Quantum frame covariance and subsystem relativity

Philipp Höhn
Okinawa Institute of Science and Technology

Quantum Information and Quantum Matter
@ NYU Abu Dhabi
May 24, 2023

[^0]Ahmad, Galley, PH, Lock, Smith, PRL 128 (2022) 170401
de la Hamette, Galley, PH, Loveridge, Müller 2110.13824
Vanrietvelde, PH, Giacomini, Castro-Ruiz, Quantum 4 (2020) 225
Mele, Kotecha, PH, to appear soon

Relativities

Galilean

"All the laws of mechanics the same in every inertial frame"

Relativities

Galilean

"All the laws of mechanics the same in every inertial frame"

$$
\frac{1}{c} \neq 0
$$

Special

the same in every inertial frame"

frame-dependent decomposition of space

frame-dependent decomposition of spacetime into space and time

Relativities

Galilean

"All the laws of mechanics the same in every inertial frame"

$$
\frac{1}{c} \neq 0
$$

Special

"All the laws of physics (exc. Newt. gravity) the same in every inertial frame"

frame-dependent decomposition of space

frame-dependent decomposition of spacetime into space and time

General
"All the laws of physics the same in every frame"

frame-dependent local decomposition of spacetime into space and time

Relativities

Galilean

"All the laws of mechanics the same in every inertial frame"

QRF-dependent decomposition of

Special

"All the laws of physics (exc. Newt. gravity) the same in every inertial frame" -
frame-dependent decomposition of spacetime into space and time

General
"All the laws of physics the same in every frame"

frame-dependent local decomposition of spacetime into space and time

Quantum reference frames

internalize frames

- no background structure
${ }^{\ominus}$ universality of QT (ext. of Heisenberg cut) $\quad \Rightarrow \quad$ RF subject to QM itself
"RFs in relative superposition"

Why care?

- Foundational interest
classical frame relations \Leftrightarrow classical spacetime structure
\Rightarrow quantum frame relations \Leftrightarrow quantum spacetime structure?
- systems with gauge symmetry (gauge-inv. descriptions implicitly invoke internal frames)
gravity: no background frame
quantum info: agents may not share a common external lab frame

Intuition: spatial QRFs in 1D

Intuition: spatial QRFs in 1D

aim: "jump" into perspective of particle R_{1}, defining origin, and describe $R_{2} S$ relative to it

Intuition: spatial QRFs in 1D

aim: "jump" into perspective of particle R_{1}, defining origin, and describe $R_{2} S$ relative to it
$\left|q_{1}\right\rangle_{R_{2}} \otimes|x\rangle_{S}$
R_{1} perspective

Intuition: spatial QRFs in 1D

aim: "jump" into perspective of particle R_{1}, defining origin, and describe $R_{2} S$ relative to it
$\left|q_{1}\right\rangle_{R_{2}} \otimes|x\rangle_{S}$
R_{1} perspective
how will R_{2} "see" the same configuration?

Intuition: spatial QRFs in 1D

aim: "jump" into perspective of particle R_{1}, defining origin, and describe $R_{2} S$ relative to it
$\left|q_{1}\right\rangle_{R_{2}} \otimes|x\rangle_{S}$
R_{1} perspective
how will R_{2} "see" the same configuration? $\quad \Rightarrow$ move R_{2} into the origin

Intuition: spatial QRFs in 1D

aim: "jump" into perspective of particle R_{1}, defining origin, and describe $R_{2} S$ relative to it
$\left|q_{1}\right\rangle_{R_{2}} \otimes|x\rangle_{S}$
R_{1} perspective
how will R_{2} "see" the same configuration? $\quad \Rightarrow$ move R_{2} into the origin

Intuition: spatial QRFs in 1D

aim: "jump" into perspective of particle R_{1}, defining origin, and describe $R_{2} S$ relative to it

$$
\begin{array}{lc}
\left|q_{1}\right\rangle_{R_{2}} \otimes|x\rangle_{S} \\
R_{1} \text { perspective }
\end{array} \quad \longrightarrow \quad\left|-q_{1}\right\rangle_{R_{1}} \otimes\left|x-q_{1}\right\rangle_{S}
$$

how will R_{2} "see" the same configuration? $\quad \Rightarrow$ move R_{2} into the origin

Intuition: spatial QRFs in 1D

aim: "jump" into perspective of particle R_{1}, defining origin, and describe $R_{2} S$ relative to it

$$
\begin{array}{ll}
\left|q_{1}\right\rangle_{R_{2}} \otimes|x\rangle_{S}+\left|q_{2}\right\rangle_{R_{2}} \otimes|x\rangle_{S} \\
R_{1} \text { perspective } & \longrightarrow
\end{array} \begin{gathered}
\left|-q_{1}\right\rangle_{R_{1}} \otimes\left|x-q_{1}\right\rangle_{S} \\
R_{2} \text { perspective }
\end{gathered}
$$

how will R_{2} "see" the same configuration? \Rightarrow what about superpositions?

Intuition: spatial QRFs in 1D

aim: "jump" into perspective of particle R_{1}, defining origin, and describe $R_{2} S$ relative to it
$\left|q_{1}\right\rangle_{R_{2}} \otimes|x\rangle_{S}+\left|q_{2}\right\rangle_{R_{2}} \otimes|x\rangle_{S}$
R_{1} perspective

assuming linearity
how will R_{2} "see" the same configuration? \Rightarrow what about superpositions?

Intuition: spatial QRFs in 1D

aim: "jump" into perspective of particle R_{1}, defining origin, and describe $R_{2} S$ relative to it

assuming linearity
how will R_{2} "see" the same configuration? \Rightarrow what about superpositions?

Intuition: spatial QRFs in 1D

aim: "jump" into perspective of particle R_{1}, defining origin, and describe $R_{2} S$ relative to it
$\left|q_{1}\right\rangle_{R_{2}} \otimes|x\rangle_{S}+\left|q_{2}\right\rangle_{R_{2}} \otimes|x\rangle_{S}$
R_{1} perspective
QRF transformation a conditional unitary:
how will R_{2} "see" the same configuration?

R_{2} perspective
$\begin{aligned} & V_{R_{1} \rightarrow R_{2}}=\underset{\uparrow}{\mathbb{F}_{12} \int d q|-q\rangle}\left\langle\left. q\right|_{R_{2}} \otimes U_{S}(-q)\right. \\ & \\ & \text { swaps particles } R_{2} \text { and } R_{1}\end{aligned}$

Intuition: spatial QRFs in 1D

aim: "jump" into perspective of particle R_{1}, defining origin, and describe $R_{2} S$ relative to it

$$
\left(\left|q_{1}\right\rangle_{R_{2}}+\left|q_{2}\right\rangle_{R_{2}}\right) \otimes|x\rangle_{S}
$$

R_{1} perspective
QRF transformation a conditional unitary:
how will R_{2} "see" the same configuration?

R_{2} perspective

The story more generally

RFs and symmetries

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are
Indistinguishable for all $g \in G$ when
S considered in isolation

RFs and symmetries

pair (G, S) could be, e.g.:

- spatial symmetry + group of particles
- diffeos + all dynamical fields in spacetime

RFs and symmetries

Premise:

System S subject to symmetry group
G, s.t. states ρ and $g \cdot \rho$ are
Indistinguishable for all $g \in G$ when
S considered in isolation
pair (G, S) could be, e.g.:

- spatial symmetry + group of particles
- diffeos + all dynamical fields in spacetime

quantum information/foundations:
lab frame
gravity:
fictitious (or edge modes)

RFs and symmetries

Premise:

System S subject to symmetry group
G, s.t. states ρ and $g \cdot \rho$ are
Indistinguishable for all $g \in G$ when
S considered in isolation
pair (G, S) could be, e.g.:

- spatial symmetry + group of particles
- diffeos + all dynamical fields in spacetime

quantum information/foundations:
lab frame
gravity:
fictitious (or edge modes)

RFs and symmetries

pair (G, S) could be, e.g.:

- spatial symmetry + group of particles
- diffeos + all dynamical fields in spacetime

RFs and symmetries

System S subject to symmetry group G, s.t. states ρ and $g \cdot \rho$ are
Indistinguishable for all $g \in G$ when
S considered in isolation

RFs and symmetries

G-transformations = ext. frame transf. = "gauge transformations" \Rightarrow "gauge inv." = external frame indep.

RFs and symmetries

$$
\begin{aligned}
G \text {-transformations }=\text { ext. frame transf. } & =\text { "gauge transformations" } \\
\Rightarrow & \text { "gauge inv." }=\text { external frame indep. }
\end{aligned}
$$

internally indistinguishable
quantum information/foundations: change of ext. lab frame
gravity:
change of background coordinates (diffeo)
\Rightarrow change of fictituous background frame

RFs and symmetries

$$
\begin{aligned}
G \text {-transformations }=\text { ext. frame transf. } & =\text { "gauge transformations" } \\
& \Rightarrow \text { "gauge inv." }=\text { external frame indep. }
\end{aligned}
$$

Premise:

System S subject to symmetry group
G, s.t. states ρ and $g \cdot \rho$ are
Indistinguishable for all $g \in G$ when
S considered in isolation
quantum information/foundations: change of ext. lab frame
gravity:
change of background coordinates (diffeo)
\Rightarrow change of fictituous background frame

RFs and symmetries

$$
\begin{aligned}
G \text {-transformations }=\text { ext. frame transf. } & =\text { "gauge transformations" } \\
& \Rightarrow \text { "gauge inv." }=\text { external frame indep. }
\end{aligned}
$$

Premise:

System S subject to symmetry group
G, s.t. states ρ and $g \cdot \rho$ are
Indistinguishable for all $g \in G$ when
S considered in isolation
quantum information/foundations: change of ext. lab frame
gravity:
change of background coordinates (diffeo)

RFs and symmetries

$$
\begin{aligned}
G \text {-transformations }=\text { ext. frame transf. } & =\text { "gauge transformations" } \\
& \Rightarrow \text { "gauge inv." }=\text { external frame indep. }
\end{aligned}
$$

```
Premise:
System \(S\) subject to symmetry group
\(G\), s.t. states \(\rho\) and \(g \cdot \rho\) are
Indistinguishable for all \(g \in G\) when
\(S\) considered in isolation
```


ρ and $g \cdot \rho$ members of same relational equivalence class of states, different descriptions of same relational state

Example: Special relativity with internal frames

$$
v^{\mu} \mapsto \Lambda_{\nu}^{\mu} \nu^{\nu} \quad \Lambda \in \mathrm{SO}_{+}(3,1)
$$

internally indistinguishable

Example: Special relativity with internal frames

$$
v^{\mu} \mapsto \Lambda_{\nu}^{\mu} \nu^{\nu} \quad \Lambda \in \mathrm{SO}_{+}(3,1), \quad \text { internally indistinguishable }
$$

introduce internal frame (tetrad)

$\mu=t, x, y, z \quad$ spacetime index

$$
a=0,1,2,3 \quad \text { frame index }
$$

frame orientations

$$
\eta_{a b}=e_{a}^{\mu} e_{b}^{\nu} \eta_{\mu \nu} \quad \Rightarrow \quad e_{a}^{\mu} \in \operatorname{SO}_{+}(3,1)
$$

Example: Special relativity with internal frames

$$
\nu^{\mu} \mapsto \Lambda_{\nu}^{\mu} \nu^{\nu} \quad \Lambda \in \mathrm{SO}_{+}(3,1), \quad \text { internally indistinguishable }
$$

introduce internal frame (tetrad)

- "gauge transformations":

$$
\Lambda_{\nu}^{\mu} e_{a}^{\nu} \quad \Lambda_{\nu}^{\mu} \in \mathrm{SO}_{+}(3,1)
$$

$$
\eta_{a b}=e_{a}^{\mu} e_{b}^{\nu} \eta_{\mu \nu} \quad \Rightarrow \quad e_{a}^{\mu} \in \operatorname{SO}_{+}(3,1)
$$

RFs and symmetries

```
Premise:
System \(S\) subject to symmetry group
\(G\), s.t. states \(\rho\) and \(g \cdot \rho\) are
Indistinguishable for all \(g \in G\) when
\(S\) considered in isolation
```


Describe S relative to internal reference subsystem R

Interested in internally
distinguishable (relational) states/ observables

RFs and symmetries

```
Premise:
System S subject to symmetry group
    G, s.t. states \rho and g}\rho\mp@code{\rhoare
Indistinguishable for all g}\inG\mathrm{ when
    S considered in isolation
```


Interested in internally
distinguishable (relational) states/ observables

Example: Special relativity with internal frames

$$
v^{\mu} \mapsto \Lambda_{\nu}^{\mu} \nu^{\nu} \quad \Lambda \in \mathrm{SO}_{+}(3,1), \quad \text { internally indistinguishable }
$$

introduce internal frame (tetrad)

- "gauge transformations":
- "symmetries" (frame reorientations):
$\Lambda^{\mu}{ }_{\nu} e_{a}^{\nu} \quad \Lambda^{\mu}{ }_{\nu} \in \operatorname{SO}_{+}(3,1)$
$\Lambda_{a}{ }^{b} e_{b}^{\mu} \quad \Lambda_{a}^{b} \in \mathrm{SO}_{+}(3,1)$
only acts on frame

$$
\eta_{a b}=e_{a}^{\mu} e_{b}^{\nu} \eta_{\mu \nu} \quad \Rightarrow \quad e_{a}^{\mu} \in \mathrm{SO}_{+}(3,1)
$$

group valued frame orientations

Example: Special relativity with internal frames

$$
\nu^{\mu} \mapsto \Lambda_{\nu}^{\mu} \nu^{\nu} \quad \Lambda \in \mathrm{SO}_{+}(3,1), \quad \text { internally indistinguishable }
$$

introduce internal frame (tetrad)
fictitious/external coord. frame

" "gauge transformations":

- "symmetries" (frame reorientations):
$\Lambda^{\mu}{ }_{\nu} e_{a}^{\nu} \quad \Lambda^{\mu}{ }_{\nu} \in \operatorname{SO}_{+}(3,1)$
$\Lambda_{a}{ }^{b} e_{b}^{\mu} \quad \Lambda_{a}^{b} \in \mathrm{SO}_{+}(3,1)$
only acts on frame
\Rightarrow group acts on itself since

$$
\eta_{a b}=e_{a}^{\mu} e_{b}^{\nu} \eta_{\mu \nu} \quad \Rightarrow \quad e_{a}^{\mu} \in \operatorname{SO}_{+}(3,1)
$$

group valued frame orientations

2 ways of "jumping into a RF perspective"

Premise:

System S subject to symmetry group
G, s.t. states ρ and $g \cdot \rho$ are
Indistinguishable for all $g \in G$ when
S considered in isolation

Describe S relative to internal reference subsystem R

[^1]
Example: Special relativity with internal frames

$$
\nu^{\mu} \mapsto \Lambda_{\nu}^{\mu} \nu^{\nu} \quad \Lambda \in \mathrm{SO}_{+}(3,1), \quad \text { internally indistinguishable }
$$

introduce internal frame (tetrad)
fictitious/external coord. frame

$$
\mu=t, x, y, z \quad \text { spacetime index, } \quad a=0,1,2,3 \quad \text { frame index }
$$

frame orientations 2 indices, 2 commuting group actions:

- "gauge transformations": $\quad \Lambda_{\nu}^{\mu} e_{a}^{\nu} \quad \Lambda_{\nu}^{\mu}{ }_{\nu} \in \mathrm{SO}_{+}(3,1)$
- "symmetries" (frame reorientations): $\quad \Lambda_{a}^{b} e_{b}^{\mu} \quad \Lambda_{a}^{b} \in \operatorname{SO}_{+}(3,1)$
only acts on frame
\Rightarrow group acts on itself since

$$
\eta_{a b}=e_{a}^{\mu} e_{b}^{\nu} \eta_{\mu \nu} \quad \Rightarrow \quad e_{a}^{\mu} \in \mathrm{SO}_{+}(3,1) \quad \text { group valued frame orientations }
$$

\Rightarrow "gauge-invariant" description of $v: \quad v_{a}=\left(v, e_{a}\right)=\eta_{\mu \nu} \nu^{\mu} e_{a}^{\nu} \quad$ "relational/frame dressed observables" (describes v relative to frame)

2 ways of "jumping into a RF perspective"

Premise:

System S subject to symmetry group
G, s.t. states ρ and $g \cdot \rho$ are

Describe S relative to internal reference subsystem R

1. relational observables relative to R (gauge inv.)
2. put R into "origin" (gauge fix)

Example: Special relativity with internal frames

fictitious/external coord. frame

$$
\nu^{\mu} \mapsto \Lambda_{\nu}^{\mu} \nu^{\nu} \quad \Lambda \in \mathrm{SO}_{+}(3,1), \quad \text { internally indistinguishable }
$$

introduce internal frame (tetrad)

- "gauge transformations":
- "symmetries" (frame reorientations):
$\Lambda^{\mu}{ }_{\nu} e_{a}^{\nu} \quad \Lambda^{\mu}{ }_{\nu} \in \operatorname{SO}_{+}(3,1)$
$\Lambda_{a}^{b} e_{b}^{\mu} \quad \Lambda_{a}^{b} \in \operatorname{SO}_{+}(3,1)$
only acts on frame
\Rightarrow group acts on itself since

$$
\eta_{a b}=e_{a}^{\mu} e_{b}^{\nu} \eta_{\mu \nu} \quad \Rightarrow \quad e_{a}^{\mu} \in \operatorname{SO}_{+}(3,1)
$$

group valued frame orientations
\Rightarrow gauge fix background frame to align with tetrad

The multiple choice problem

Premise:

System S subject to symmetry group
G, s.t. states ρ and $g \cdot \rho$ are
Indistinguishable for all $g \in G$ when
S considered in isolation

The multiple choice problem

Premise:

System S subject to symmetry group
G, s.t. states ρ and $g \cdot \rho$ are
Indistinguishable for all $g \in G$ when
S considered in isolation

2 ways of changing RF

Premise:

System S subject to symmetry group
G, s.t. states ρ and $g \cdot \rho$ are
Indistinguishable for all $g \in G$ when
S considered in isolation

2 ways of changing RF

Premise:

System S subject to symmetry group
G, s.t. states ρ and $g \cdot \rho$ are
Indistinguishable for all $g \in G$ when
S considered in isolation

1. relation-conditional reorientation

Warmup: Special relativity with internal frames

introduce second internal frame

Warmup: Special relativity with internal frames

introduce second internal frame

symmetry induced RF transformation:

$$
\Lambda_{a}^{a^{\prime}}=e_{\mu}^{a^{\prime}} e_{a}^{\mu} \in \operatorname{SO}_{+}(3,1)
$$

is relational observable describing 1st rel. to 2nd frame

2 ways of changing RF

```
Premise:
System \(S\) subject to symmetry group
\(G\), s.t. states \(\rho\) and \(g \cdot \rho\) are
Indistinguishable for all \(g \in G\) when
\(S\) considered in isolation
```


1. relation-conditional reorientation
2. relation-conditional gauge-transf.

2 ways of changing RF

Premise:

```
System \(S\) subject to symmetry group
\(G\), s.t. states \(\rho\) and \(g \cdot \rho\) are
Indistinguishable for all \(g \in G\) when
\(S\) considered in isolation
```

1. relation-conditional reorientation
2. relation-conditional gauge-transf.

Warmup: Special relativity with internal frames

introduce second internal frame

$$
e_{a^{\prime}}^{\prime}
$$

symmetry induced RF transformation:

$$
\Lambda_{a}^{a^{\prime}}=e_{\mu}^{a^{\prime}} e_{a}^{\mu} \in \operatorname{SO}_{+}(3,1)
$$

is relational observable describing 1st rel. to 2nd frame
gauge induced RF transformation: $\Lambda^{\nu^{\prime}}{ }_{\mu} \in \mathrm{SO}_{+}(3,1)$ looks the same as $\Lambda^{a^{\prime}}{ }_{a}$ coordinate change via gauge fixings

$$
v_{a}=\eta_{\mu \nu} e_{a}^{\mu} \nu^{\nu} \longleftrightarrow \quad v_{a^{\prime}}=\eta_{\mu \nu} \nu_{a^{\prime}}^{\mu} \nu^{\nu}
$$

kinematical vs. relational subsystems

kinematical vs. relational subsystems

Premise:

System S subject to symmetry group
G, s.t. states ρ and $g \cdot \rho$ are
Indistinguishable for all $g \in G$ when
S considered in isolation

1. kinematical and relational (gauge inv.) notion of subsystem distinct

kinematical vs. relational subsystems

Premise:

System S subject to symmetry group
G, s.t. states ρ and $g \cdot \rho$ are

Indistinguishable for all $g \in G$ when
S considered in isolation

1. kinematical and relational (gauge inv.) notion of subsystem distinct

kinematical vs. relational subsystems

Premise:

System S subject to symmetry group
G, s.t. states ρ and $g \cdot \rho$ are
Indistinguishable for all $g \in G$ when
S considered in isolation

1. kinematical and relational (gauge inv.) notion of subsystem distinct

kinematical vs. relational subsystems

Premise:

System S subject to symmetry group
G, s.t. states ρ and $g \cdot \rho$ are
Indistinguishable for all $g \in G$ when
S considered in isolation

1. kinematical and relational (gauge inv.) notion of subsystem distinct
2. gauge inv. notion of subsystem depends on choice of RF

kinematical vs. relational subsystems

Premise:

System S subject to symmetry group
G, s.t. states ρ and $g \cdot \rho$ are
Indistinguishable for all $g \in G$ when
S considered in isolation

1. kinematical and relational (gauge inv.) notion of subsystem distinct
2. gauge inv. notion of subsystem depends on choice of RF

kinematical vs. relational subsystems

leaves description of S^{\prime} relative to R invariant, but changes it relative to R^{\prime}

Indistinguishable for all $g \in G$ when
S considered in isolation

1. kinematical and relational (gauge inv.) notion of subsystem distinct
2. gauge inv. notion of subsystem depends on choice of RF

kinematical vs. relational subsystems

leaves description of S^{\prime} relative to R invariant, but changes it relative to R^{\prime}

leaves description of S^{\prime} rel. to external frame invariant, but changes description relative to frame R

1. kinematical and relational (gauge inv.) notion of subsystem distinct
2. gauge inv. notion of subsystem depends on choice of RF
\Rightarrow gauge inv. correlations, thermal properties, ... are RF dependent

Warmup: Special relativity with internal frames

introduce second internal frame

symmetry induced RF transformation:

$$
\Lambda_{a}^{a^{\prime}}=e_{\mu}^{\prime a^{\prime}} e_{a}^{\mu} \in \mathrm{SO}_{+}(3,1)
$$

is relational observable describing 1st rel. to 2nd frame

Quantum reference frames

... or frames in relative superposition

Example: spatial QRFs in 1D

setup relative to external (possibly fictitious) frame:

$$
\mathscr{H}_{\text {kin }}=L^{2}(\mathbb{R})_{R_{1}} \otimes L^{2}(\mathbb{R})_{R_{2}} \otimes L^{2}(\mathbb{R})_{S}
$$

Example: spatial QRFs in 1D

setup relative to external (possibly fictitious) frame:

$$
\mathscr{H}_{\text {kin }}=L^{2}(\mathbb{R})_{R_{1}} \otimes L^{2}(\mathbb{R})_{R_{2}} \otimes L^{2}(\mathbb{R})_{S} \quad \text { space of externally distinguishable states }
$$

global translations as external frame transformations, i.e. gauge transformations

$$
U_{R_{1} R_{2} S}(x)=e^{i x\left(p_{1}+p_{2}+p_{S}\right)}
$$

$$
\text { analog of } \Lambda_{\nu}^{\mu} \in \mathrm{SO}_{+}(3,1) \text { in } \mathrm{SR}
$$

Example: spatial QRFs in 1D

$$
\mathscr{H}_{\text {kin }}=L^{2}(\mathbb{R})_{R_{1}} \otimes L^{2}(\mathbb{R})_{R_{2}} \otimes L^{2}(\mathbb{R})_{S} \quad \text { space of externally distinguishable states }
$$

global translations as external frame transformations, i.e. gauge transformations

$$
U_{R_{1} R_{2} S}(x)=e^{i x\left(p_{1}+p_{2}+p_{S}\right)}
$$

$$
\text { analog of } \Lambda^{\mu}{ }_{\nu} \in \mathrm{SO}_{+}(3,1) \text { in } \mathrm{SR}
$$

Example: spatial QRFs in 1D

$$
\mathscr{H}_{\text {kin }}=L^{2}(\mathbb{R})_{R_{1}} \otimes L^{2}(\mathbb{R})_{R_{2}} \otimes L^{2}(\mathbb{R})_{S} \quad \text { space of externally distinguishable states }
$$

global translations as external frame transformations, i.e. gauge transformations

$$
U_{R_{1} R_{2} S}(x)=e^{i x\left(p_{1}+p_{2}+p_{S}\right)}
$$

$$
\text { analog of } \Lambda_{\nu}^{\mu} \in \mathrm{SO}_{+}(3,1) \text { in } \mathrm{SR}
$$

Example: spatial QRFs in 1D

setup relative to external (possibly fictitious) frame:

$$
\mathscr{H}_{\text {kin }}=L^{2}(\mathbb{R})_{R_{1}} \otimes L^{2}(\mathbb{R})_{R_{2}} \otimes L^{2}(\mathbb{R})_{S} \quad \text { space of externally distinguishable states }
$$

global translations as external frame transformations, i.e. gauge transformations

$$
U_{R_{1} R_{2} S}(x)=e^{i x\left(p_{1}+p_{2}+p_{S}\right)}
$$

analog of $\Lambda^{\mu}{ }_{\nu} \in \mathrm{SO}_{+}(3,1)$ in SR
frame orientation states for $R_{1} \quad|q\rangle_{R_{1}}$
analog of tetrad $e^{\mu}{ }_{a} \in \mathrm{SO}_{+}(3,1)$ in SR
frame reorientations (only act on frame)

$$
U_{R_{1}}(x)=e^{i x p_{1}}
$$

$$
\text { analog of } \Lambda^{a}{ }_{b} e_{a}^{\mu} \text { in SR }
$$

Example: spatial QRFs in 1D

recall relational observables from $\mathrm{SR} \quad v_{a}=v^{\mu} \eta_{\mu \nu} e_{a}^{\nu}$
frame-orientation conditional gauge transformation

Relational observables through G-twirl:

$$
O_{f_{R_{2}} S, R_{1}}(x)=\int d q U_{R_{1} R_{2} S}(q)\left(|x\rangle\left\langle\left. x\right|_{R_{1}} \otimes f_{R_{2} S}\right) U_{R_{1} R_{2} S}^{\dagger}(q) \quad \text { "what's the value of } f_{R_{2} S} \text { when } R_{1} \text { is in position } x\right. \text { ?" }
$$

Example: spatial QRFs in 1D

recall relational observables from $\mathrm{SR} \quad v_{a}=v^{\mu} \eta_{\mu \nu} e_{a}^{\nu}$
frame-orientation conditional gauge transformation

Relational observables through G-twirl:

gauge-inv. $\quad\left[O_{f_{R_{2} S}, R_{1}}(x), U_{R_{1} R_{2} S}(y)\right]=0$

Example: spatial QRFs in 1D

recall relational observables from $\mathrm{SR} \quad v_{a}=v^{\mu} \eta_{\mu \nu} e_{a}^{\nu}$
frame-orientation conditional gauge transformation

Relational observables through G-twirl:

$O_{f_{R_{2} S} S R_{1}}(x)=\int d q U_{R_{1} R_{2} S}(q)\left(|x\rangle\left\langle\left. x\right|_{R_{1}} \otimes f_{R_{2} S}\right) U_{R_{1} R_{2} S}^{\dagger}(q) \quad\right.$ "what's the value of $f_{R_{2} S}$ when R_{1} is in position x ?"
gauge-inv. $\quad\left[O_{f_{R_{2}} S}, R_{1}(x), U_{R_{1} R_{2}} S(y)\right]=0$

Perspective-neutral formulation of QRF covariance

$$
\mathscr{H}_{\text {kin }}=L^{2}(\mathbb{R})_{R_{1}} \otimes L^{2}(\mathbb{R})_{R_{2}} \otimes L^{2}(\mathbb{R})_{S}
$$

gauge-inv. (external frame-indep.) physical Hilbert space

$$
\text { with } \quad|\psi\rangle_{\text {phys }}=U_{R_{1} R_{2} S}(x)|\psi\rangle_{\text {phys }}
$$

Perspective-neutral formulation of QRF covariance

$$
\mathscr{H}_{\text {kin }}=L^{2}(\mathbb{R})_{R_{1}} \otimes L^{2}(\mathbb{R})_{R_{2}} \otimes L^{2}(\mathbb{R})_{S}
$$

space of externally distinguishable states
gauge-inv. (external frame-indep.) physical Hilbert space

$$
\mathscr{H}_{\text {phys }} \quad \text { with } \quad|\psi\rangle_{\text {phys }}=U_{R_{1} R_{2} S}(x)|\psi\rangle_{\text {phys }}
$$

states such that

$$
\left(p_{1}+p_{2}+p_{S}\right)|\psi\rangle_{\text {phys }}=0
$$

space of internally distinguishable states

$$
\begin{aligned}
& \Rightarrow \text { redundancy: many different ways in describing same invariant }\left|\psi_{\text {phys }}\right\rangle \\
& \Rightarrow \text { associate with different internal QRF choices: redundant }=\text { reference DoFs }
\end{aligned}
$$

$\mathscr{H}_{\text {phys }}$ is a (internal frame) perspective-neutral space: description of physics prior to having chosen internal
gauge-induced QRF changes: quantum coordinate changes

[^2]gauge-induced QRF changes: quantum coordinate changes

recall: "jumping into frame perspective" through gauge-fixing
R_{1} perspective
$\mathscr{H}_{R_{2} S \mid R_{1}}=L^{2}(\mathbb{R})_{R_{2}} \otimes L^{2}(\mathbb{R})_{S}$

perspective-neutral $\mathscr{H}_{\text {phys }}$
R_{2} perspective
$$
\mathscr{H}_{R_{1} S \mid R_{2}}=L^{2}(\mathbb{R})_{R_{1}} \otimes L^{2}(\mathbb{R})_{S}
$$
$$
V_{R_{1} \rightarrow R_{2}}=\varphi_{R_{2}} \circ \varphi_{R_{1}}^{-1}
$$

gauge-induced QRF changes: quantum coordinate changes

perspective-neutral
recall: "jumping into frame perspective" through gauge-fixing
R_{1} perspective
\[

$$
\begin{aligned}
\mathscr{H}_{R_{2} S \mid R_{1}}=L^{2}(\mathbb{R})_{R_{2}} \otimes L^{2}(\mathbb{R})_{S} \longrightarrow \mathscr{H}_{R_{1} S \mid R_{2}}=L^{2}(\mathbb{R})_{R_{1}} \otimes L^{2}(\mathbb{R})_{S} \\
\cdots \prec \bullet \bullet
\end{aligned}
$$
\]

gauge-induced QRF changes: quantum coordinate changes

$\left|q_{1}\right\rangle_{R_{2}} \otimes|x\rangle_{S}+\left|q_{2}\right\rangle_{R_{2}} \otimes|x\rangle_{S}$

$$
\left|-q_{1}\right\rangle_{R_{1}} \otimes\left|x-q_{1}\right\rangle_{S}+\left|-q_{2}\right\rangle_{R_{1}} \otimes\left|x-q_{2}\right\rangle_{S}
$$

QRF relativity of subsystems

QRF perspectives $\varphi_{R_{1}}$ and $\varphi_{R_{2}}$ are nothing but two
tensor product structures on gauge-inv. $\mathscr{H}_{\text {phys }}$
perspective-neutral
R_{1} perspective

$$
\mathscr{H}_{R_{2} S \mid R_{1}}=L^{2}(\mathbb{R})_{R_{2}} \otimes L^{2}(\mathbb{R})_{S}
$$

$\left|q_{1}\right\rangle_{R_{2}} \otimes|x\rangle_{S}+\left|q_{2}\right\rangle_{R_{2}} \otimes|x\rangle_{S}$

$$
\left|-q_{1}\right\rangle_{R_{1}} \otimes\left|x-q_{1}\right\rangle_{S}+\left|-q_{2}\right\rangle_{R_{1}} \otimes\left|x-q_{2}\right\rangle_{S}
$$

QRF relativity of subsystems

QRF perspectives $\varphi_{R_{1}}$ and $\varphi_{R_{2}}$ are nothing but two tensor product structures on gauge-inv. $\mathscr{H}_{\text {phys }}$

perspective-neutral

\Rightarrow inequivalent because QRF transf. $V_{R_{1} \rightarrow R_{2}}$ a nonlocal unitary $\quad \mathscr{H}_{\text {phys }}$

$$
R_{1} \text { perspective }
$$

$$
\begin{aligned}
\mathscr{H}_{R_{2} S \mid R_{1}} & =L^{2}(\mathbb{R})_{R_{2}} \otimes L^{2}(\mathbb{R})_{S} \\
& \longrightarrow \quad V_{R_{1} \rightarrow R_{2}}=\mathbb{F}_{12} \int d q|-q \chi q|_{R_{2}} \otimes U_{S}(q)
\end{aligned} \mathscr{H}_{R_{1} S \mid R_{2}}=L^{2}(\mathbb{R})_{R_{1}} \otimes L^{2}(\mathbb{R})_{S}
$$

$$
\left|q_{1}\right\rangle_{R_{2}} \otimes|x\rangle_{S}+\left|q_{2}\right\rangle_{R_{2}} \otimes|x\rangle_{S}
$$

$$
\left|-q_{1}\right\rangle_{R_{1}} \otimes\left|x-q_{1}\right\rangle_{S}+\left|-q_{2}\right\rangle_{R_{1}} \otimes\left|x-q_{2}\right\rangle_{S}
$$

QRF relativity of subsystems

different factorization of total gauge-inv. algebra into commuting subalgebras

$$
\mathscr{A}_{\mathrm{phys}} \simeq \mathscr{A}_{S \mid R_{1}} \otimes \mathscr{A}_{R_{2} \mid R_{1}}
$$

perspective-neutral
generated by canonical pairs $\left(q_{S}-q_{1}, p_{S}\right)$ and $\left(q_{2}-q_{1}, p_{1}\right)$

QRF relativity of subsystems

different factorization of total gauge-inv. algebra into commuting subalgebras

$$
\mathscr{A}_{\mathrm{phys}} \simeq \mathscr{A}_{S \mid R_{1}} \otimes \mathscr{A}_{R_{2} \mid R_{1}}
$$

perspective-neutral
generated by canonical pairs $\left(q_{S}-q_{1}, p_{S}\right)$ and $\left(q_{2}-q_{1}, p_{1}\right)$

$\mathscr{H}_{\text {phys }} \quad$ generated by canonical pairs $\left(q_{S}-q_{2}, p_{S}\right)$ and $\left(q_{1}-q_{2}, p_{2}\right)$ which become local in

QRFs for general unimodular Lie groups

works similarly, essentially

$$
\begin{aligned}
& \text { global translations } U_{R_{1} R_{2} S}(x) \longrightarrow \text { gauge transf. } U_{R_{1}}(g) \otimes U_{R_{2}}(g) \otimes U_{S}(g) \\
& \text { frame orientation states }|q\rangle_{R} \longrightarrow \text { coherent states }|\phi(g)\rangle_{R} \\
& \text { spatial integration } \int d q \longrightarrow \text { group integration } \int_{G} d g
\end{aligned}
$$

Quantum relativity of subsystems

3 kinematical subsystems $\mathscr{H}_{\text {kin }}=\mathscr{H}_{R_{1}} \otimes \mathscr{H}_{R_{2}} \otimes \mathscr{H}_{S}$

Recall: kinematical vs. relational subsystems

leaves description of S^{\prime} relative to R invariant, but changes it relative to R^{\prime}

\Rightarrow overlap of rel. observable algebras $\mathscr{A}_{S \mid R} \cap \mathscr{A}_{S \mid R^{\prime}}=\{$ internal rel . obs . of S$\}$ (but don't coincide)

Quantum relativity of subsystems

Quantum relativity of subsystems

\Rightarrow different relational observable subalgebras inside total invariant algebra
\Rightarrow induce different gauge-inv. tensor factorizations
(not in general factorization across $R_{j} \mid R_{i}$ and $S \mid R_{i}$)
\Rightarrow different appearance of same physics

Upshot: frame-dependent gauge-inv. properties

"frames R_{1} and R_{2} mean different inv. DoFs when they refer to subsystem S "
Ahmad, Galley, PH, Lock, Smith PRL '22;
if factorizability in two frame perspectives, i.e.
$\mathscr{A}_{\mathrm{phys}} \simeq \mathscr{A}_{S \mid R_{1}} \otimes \mathscr{A}_{R_{2} \mid R_{1}} \simeq \mathscr{A}_{S \mid R_{2}} \otimes \mathscr{A}_{R_{1} \mid R_{2}} \quad$ but $\quad \mathscr{A}_{S \mid R_{2}} \neq \mathscr{A}_{S \mid R_{1}}$
then correlations/entanglement of S with its complement will in general differ in two perspectives

Upshot: frame-dependent gauge-inv. properties

"frames R_{1} and R_{2} mean different inv. DoFs when they refer to subsystem S "
Ahmad, Galley, PH, Lock, Smith PRL '22; de la Hamette, Galley, PH, Loveridge, Müller 2110.13824
if factorizability in two frame perspectives, i.e.

$$
\mathscr{A}_{\text {phys }} \simeq \mathscr{A}_{S \mid R_{1}} \otimes \mathscr{A}_{R_{2} \mid R_{1}} \simeq \mathscr{A}_{S \mid R_{2}} \otimes \mathscr{A}_{R_{1} \mid R_{2}} \quad \text { but } \quad \mathscr{A}_{S \mid R_{2}} \neq \mathscr{A}_{S \mid R_{1}}
$$

then correlations/entanglement of S with its complement will in general differ in two perspectives
\Rightarrow gauge-inv. entanglement entropy in general $S\left(\rho_{S \mid R_{2}}\right) \neq S\left(\rho_{S \mid R_{1}}\right)$ for same global physical state
\Rightarrow dynamics of S can be closed/isolated relative to R_{1} and open relative to R_{2}
\Rightarrow QRF relativity of superpositions, correlations, equilibrium, thermodynamics, ...

Conclusions

- Natural extension of relativity principle into quantum realm
based on internal QRFs \Rightarrow in terms of group structures really the same as in SR
Systematic method for changing QRF perspectives
accommodates RFs in relative superposition
Gauge-inv. subsystems depend on choice of QRF ("quantum relativity of subsystems") \Rightarrow correlations, thermal properties, dynamics, depend on frame
\Rightarrow works completely analogously with (so far classical) dynamical frames in gauge theory and gravity

Appendix

Symmetry-induced QRF changes

changes of relational observables, recall:
de la Hamette, Galley, PH, Loveridge, Müller 2110.13824

${ }^{-}$RF transformation between two frames is $\Lambda^{a^{\prime}}{ }_{a}=e_{\mu}^{\prime a^{\prime}} e_{a}^{\mu} \in \mathrm{SO}_{+}(3,1)$ relational observable describing 1st rel. to 2nd frame

Symmetry-induced QRF changes

can do analog in QT: G-twirl for symmetries $V_{R_{1}}(g) \otimes \mathbf{1}_{R_{2} S}$
de la Hamette, Galley, PH, Loveridge, Müller 2110.13824
relation-conditional frame reorientation

[^0]: loosely based on:

[^1]: 1. relational observables relative to R (gauge inv.)
[^2]: recall: "jumping into frame perspective" through gauge-fixing

