Quantum frame covariance and subsystem relativity

loosely based on:

- Philipp Höhn
- Okinawa Institute of Science and Technology

- Quantum Information and Quantum Matter @ NYU Abu Dhabi May 24, 2023
- Ahmad, Galley, PH, Lock, Smith, PRL 128 (2022) 170401 de la Hamette, Galley, PH, Loveridge, Müller 2110.13824 Vanrietvelde, PH, Giacomini, Castro-Ruiz, Quantum 4 (2020) 225 Mele, Kotecha, PH, to appear soon

<u>Galilean</u>

"All the laws of mechanics the same in every inertial frame"

frame-dependent decomposition of space

 $\frac{1}{-} \neq 0$

С

Galilean

"All the laws of mechanics the same in every inertial frame"

frame-dependent decomposition of space

Special

"All the laws of physics (exc. Newt. gravity) the same in every inertial frame"

frame-dependent decomposition of spacetime into space and time

 $- \neq 0$

С

Galilean

"All the laws of mechanics the same in every inertial frame"

frame-dependent decomposition of space

Special

"All the laws of physics (exc. Newt. gravity) the same in every inertial frame"

frame-dependent decomposition of spacetime into space and time

General

"All the laws of physics the same in every frame"

frame-dependent local decomposition of spacetime into space and time

 $- \neq 0$

С

 $\hbar \neq$

<u>Galilean</u>

"All the laws of mechanics the same in every inertial frame"

Quantum?

"All the ... laws of ... the same in every ... QRF"

QRF-dependent decomposition of

Special

"All the laws of physics (exc. Newt. gravity) the same in every inertial frame"

frame-dependent decomposition of spacetime into space and time

General

"All the laws of physics the same in every frame"

frame-dependent local decomposition of spacetime into space and time

Quantum reference frames

internalize frames

spacetime

no background structure

universality of QT (ext. of Heisenberg cut)

reference frames always physical systems

lintin lintin lintin lintin l

 \Rightarrow

RF subject to QM itself

"RFs in relative superposition"

Why care?

- Foundational interest classical frame relations \Leftrightarrow classical spacetime structure
 - \Rightarrow quantum frame relations \Leftrightarrow quantum spacetime structure?
- systems with gauge symmetry (gauge-inv. descriptions implicitly invoke internal frames)
- gravity: no background frame
- quantum info: agents may not share a common external lab frame

Intuition: spatial QRFs in 1D $R_2 \qquad S \qquad q$

 R_1

 $|q_1\rangle_{R_2} \otimes |x\rangle_S$ R_1 perspective

 $|q_1\rangle_{R_2} \otimes |x\rangle_S$ R_1 perspective

how will R_2 "see" the same configuration?

 $|q_1\rangle_{R_2} \otimes |x\rangle_S$ R_1 perspective

how will R_2 "see" the same configuration? \Rightarrow move k

 \Rightarrow move R_2 into the origin

 $|q_1\rangle_{R_2} \otimes |x\rangle_S$ R_1 perspective

how will R_2 "see" the same configuration? \Rightarrow move k

Intuition: spatial QRFs in 1D

 \Rightarrow move R_2 into the origin

Q

 $|q_1\rangle_{R_2} \otimes |x\rangle_S$ R_1 perspective

how will R_2 "see" the same configuration? \Rightarrow move R_2

Intuition: spatial QRFs in 1D

 $|-q_1\rangle_{R_1} \otimes |x-q_1\rangle_S$ $\frac{R_2 \text{ perspective}}{R_2}$

Q

 \Rightarrow move R_2 into the origin

 $|q_1\rangle_{R_2} \otimes |x\rangle_S + |q_2\rangle_{R_2} \otimes |x\rangle_S$ R_1 perspective

how will R_2 "see" the same configuration? \Rightarrow what about superpositions?

 $|-q_1\rangle_{R_1} \otimes |x-q_1\rangle_S$ R_2 perspective

$$|q_1\rangle_{R_2} \otimes |x\rangle_S + |q_2\rangle_{R_2} \otimes |x\rangle_S$$

 R_1 perspective

assuming linearity

how will R_2 "see" the same configuration? \Rightarrow what about superpositions?

 R_2 perspective

 $|q_1\rangle_{R_2} \otimes |x\rangle_S + |q_2\rangle_{R_2} \otimes |x\rangle_S$ R_1 perspective

assuming linearity

how will R_2 "see" the same configuration? \Rightarrow what about superpositions?

Intuition: spatial QRFs in 1D

Q

$$|q_1\rangle_{R_2} \otimes |x\rangle_S + |q_2\rangle_{R_2} \otimes |x\rangle_S$$

 R_1 perspective

QRF transformation a conditional unitary:

how will R_2 "see" the same configuration?

Intuition: spatial QRFs in 1D

$$|-q_{1}\rangle_{R_{1}} \otimes |x-q_{1}\rangle_{S} + |-q_{2}\rangle_{R_{1}} \otimes |x-q_{1}\rangle_{S}$$

$$R_{2} \text{ perspective}$$

$$V_{R_{1} \rightarrow R_{2}} = \mathbb{F}_{12} \int dq |-q \rangle \langle q |_{R_{2}} \otimes U_{S}(-q)$$
swaps particles R_{2} and R_{1}
[Giacomini et al Nat. Comm. '19]

Q

$$(|q_1\rangle_{R_2} + |q_2\rangle_{R_2}) \otimes |x\rangle_S$$

 R_1 perspective

QRF transformation a conditional unitary:

how will R_2 "see" the same configuration?

Intuition: spatial QRFs in 1D

$$|-q_{1}\rangle_{R_{1}} \otimes |x-q_{1}\rangle_{S} + |-q_{2}\rangle_{R_{1}} \otimes |x|$$

$$R_{2} \text{ perspective}$$

$$V_{R_{1} \rightarrow R_{2}} = \mathbb{F}_{12} \int dq |-q \rangle \langle q |_{R_{2}} \otimes U_{S}(-q)$$
swaps particles R_{2} and R_{1}

[Giacomini et al Nat. Comm. '19]

Q

Example illustrates: superposition and entanglement of subsystem *S* **QRF relative**

The story more generally

System S subject to symmetry group G, s.t. states ho and $g \cdot
ho$ are Indistinguishable for all $g \in G$ when S considered in isolation

RFs and symmetries

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation

pair (G, S) could be, e.g.:

• spatial symmetry + group of particles

• ...

• diffeos + all dynamical fields in spacetime

RFs and symmetries

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation

• ...

pair (G, S) could be, e.g.:

- spatial symmetry + group of particles
- diffeos + all dynamical fields in spacetime

RFs and symmetries

quantum information/foundations: lab frame

gravity: fictitious (or edge modes)

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation

• ...

pair (G, S) could be, e.g.:

- spatial symmetry + group of particles
- diffeos + all dynamical fields in spacetime

RFs and symmetries

quantum information/foundations: lab frame

gravity: fictitious (or edge modes)

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation

pair (G, S) could be, e.g.:

• spatial symmetry + group of particles

• ...

• diffeos + all dynamical fields in spacetime

RFs and symmetries

System S subject to symmetry group G, s.t. states ho and $g \cdot
ho$ are Indistinguishable for all $g \in G$ when S considered in isolation

RFs and symmetries

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation

RFs and symmetries

G-transformations = ext. frame transf. = "gauge transformations"

 \Rightarrow "gauge inv." = external frame indep.

internally indistinguishable

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation

> quantum information/foundations: change of ext. lab frame

gravity: change of background coordinates (diffeo) \Rightarrow change of fictituous background frame

RFs and symmetries

G-transformations = ext. frame transf. = "gauge transformations"

 \Rightarrow "gauge inv." = external frame indep.

internally indistinguishable

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation

> quantum information/foundations: change of ext. lab frame

gravity: change of background coordinates (diffeo) \Rightarrow change of fictituous background frame

RFs and symmetries

G-transformations = ext. frame transf. = "gauge transformations"

 \Rightarrow "gauge inv." = external frame indep.

internally indistinguishable

Describe S relative to internal reference subsystem R

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation

> quantum information/foundations: change of ext. lab frame

gravity: change of background coordinates (diffeo) \Rightarrow change of fictituous background frame

RFs and symmetries

G-transformations = ext. frame transf. = "gauge transformations"

 \Rightarrow "gauge inv." = external frame indep.

internally indistinguishable **Describe** S relative to internal reference subsystem R should transform "nicely" (covariantly) under G

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation

> ρ and $g \cdot \rho$ members of same relational equivalence class of states, different descriptions of same relational state

RFs and symmetries

G-transformations = ext. frame transf. = "gauge transformations"

 \Rightarrow "gauge inv." = external frame indep.

Example: Special relativity with internal frames $v^{\mu} \mapsto \Lambda^{\mu}{}_{\nu}v^{\nu} \qquad \Lambda \in \mathrm{SO}_{+}(3,1),$ internally indistinguishable ► X

fictitious/external coord. frame

Example: Special relativity with internal frames

 \Rightarrow

$$v^{\mu} \mapsto \Lambda^{\mu}{}_{\nu}v^{\nu}$$

introduce internal frame (tetrad)

$$e_a^{\mu}$$
 $\mu = t$

fictitious/external coord. frame

\Rightarrow group acts on itself since

$$\eta_{ab} = e^{\mu}_a e^{\nu}_b \eta_{\mu\nu}$$

 $\Lambda \in SO_{+}(3,1),$

internally indistinguishable

spacetime index, a = 0, 1, 2, 3frame index t, x, y, z

$$e_a^{\mu} \in SO_+(3,1)$$
 group valued frame orienta

introduce internal frame (tetrad)

frame orientations

"gauge transformations":

fictitious/external coord. frame

 \Rightarrow group acts on itself since

 $\eta_{ab} = e^{\mu}_a e^{\nu}_b \eta_{\mu\nu}$

Example: Special relativity with internal frames

 $v^{\mu} \mapsto \Lambda^{\mu}{}_{\nu}v^{\nu} \qquad \Lambda \in \mathrm{SO}_{+}(3,1),$ internally indistinguishable

 $\mu = t, x, y, z$ spacetime index, a = 0, 1, 2, 3frame index

 $\Lambda^{\mu}_{\nu} e^{\nu}_{a} \qquad \Lambda^{\mu}_{\nu} \in \mathrm{SO}_{+}(3,1)$

 $\Rightarrow e_a^{\mu} \in SO_+(3,1)$ group valued frame orientations

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation

> **Interested in internally** distinguishable (relational) states/ observables

RFs and symmetries

Describe *S* **relative to internal** reference subsystem R

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation

> **Interested in internally** distinguishable (relational) states/ observables

RFs and symmetries

R

internally distinguishable (relations changed)

 \Rightarrow internal frame reorientation ("symmetry")

Describe *S* **relative to internal** reference subsystem R

\Rightarrow group acts on itself since

 $\eta_{ab} = e^{\mu}_a e^{\nu}_b \eta_{\mu\nu}$

Example: Special relativity with internal frames

 $v^{\mu} \mapsto \Lambda^{\mu}{}_{\nu}v^{\nu} \qquad \Lambda \in \mathrm{SO}_{+}(3,1),$ internally indistinguishable

 $\mu = t, x, y, z$ spacetime index, a = 0, 1, 2, 3frame index

2 indices, 2 commuting group actions:

"gauge transformations": "symmetries" (frame reorientations):

$$\Rightarrow e_a^{\mu} \in \mathrm{SO}_+(3,1)$$

group valued frame orientations

\Rightarrow group acts on itself since

 $\eta_{ab} = e^{\mu}_{a} e^{\nu}_{b} \eta_{\mu\nu}$

Example: Special relativity with internal frames

 $v^{\mu} \mapsto \Lambda^{\mu}{}_{\nu}v^{\nu} \qquad \Lambda \in \mathrm{SO}_{+}(3,1),$ internally indistinguishable

 $\mu = t, x, y, z$ spacetime index, a = 0, 1, 2, 3frame index

2 indices, 2 commuting group actions:

"gauge transformations": "symmetries" (frame reorientations):

$$\Rightarrow e_a^{\mu} \in \mathrm{SO}_+(3,1)$$

group valued frame orientations

2 ways of "jumping into a RF perspective"

R

Premise:

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation

1. relational observables relative to R (gauge inv.)

Describe *S* **relative to internal reference subsystem** *R*

Example: Special relativity with internal frames

 $v^{\mu} \mapsto \Lambda^{\mu}{}_{\nu}v^{\nu} \qquad \Lambda \in \mathrm{SO}_{+}(3,1),$ internally indistinguishable

 $\mu = t, x, y, z$ spacetime index, a = 0, 1, 2, 3frame index

2 indices, 2 commuting group actions:

"gauge transformations": "symmetries" (frame reorientations):

$$\Rightarrow \qquad e_a^{\mu} \in \mathrm{SO}_+(3,$$

group valued frame orientations

"relational/frame dressed observables"

(describes v relative to frame)

2 ways of "jumping into a RF perspective"

Premise:

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation

1. relational observables relative to R (gauge inv.)

2. put R into "origin" (gauge fix)

Describe *S* **relative to internal** reference subsystem R

$$\eta_{ab} = e^{\mu}_a e^{\nu}_b \eta_{\mu\nu}$$

 \Rightarrow gauge fix background frame to align with tetrad

Example: Special relativity with internal frames

 $v^{\mu} \mapsto \Lambda^{\mu}{}_{\nu}v^{\nu} \qquad \Lambda \in \mathrm{SO}_{+}(3,1),$ internally indistinguishable

 $\mu = t, x, y, z$ spacetime index, a = 0, 1, 2, 3frame index

2 indices, 2 commuting group actions:

"gauge transformations": "symmetries" (frame reorientations):

 \Rightarrow

 $e_a^{\mu} \in SO_{+}(3,1)$ group valued frame orientations

The multiple choice problem

Premise:

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation which frame to choose?

Describe *S* **relative to internal reference subsystem** *R*

The multiple choice problem

Premise:

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation which frame to choose?

Describe *S* relative to internal reference subsystem R'

2 ways of changing RF

Premise:

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation

2 ways of changing RF

Premise:

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation

1. relation-conditional reorientation

Warmup: Special relativity with internal frames

introduce second internal frame

$$e_{a'}'$$

$$v_{a} = v^{\mu} \eta_{\mu\nu} e_{a}^{\nu} = v^{\mu} e_{\mu a'}^{\prime} e_{\nu}^{\prime a'} e_{a}^{\nu} = v_{a'} \Lambda^{a'}_{a}$$
able rel. to e
relational observable

rel. to e

Warmup: Special relativity with internal frames

introduce second internal frame

symmetry induced RF transformation:

$$\Lambda^{a'}_{\ a} = e^{'a'}_{\mu} e^{\mu}_{a} \in SO_{+}(3,1)$$

is relational observable describing 1st rel. to 2nd frame

$$e_{a'}'$$

$$v_{a} = v^{\mu} \eta_{\mu\nu} e_{a}^{\nu} = v^{\mu} e_{\mu a'}^{\prime} e_{\nu}^{\prime a'} e_{a}^{\nu} = v_{a'} \Lambda^{a'}_{a}$$

$$(a) = v^{\mu} \eta_{\mu\nu} e_{a}^{\nu} = v^{\mu} e_{\mu a'}^{\prime} e_{\nu}^{\prime a'} e_{a}^{\nu} = v_{a'} \Lambda^{a'}_{a}$$

$$(b) = v^{\mu} \eta_{\mu\nu} e_{a}^{\nu} = v^{\mu} e_{\mu}^{\prime} e_{\mu}^{\prime a'} e_{\mu}^{\nu} e_{a}^{\nu} = v_{a'} \Lambda^{a'}_{a}$$

$$(b) = v^{\mu} \eta_{\mu\nu} e_{a}^{\nu} = v^{\mu} e_{\mu}^{\prime} e_{\mu}^{\prime a'} e_{\mu}^{\prime a'} e_{\mu}^{\nu} = v_{a'} \Lambda^{a'}_{a}$$

rel. to e

2 ways of changing RF

Premise:

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation

1. relation-conditional reorientation

2. relation-conditional gauge-transf.

2 ways of changing RF

Premise:

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation

1. relation-conditional reorientation

2. relation-conditional gauge-transf.

Warmup: Special relativity with internal frames

introduce second internal frame

symmetry induced RF transformation:

$$\Lambda^{a'}_{\ a} = e^{'a'}_{\mu} e^{\mu}_{a} \in SO_{+}(3,1)$$

is relational observable describing 1st rel. to 2nd frame

$$e_{a'}'$$

$$v_{a} = v^{\mu} \eta_{\mu\nu} e_{a}^{\nu} = v^{\mu} e_{\mu a'}' e_{\nu}^{'a'} e_{a}^{\nu} = v_{a'} \Lambda^{a'}_{a}$$
able rel. to e relational observable rel. to e'

gauge induced RF transformation: $\Lambda^{\nu'}_{\ \mu} \in SO_{+}(3,1)$ looks the same as $\Lambda^{a'}_{\ a}$ coordinate change via gauge fixings

$$v_{a} = \eta_{\mu\nu} e_{a}^{\nu} v^{\mu}$$

$$e_{a}^{\nu} = \delta_{a}^{\nu}$$

$$\Lambda^{\nu'}{}_{\mu} \in SO_{+}(3,1)$$

$$v_{a} \stackrel{\circ}{=} v_{\mu}$$

$$v_{a} \stackrel{\circ}{=} \Lambda^{\nu}$$

Premise:

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation

green balls: subsystem S'

Premise:

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation

1. kinematical and relational (gauge inv.) notion of subsystem distinct

green balls: subsystem S'

Premise:

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation

1. kinematical and relational (gauge inv.) notion of subsystem distinct

green balls: subsystem S'

Premise:

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation

1. kinematical and relational (gauge inv.) notion of subsystem distinct

leaves description of S' rel. to external frame invariant, but changes description relative to frame R

Premise:

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation

- 2. gauge inv. notion of subsystem depends on choice of RF

leaves description of S' rel. to external frame invariant, but changes description relative to frame R

Premise:

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation

- 2. gauge inv. notion of subsystem depends on choice of RF

leaves description of S' relative to R invariant, but changes it relative to R'

Premise:

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation

- 2. gauge inv. notion of subsystem depends on choice of RF

leaves description of S' rel. to external frame invariant, but changes description relative to frame R

leaves description of S' relative to R invariant, but changes it relative to R'

Premise:

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are Indistinguishable for all $g \in G$ when S considered in isolation

- R' •
- 2. gauge inv. notion of subsystem depends on choice of RF
 - \Rightarrow gauge inv. correlations, thermal properties, ... are RF dependent

leaves description of S' rel. to external frame invariant, but changes description relative to frame R

Warmup: Special relativity with internal frames

introduce second internal frame

symmetry induced RF transformation:

$$\Lambda^{a'}_{\ a} = e^{'a'}_{\mu} e^{\mu}_{a} \in SO_{+}(3,1)$$

is relational observable describing 1st rel. to 2nd frame

$$e_{a'}'$$

$$v_{a} = v^{\mu} \eta_{\mu\nu} e_{a}^{\nu} = v^{\mu} e_{\mu a'}^{\prime} e_{\nu}^{\prime a'} e_{a}^{\nu} = v_{a'} \Lambda^{a'}_{a}$$
able rel. to e
relational observable re

subsystem relativity \Rightarrow relativity of simultaneity

to e

Quantum reference frames

... or frames in relative superposition

 $\mathscr{H}_{\mathrm{kin}} = L^2(\mathbb{R})_{R_1} \otimes L^2(\mathbb{R})_{R_2} \otimes L^2(\mathbb{R})_S$

Example: spatial QRFs in 1D

 $\mathscr{H}_{\mathrm{kin}} = L^2(\mathbb{R})_{R_1} \otimes L^2(\mathbb{R})_{R_2} \otimes L^2(\mathbb{R})_S$

global translations as external frame transformations, i.e. gauge transformations

$$U_{R_1R_2S}(x) = e^{ix(p_1 + p_2 + p_S)}$$

Example: spatial QRFs in 1D

 $\mathscr{H}_{\mathrm{kin}} = L^2(\mathbb{R})_{R_1} \otimes L^2(\mathbb{R})_{R_2} \otimes L^2(\mathbb{R})_S$

global translations as external frame transformations, i.e. gauge transformations

$$U_{R_1R_2S}(x) = e^{ix(p_1 + p_2 + p_S)}$$

Example: spatial QRFs in 1D

 $\mathscr{H}_{\mathrm{kin}} = L^2(\mathbb{R})_{R_1} \otimes L^2(\mathbb{R})_{R_2} \otimes L^2(\mathbb{R})_S$

global translations as external frame transformations, i.e. gauge transformations

$$U_{R_1R_2S}(x) = e^{ix(p_1 + p_2 + p_S)}$$

$$\mathscr{H}_{\mathrm{kin}} = L^2(\mathbb{R})_{R_1} \otimes L^2(\mathbb{R})_{R_2} \otimes L^2(\mathbb{R})_S$$

$$U_{R_1R_2S}(x) = e^{ix(p_1 + p_2 + p_S)}$$

frame orientation states for R_1

 \Rightarrow 2 commuting group actions (here trivial)

recall relational observables from SR

Relational observables through *G***-twirl:**

$$O_{f_{R_2S},R_1}(x) = \int dq \, U_{R_1R_2S}(q) \left(\left| x \right|_{R_1} \otimes f_{R_2S} \right) U_{R_1R_2S}^{\dagger}$$

frame-orientation conditional gauge transformation (controlled unitary)

(q)"what's the value of f_{R_2S} when R_1 is in position x?"

recall relational observables from SR

Relational observables through *G***-twirl:**

$$O_{f_{R_2S},R_1}(x) = \int dq \, U_{R_1R_2S}(q) \Big(|x\rangle \langle x|_{R_1} \otimes f_{R_2S} \Big) \, U_{R_1R_2S}^{\dagger}$$

frame-orientation conditional gauge transformation (controlled unitary)

gauge-inv.

$$[O_{f_{R_2S},R_1}(x), U_{R_1R_2S}(y)] = 0$$

(q)"what's the value of f_{R_2S} when R_1 is in position x?"

recall relational observables from SR

Relational observables through *G***-twirl:**

$$O_{f_{R_2S},R_1}(x) = \int dq \, U_{R_1R_2S}(q) \Big(|x\rangle \langle x|_{R_1} \otimes f_{R_2S} \Big) \, U_{R_1R_2S}^{\dagger}$$

frame-orientation conditional gauge transformation (controlled unitary)

gauge-inv.

$$[O_{f_{R_2S},R_1}(x), U_{R_1R_2S}(y)] = 0$$

frame-orientation conditional gauge transformation

(q)"what's the value of f_{R_2S} when R_1 is in position x?"

for example, get $O_{q_2,R_1}(0) = q_2 - q_1$ and $O_{q_S,R_1}(0) = q_S - q_1$

$$\mathcal{H}_{\mathrm{kin}} = L^2(\mathbb{R})_{R_1} \otimes L^2(\mathbb{R})_{R_2} \otimes L^2(\mathbb{R})_S$$

gauge-inv. (external frame-indep.) physical Hilbert space

Perspective-neutral formulation of QRF covariance

$$\mathcal{H}_{\mathrm{kin}} = L^2(\mathbb{R})_{R_1} \otimes L^2(\mathbb{R})_{R_2} \otimes L^2(\mathbb{R})_S$$

gauge-inv. (external frame-indep.) physical Hilbert space

 $(p_1 + p_2 + p_S) |\psi\rangle_{\text{phys}} = 0$ states such that

- \Rightarrow redundancy: many different ways in describing same invariant $|\psi_{\rm phys}\rangle$
- \Rightarrow associate with different internal QRF choices: redundant = reference DoFs

 \mathscr{H}_{phys} is a (internal frame) perspective-neutral space: description of physics prior to having chosen internal reference system relative to which remaining DoFs are described

gauge-induced QRF changes: quantum coordinate changes

recall: "jumping into frame perspective" through gauge-fixing

gauge-induced QRF changes: quantum coordinate changes $e_a^{\nu} = \delta_a^{\nu}$ $\Lambda^{\nu'}{}_{\mu} \in \mathrm{SO}_+(3,1)$ $v_{a} = \eta_{\mu\nu} e_{a}^{\nu} v^{\mu}$ $e'^{\nu'}_{a'} = \delta^{\nu'}_{a'}$ perspective-neutral $v_a \triangleq \Lambda^{\nu'}{}_{\mu} v_{\nu'}$ \mathcal{H}_{phys} recall: "jumping into frame perspective" through gauge-fixing $\varphi_{R_1} = \langle q = 0 |_{R_1} \otimes I_{R_2S}$ $\varphi_{R_2} = \langle q = 0 |_{R_2} \otimes I_{R_1 S}$ R_1 perspective $\mathscr{H}_{R_2S|R_1} = L^2(\mathbb{R})_{R_2} \otimes L^2(\mathbb{R})_S$ $V_{R_1 \to R_2} = \varphi_{R_2} \circ \varphi_{R_1}^{-1}$

Vanrietvelde, PH, Giacomini, Castro Ruiz, Quantum 2020

gauge-induced QRF changes: quantum coordinate changes $e_a^{\nu} = \delta_a^{\nu}$ $\Lambda^{\nu'}{}_{\mu} \in \mathrm{SO}_+(3,1)$ $v_{a} = \eta_{\mu\nu} e_{a}^{\nu} v^{\mu}$ $e'^{\nu'}_{a'} = \delta^{\nu'}_{a'}$ perspective-neutral $v_a \triangleq \Lambda^{\nu'}{}_{\mu} v_{\nu'}$ \mathcal{H}_{phys} recall: "jumping into frame perspective" through gauge-fixing $\varphi_{R_1} = \langle q = 0 |_{R_1} \otimes I_{R_2S}$ $\varphi_{R_2} = \langle q = 0 |_{R_2} \otimes I_{R_1 S}$ R_1 perspective $\mathscr{H}_{R_2S|R_1} = L^2(\mathbb{R})_{R_2} \otimes L^2(\mathbb{R})_S$ $V_{R_1 \to R_2} = \varphi_{R_2} \circ \varphi_{R_1}^{-1}$

Vanrietvelde, PH, Giacomini, Castro Ruiz, Quantum 2020

reproduces QRF transf. from earlier

[Giacomini et al Nat. Comm. '19]

gauge-induced QRF changes: quantum coordinate changes

QRF relativity of entanglement and superposition

 $|-q_1\rangle_{R_1} \otimes |x-q_1\rangle_S + |-q_2\rangle_{R_1} \otimes |x-q_2\rangle_S$

QRF perspectives φ_{R_1} and φ_{R_2} are nothing but two tensor product structures on gauge-inv. $\mathscr{H}_{\mathrm{phys}}$

QRF perspectives φ_{R_1} and φ_{R_2} are nothing but two tensor product structures on gauge-inv. ${\mathscr H}_{\rm phys}$

 \Rightarrow inequivalent because QRF transf. $V_{R_1 \rightarrow R_2}$ a nonlocal unitary

different factorization of total gauge-inv. algebra into commuting subalgebras

different factorization of total gauge-inv. algebra into commuting subalgebras

have $\mathscr{A}_{S|R_2} \neq \mathscr{A}_{S|R_1}$

realization of virtual subsystems, Zanardi '00s

QRFs for general unimodular Lie groups

works similarly, essentially

de la Hamette, Galley, PH, Loveridge, Müller 2110.13824;

.

Quantum relativity of subsystems

3 kinematical subsystems $\mathscr{H}_{kin} = \mathscr{H}_{R_1} \otimes \mathscr{H}_{R_2} \otimes \mathscr{H}_S$

Ahmad, Galley, PH, Lock, Smith PRL '22; de la Hamette, Galley, PH, Loveridge, Müller 2110.13824; Kotecha, Mele, PH to appear

Recall: kinematical vs. relational subsystems

leaves description of S' relative to R invariant, but changes it relative to R'

R' •

 \Rightarrow overlap of rel. observable algebras $\mathscr{A}_{S|R} \cap \mathscr{A}_{S|R'} = \{\text{internal rel. obs. of } S \}$ (but don't coincide)

Quantum relativity of subsystems

3 kinematical subsystems $\mathscr{H}_{kin} = \mathscr{H}_{R_1} \otimes \mathscr{H}_{R_2} \otimes \mathscr{H}_S$

Ahmad, Galley, PH, Lock, Smith PRL '22; de la Hamette, Galley, PH, Loveridge, Müller 2110.13824; Kotecha, Mele, PH to appear

Quantum relativity of subsystems

3 kinematical subsystems
$$\mathcal{H}_{\rm kin}=\mathcal{H}_{R_1}\otimes\mathcal{H}_{R_2}\otimes\mathcal{H}_S$$

 \Rightarrow different relational observable subalgebras inside total invariant algebra

 \Rightarrow induce different gauge-inv. tensor factorizations (not in general factorization across $R_i | R_i$ and $S | R_i$)

 \Rightarrow different appearance of same physics

Ahmad, Galley, PH, Lock, Smith PRL '22; de la Hamette, Galley, PH, Loveridge, Müller 2110.13824; Kotecha, Mele, PH to appear

Upshot: frame-dependent gauge-inv. properties

"frames R_1 and R_2 mean different inv. DoFs when they refer to subsystem S"

if factorizability in two frame perspectives, i.e.

$$\mathscr{A}_{\text{phys}} \simeq \mathscr{A}_{S|R_1} \otimes \mathscr{A}_{R_2|R_1} \simeq \mathscr{A}_{S|R_2} \otimes \mathscr{A}_{R_1|R_2}$$
 but

then correlations/entanglement of S with its complement will in general differ in two perspectives

Ahmad, Galley, PH, Lock, Smith PRL '22; de la Hamette, Galley, PH, Loveridge, Müller 2110.13824

t

 $\mathscr{A}_{S|R_2} \neq \mathscr{A}_{S|R_1}$

(see also Giacomini, Castro-Ruiz, Brukner '19; Castro-Ruiz, Oreshkov '21)

Upshot: frame-dependent gauge-inv. properties

"frames R_1 and R_2 mean different inv. DoFs when they refer to subsystem S"

if factorizability in two frame perspectives, i.e. $\mathscr{A}_{\text{phys}} \simeq \mathscr{A}_{S|R_1} \otimes \mathscr{A}_{R_2|R_1} \simeq \mathscr{A}_{S|R_2} \otimes \mathscr{A}_{R_1|R_2}$ but

then correlations/entanglement of S with its complement will in general differ in two perspectives.

 \Rightarrow gauge-inv. entanglement entropy in general $S(\rho_{S|R})$

 \Rightarrow dynamics of S can be closed/isolated relative to R_1 and open relative to R_2 (can map unitary dynamics/zero heat & work exchange into open dynamics/ non-zero heat & work exchange in other perspective)

 \Rightarrow QRF relativity of superpositions, correlations, equilibrium, thermodynamics, ...

Ahmad, Galley, PH, Lock, Smith PRL '22; de la Hamette, Galley, PH, Loveridge, Müller 2110.13824

$$\mathscr{A}_{S|R_2} \neq \mathscr{A}_{S|R_2}$$

(see also Giacomini, Castro-Ruiz, Brukner '19; Castro-Ruiz, Oreshkov '21)

$$_{R_2}) \neq S(\rho_{S|R_1})$$
 for same global physical state

Kotecha, Mele, PH to appear

Conclusions

Natural extension of relativity principle into quantum realm

based on internal QRFs \Rightarrow in terms of group structures really the same as in SR

Systematic method for changing QRF perspectives accommodates RFs in relative superposition

Gauge-inv. subsystems depend on choice of QRF ("quantum relativity of subsystems") \Rightarrow correlations, thermal properties, dynamics, depend on frame

 \Rightarrow works completely analogously with (so far classical) dynamical frames in gauge theory and gravity

Carrozza, PH 2109.06184; Carrozza, Eccles, PH 2205.00913; Goeller, PH, Kirklin 2206.01193

Appendix

Symmetry-induced QRF changes

changes of relational observables, recall:

relational observable rel. to e

• **RF** transformation between two frames is $\Lambda^{a'}_{a} = e^{'a'}_{\mu} e^{\mu}_{a} \in SO_{+}(3,1)$ relational observable describing 1st rel. to 2nd frame

de la Hamette, Galley, PH, Loveridge, Müller 2110.13824

Symmetry-induced QRF changes

can do analog in QT: G-twirl for symmetries $V_{R_1}(g) \otimes \mathbf{1}_{R_2S}$

de la Hamette, Galley, PH, Loveridge, Müller 2110.13824

relation-conditional frame reorientation

