine

potential

 $H_{\text{surface}}^{\text{eff}} = -\frac{\alpha}{R} \sigma_x (-i\partial_{\varphi}) - \sigma_y E_z \sin\varphi$

$$S = -\sigma_z$$
 chiral symmetry

normal component

of Zeeman

- SUSY spectrum for each chiral sector
- topological states

$$\Omega_{w} = \frac{1}{m \lambda_{so} \xi_{t}} \qquad \xi_{t} = I_{B} \sqrt{R / \lambda_{so}}$$

Arbitrary smooth surface:

curvature radius $R \gg \xi_n \sim \lambda_{so}$

 $S_t \rightarrow$ line element along the surface

<u>Supersymmetric Dirac model:</u>

(for any mirror symmetric surface)

$$H_{surface}^{eff} = \alpha \sigma_x(-i \partial_{s_t}) + \sigma_y(E_z)_{normal}(s_t)$$

Witten model:

$$H_{W} = (H_{surface}^{eff})^{2} = -\alpha^{2}\partial_{s_{t}}^{2} + V_{W}^{-\sigma_{z}}(s_{t}) \qquad s = 0$$

 $S = -\sigma_z$

Partner potentials:

$$V_{W}^{\pm}(\mathbf{s}_{t}) = (\mathbf{E}_{z})_{normal}^{2}(\mathbf{s}_{t}) \mp \alpha \partial_{\mathbf{s}_{t}}(\mathbf{E}_{z})_{normal}(\mathbf{s}_{t})$$

• Realization of the whole class of periodic Witten models

- Mirror symmetric surface => SUSY
- Universal low-energy theory for the fundamental relation between 2nd-order topology and SUSY

Topological engineering

use hole states in TP regime: $\widetilde{E}_{7} < \widetilde{\delta} < 1 + \widetilde{E}_{7}$

$$\widetilde{\xi}_{n} = (1 - \sqrt{1 - \widetilde{\delta} + \widetilde{E}_{z}})^{-1}$$
$$\widetilde{\xi}_{t} = \sqrt{\widetilde{R}} \widetilde{I}_{B} \ll \widetilde{R}$$

increase B

$$\Rightarrow \xi_n$$
 increases
 ξ_t decreases

$$\Delta_{bulk} = |\delta| - E_z$$
$$\Delta_{surface} \approx E_z$$

decrease $B_1 < B$

⇒ increase coupling between two states at the same hole by detuning flux from 1/2

increase $B_2 > B$

⇒ increase coupling between states at different holes

(1) band inversion + spin-orbit + Zeeman: \rightarrow minimal model for 2nd-order TI in 2D \rightarrow very flexible topological states

(2) half-integer AB-flux: → SUSY spectrum: anticommuting inversion + mirror symmetry → topological states protected by SUSY + chiral symmetry

smooth surfaces: → derivation of effective surface Hamiltonian → generic class of periodic Witten models → universal low-energy theory: 2nd-order topology ↔ SUSY → trapping of topological states in effective surface potentials

(3)

(4) Generalization to 3D: \rightarrow anomalous 3D-QHE via hinge states on torus geometry \rightarrow Z. Hou et al., Phys. Rev. B 107, 075437 (2023)