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Relativities
Galilean

“All the laws of mechanics the same  
in every inertial frame”

Special
“All the laws of physics (exc. Newt. gravity)  

the same in every inertial frame”

General
“All the laws of physics the same in every frame”

Quantum?
“All the … laws of … the same in every … QRF”
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Quantum reference frames

t

x

spacetime

reference frames always physical systems  

no background structure


universality of QT (ext. of Heisenberg cut)                  RF subject to QM itself⇒
“RFs in relative superposition”

internalize frames



Why care?

Foundational interest 
classical frame relations  classical spacetime structure 
 

systems with gauge symmetry (gauge-inv. descriptions implicitly invoke internal frames) 

gravity: no background frame 

quantum info: agents may not share a common external lab frame 
 

⇔
 quantum frame relations  quantum spacetime structure?⇒ ⇔
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|q1⟩R2
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⊗ |x − q2⟩S

assuming linearity

 perspectiveR1  perspectiveR2



Intuition: spatial QRFs in 1D

q
R1 R2 S

aim: “jump” into perspective of particle , defining origin, and describe  relative to itR1 R2S

|q1⟩R2
⊗ |x⟩S

how will  “see” the same configuration?R2

q = 0

| − q1⟩R1
⊗ |x − q1⟩S+ |q2⟩R2

⊗ |x⟩S + | − q2⟩R1
⊗ |x − q2⟩S

QRF transformation a conditional unitary:                   VR1→R2
= 𝔽12 ∫ dq | − q⟩⟨q |R2

⊗ US(−q)

swaps particles  and  R2 R1 [Giacomini et al Nat. Comm. ’19]
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Intuition: spatial QRFs in 1D

q
R1 R2 S

aim: “jump” into perspective of particle , defining origin, and describe  relative to itR1 R2S

( |q1⟩R2
+ |q2⟩R2

) ⊗ |x⟩S

how will  “see” the same configuration?R2

q = 0

| − q1⟩R1
⊗ |x − q1⟩S + | − q2⟩R1

⊗ |x − q2⟩S

QRF transformation a conditional unitary:                   VR1→R2
= 𝔽12 ∫ dq | − q⟩⟨q |R2

⊗ US(−q)

swaps particles  and  R2 R1 [Giacomini et al Nat. Comm. ’19]

Example illustrates: superposition and entanglement of subsystem  QRF relativeS

 perspectiveR1  perspectiveR2



The story more generally
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Describe  relative to internal  
reference subsystem 

S
R

R internally indistinguishable
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Premise: 
System  subject to symmetry group  

, s.t. states  and  are  
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 considered in isolation
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S

internally distinguishable 
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⇒
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distinguishable (relational) states/
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                spacetime index,                frame indexeμ
a μ = t, x, y, z a = 0,1,2,3

only acts on frame

“gauge transformations”:                                         
“symmetries” (frame reorientations):                     

Λμ
ν eν

a Λμ
ν ∈ SO+(3,1)

Λa
b eμ

b Λa
b ∈ SO+(3,1)

frame orientations 2 indices, 2 commuting group actions:

            ,             internally indistinguishablevμ ↦ Λμ
νvν Λ ∈ SO+(3,1)y

t ve0

e1
x

Example: Special relativity with internal frames

 group acts on itself since                                       group valued frame orientations⇒ ηab = eμ
a eν

b ημν ⇒ eμ
a ∈ SO+(3,1)

  “gauge-invariant” description of :                    “relational/frame dressed observables”   
                                                                                                                        (describes  relative to frame)

⇒ v va = (v, ea) = ημνvμeν
a

v



Describe  relative to internal  
reference subsystem 

S
R

R

2 ways of “jumping into a RF perspective”

Premise: 
System  subject to symmetry group  

, s.t. states  and  are  
Indistinguishable for all  when  

 considered in isolation

S
G ρ g ⋅ ρ

g ∈ G
S

1. relational observables relative to  (gauge inv.) 

2. put  into “origin” (gauge fix)

R

R



fictitious/external coord. frame

introduce internal frame (tetrad)

                spacetime index,                frame indexeμ
a μ = t, x, y, z a = 0,1,2,3

only acts on frame

“gauge transformations”:                                         
“symmetries” (frame reorientations):                     

Λμ
ν eν

a Λμ
ν ∈ SO+(3,1)

Λa
b eμ

b Λa
b ∈ SO+(3,1)

frame orientations 2 indices, 2 commuting group actions:

            ,             internally indistinguishablevμ ↦ Λμ
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ve0

e1

Example: Special relativity with internal frames

 group acts on itself since                                       group valued frame orientations⇒ ηab = eμ
a eν

b ημν ⇒ eμ
a ∈ SO+(3,1)

  gauge fix background frame to align with tetrad         ⇒
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kinematical vs. relational subsystems

Premise: 
System  subject to symmetry group  

, s.t. states  and  are  
Indistinguishable for all  when  

 considered in isolation

S
G ρ g ⋅ ρ

g ∈ G
S

R’

green balls: subsystem S′�

1. kinematical and relational (gauge inv.) notion of subsystem distinct

R

leaves description of  rel. to external frame invariant, 
but changes description relative to frame 

S′�
R

2. gauge inv. notion of subsystem depends on choice of RF

leaves description of  relative to  invariant, 
but changes it relative to 

S′ � R
R′�

 gauge inv. correlations, thermal properties, … are RF dependent  ⇒



Warmup: Special relativity with internal frames

 va = vμ ημν eν
a = vμ e′�μa′�e′ �a′�

ν eν
a = va′� Λa′�

a

introduce second internal frame          e′�a′�

relational observable rel. to e relational observable rel. to e′�

symmetry induced RF transformation:  
                                 
is relational observable describing 1st rel. to 2nd frame

Λa′ �
a = e′�a′�

μ eμ
a ∈ SO+(3,1)

vμ

e′�μa′�eμ
a

Λa′�
a ∈ SO+(3,1)

va = ημνe
μ
a vν va′� = ημνe

′ �μ
a′ �v

ν

subsystem relativity        relativity of simultaneity⇒

eμ
0 e′ �μ0

eμ
1

e′�μ1

eμ
2 = e′ �μ2

v



Quantum reference frames 

… or frames in relative superposition



Example: spatial QRFs in 1D

q
R1 R2 S

setup relative to external (possibly fictitious) frame:

space of externally distinguishable statesℋkin = L2(ℝ)R1
⊗ L2(ℝ)R2

⊗ L2(ℝ)S
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space of externally distinguishable statesℋkin = L2(ℝ)R1
⊗ L2(ℝ)R2

⊗ L2(ℝ)S

global translations as external frame transformations, i.e. gauge transformations

UR1R2S(x) = eix(p1+p2+pS) analog of  in SRΛμ
ν ∈ SO+(3,1)
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UR1R2S(x) = eix(p1+p2+pS) analog of  in SRΛμ
ν ∈ SO+(3,1)



Example: spatial QRFs in 1D

q
R1 R2 S

setup relative to external (possibly fictitious) frame:

space of externally distinguishable statesℋkin = L2(ℝ)R1
⊗ L2(ℝ)R2

⊗ L2(ℝ)S

global translations as external frame transformations, i.e. gauge transformations

UR1R2S(x) = eix(p1+p2+pS) analog of  in SRΛμ
ν ∈ SO+(3,1)

frame orientation states for R1 |q⟩R1 analog of tetrad  in SReμ
a ∈ SO+(3,1)

frame reorientations (only act on frame) 
UR1

(x) = eixp1 analog of   in SRΛa
be

μ
a

 2 commuting group actions (here trivial)⇒



Example: spatial QRFs in 1D

q
R1 R2 S

frame-orientation conditional gauge transformation

Relational observables through -twirl:G

OfR2S,R1
(x) = ∫ dq UR1R2S(q)( |x⟩⟨x |R1

⊗ fR2S) U†
R1R2S

(q) “what’s the value of  when  is in position ?”fR2S R1 x

frame-orientation conditional gauge transformation (controlled unitary)

recall relational observables from SR      va = vμ ημν eν
a
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q
R1 R2 S

frame-orientation conditional gauge transformation

Relational observables through -twirl:G

OfR2S,R1
(x) = ∫ dq UR1R2S(q)( |x⟩⟨x |R1

⊗ fR2S) U†
R1R2S

(q) “what’s the value of  when  is in position ?”fR2S R1 x

frame-orientation conditional gauge transformation (controlled unitary)

recall relational observables from SR      va = vμ ημν eν
a

gauge-inv.        [OfR2S,R1
(x), UR1R2S(y)] = 0



Example: spatial QRFs in 1D

q
R1 R2 S

frame-orientation conditional gauge transformation

Relational observables through -twirl:G

OfR2S,R1
(x) = ∫ dq UR1R2S(q)( |x⟩⟨x |R1

⊗ fR2S) U†
R1R2S

(q) “what’s the value of  when  is in position ?”fR2S R1 x

frame-orientation conditional gauge transformation (controlled unitary)

recall relational observables from SR      va = vμ ημν eν
a

gauge-inv.        [OfR2S,R1
(x), UR1R2S(y)] = 0

for example, get  and   Oq2,R1
(0) = q2 − q1 OqS,R1

(0) = qS − q1



q
R1 R2 S

Perspective-neutral formulation of QRF covariance

gauge-inv. (external frame-indep.) physical Hilbert space          with         ℋphys |ψ⟩phys = UR1R2S(x) |ψ⟩phys

space of externally distinguishable statesℋkin = L2(ℝ)R1
⊗ L2(ℝ)R2

⊗ L2(ℝ)S

space of internally distinguishable states



q
R1 R2 S

Perspective-neutral formulation of QRF covariance

gauge-inv. (external frame-indep.) physical Hilbert space          with         ℋphys |ψ⟩phys = UR1R2S(x) |ψ⟩phys

space of externally distinguishable statesℋkin = L2(ℝ)R1
⊗ L2(ℝ)R2

⊗ L2(ℝ)S

space of internally distinguishable statesstates such that              (p1 + p2 + pS) |ψ⟩phys = 0

   is a (internal frame) perspective-neutral space: description of physics prior to having chosen internal 

reference system relative to which remaining DoFs are described

ℋphys

 redundancy: many different ways in describing same invariant  ⇒ |ψphys⟩

 associate with different internal QRF choices: redundant = reference DoFs⇒



gauge-induced QRF changes: quantum coordinate  
changes

recall: “jumping into frame perspective” through gauge-fixing

va = ημνeν
avμ

e′�ν′�
a′� = δν′ �

a′�eν
a = δν

a

Λν′�
μ ∈ SO+(3,1)

va =̂ vμ va =̂ Λν′�
μvν′�



gauge-induced QRF changes: quantum coordinate  
changes

recall: “jumping into frame perspective” through gauge-fixing

va = ημνeν
avμ

e′�ν′�
a′� = δν′ �

a′�eν
a = δν

a

Λν′�
μ ∈ SO+(3,1)

va =̂ vμ va =̂ Λν′�
μvν′�

perspective-neutral

Vanrietvelde, PH, Giacomini, Castro Ruiz, Quantum 2020 

 perspectiveR1  perspectiveR2

φR1
= ⟨q = 0 |R1

⊗ IR2S φR2
= ⟨q = 0 |R2

⊗ IR1S

VR1→R2
= φR2

∘ φ−1
R1

ℋphys

ℋR2S|R1
= L2(ℝ)R2

⊗ L2(ℝ)S
ℋR1S|R2

= L2(ℝ)R1
⊗ L2(ℝ)S



gauge-induced QRF changes: quantum coordinate  
changes

recall: “jumping into frame perspective” through gauge-fixing

va = ημνeν
avμ

e′�ν′�
a′� = δν′ �

a′�eν
a = δν

a

Λν′�
μ ∈ SO+(3,1)

va =̂ vμ va =̂ Λν′�
μvν′�

perspective-neutral

Vanrietvelde, PH, Giacomini, Castro Ruiz, Quantum 2020 

 perspectiveR1  perspectiveR2

φR1
= ⟨q = 0 |R1

⊗ IR2S φR2
= ⟨q = 0 |R2

⊗ IR1S

VR1→R2
= φR2

∘ φ−1
R1

ℋphys

ℋR2S|R1
= L2(ℝ)R2

⊗ L2(ℝ)S
ℋR1S|R2

= L2(ℝ)R1
⊗ L2(ℝ)S

= 𝔽12 ∫ dq | − q⟩⟨q |R2
⊗ US(q)

[Giacomini et al Nat. Comm. ’19]reproduces QRF transf. from earlier



gauge-induced QRF changes: quantum coordinate  
changes

perspective-neutral

 perspectiveR1  perspectiveR2

φR1
= ⟨q = 0 |R1

⊗ IR2S φR2
= ⟨q = 0 |R2

⊗ IR1S

VR1→R2
= φR2

∘ φ−1
R1

ℋphys

ℋR2S|R1
= L2(ℝ)R2

⊗ L2(ℝ)S
ℋR1S|R2

= L2(ℝ)R1
⊗ L2(ℝ)S

|q1⟩R2
⊗ |x⟩S + |q2⟩R2

⊗ |x⟩S | − q1⟩R1
⊗ |x − q1⟩S + | − q2⟩R1

⊗ |x − q2⟩S

= 𝔽12 ∫ dq | − q⟩⟨q |R2
⊗ US(q)

QRF relativity of entanglement and superposition



QRF relativity of subsystems

perspective-neutral

 perspectiveR1  perspectiveR2

φR1
= ⟨q = 0 |R1

⊗ IR2S φR2
= ⟨q = 0 |R2

⊗ IR1S

VR1→R2
= φR2

∘ φ−1
R1

ℋphys

ℋR2S|R1
= L2(ℝ)R2

⊗ L2(ℝ)S
ℋR1S|R2

= L2(ℝ)R1
⊗ L2(ℝ)S

|q1⟩R2
⊗ |x⟩S + |q2⟩R2

⊗ |x⟩S | − q1⟩R1
⊗ |x − q1⟩S + | − q2⟩R1

⊗ |x − q2⟩S

= 𝔽12 ∫ dq | − q⟩⟨q |R2
⊗ US(q)

QRF perspectives  and  are nothing but two  
tensor product structures on gauge-inv. 

φR1
φR2

ℋphys



QRF relativity of subsystems

perspective-neutral

 perspectiveR1  perspectiveR2

φR1
= ⟨q = 0 |R1

⊗ IR2S φR2
= ⟨q = 0 |R2

⊗ IR1S

VR1→R2
= φR2

∘ φ−1
R1

ℋphys

ℋR2S|R1
= L2(ℝ)R2

⊗ L2(ℝ)S
ℋR1S|R2

= L2(ℝ)R1
⊗ L2(ℝ)S

|q1⟩R2
⊗ |x⟩S + |q2⟩R2

⊗ |x⟩S | − q1⟩R1
⊗ |x − q1⟩S + | − q2⟩R1

⊗ |x − q2⟩S

= 𝔽12 ∫ dq | − q⟩⟨q |R2
⊗ US(q)

QRF perspectives  and  are nothing but two  
tensor product structures on gauge-inv. 

φR1
φR2

ℋphys

 inequivalent because QRF transf.  a nonlocal unitary⇒ VR1→R2



QRF relativity of subsystems

perspective-neutral

 perspectiveR1  perspectiveR2

φR1
= ⟨q = 0 |R1

⊗ IR2S φR2
= ⟨q = 0 |R2

⊗ IR1S

VR1→R2
= φR2

∘ φ−1
R1

ℋphys

ℋR2S|R1
= L2(ℝ)R2

⊗ L2(ℝ)S
ℋR1S|R2

= L2(ℝ)R1
⊗ L2(ℝ)S

= 𝔽12 ∫ dq | − q⟩⟨q |R2
⊗ US(q)

different factorization of total gauge-inv. algebra into commuting subalgebras  
                                                                                       𝒜phys ≃ 𝒜S|R1

⊗ 𝒜R2|R1
𝒜phys ≃ 𝒜S|R2

⊗ 𝒜R1|R2

generated by canonical pairs  and  
which become local in 

(qS − q1, pS) (q2 − q1, p1)
generated by canonical pairs  and  

which become local in 
(qS − q2, pS) (q1 − q2, p2)



QRF relativity of subsystems

perspective-neutral

 perspectiveR1  perspectiveR2

φR1
= ⟨q = 0 |R1

⊗ IR2S φR2
= ⟨q = 0 |R2

⊗ IR1S

VR1→R2
= φR2

∘ φ−1
R1

ℋphys

ℋR2S|R1
= L2(ℝ)R2

⊗ L2(ℝ)S
ℋR1S|R2

= L2(ℝ)R1
⊗ L2(ℝ)S

= 𝔽12 ∫ dq | − q⟩⟨q |R2
⊗ US(q)

different factorization of total gauge-inv. algebra into commuting subalgebras  
                                                                                       𝒜phys ≃ 𝒜S|R1

⊗ 𝒜R2|R1
𝒜phys ≃ 𝒜S|R2

⊗ 𝒜R1|R2

generated by canonical pairs  and  
which become local in 

(qS − q1, pS) (q2 − q1, p1)
generated by canonical pairs  and  

which become local in 
(qS − q2, pS) (q1 − q2, p2)

have 𝒜S|R2
≠ 𝒜S|R1

realization of virtual subsystems, Zanardi ‘00s



QRFs for general unimodular Lie groups
de la Hamette, Galley, PH, Loveridge, Müller  

2110.13824;

works similarly, essentially  

frame orientation states |q⟩R coherent states   |ϕ(g)⟩R

spatial integration   ∫ dq group integration   ∫G
dg

…..

global translations   UR1R2S(x) gauge transf.    UR1
(g) ⊗ UR2

(g) ⊗ US(g)



Quantum relativity of subsystems

𝒜phys
observables on ℋphys

relational observables of  
relative to 

S
R1

relational observables of  
 relative to S R2 𝒜S|R2

𝒜S|R1

3 kinematical subsystems ℋkin = ℋR1
⊗ ℋR2

⊗ ℋS

Ahmad, Galley, PH, Lock, Smith PRL ’22; 
de la Hamette, Galley, PH, Loveridge, Müller  

2110.13824; 
Kotecha, Mele, PH to appear 



Recall: kinematical vs. relational subsystems

R’

green balls: subsystem S′�

R

leaves description of  rel. to external frame invariant, 
but changes description relative to frame 

S′�
R

leaves description of  relative to  invariant, 
but changes it relative to 

S′ � R
R′�

 overlap of rel. observable algebras  (but don’t coincide)⇒ 𝒜S|R ∩ 𝒜S|R′� = {internal rel . obs . of S}



Quantum relativity of subsystems

𝒜phys
observables on ℋphys

relational observables of  
relative to 

S
R1

relational observables of  
 relative to S R2 𝒜S|R2

𝒜S|R1

3 kinematical subsystems ℋkin = ℋR1
⊗ ℋR2

⊗ ℋS

all rel. observables describing  
that are inv. under both - & - 

reorientations  all internal -relations 

S
R1 R2

⇒ S

Ahmad, Galley, PH, Lock, Smith PRL ’22; 
de la Hamette, Galley, PH, Loveridge, Müller  

2110.13824; 
Kotecha, Mele, PH to appear 



Quantum relativity of subsystems

𝒜phys
observables on ℋphys

relational observables of  
relative to 

S
R1

relational observables of  
 relative to S R2 𝒜S|R2

𝒜S|R1

3 kinematical subsystems ℋkin = ℋR1
⊗ ℋR2

⊗ ℋS

 different relational observable subalgebras  
inside total invariant algebra

⇒

 induce different gauge-inv. tensor factorizations 
(not in general factorization across   and  )

⇒
Rj |Ri S |Ri

 different appearance of same physics⇒

all rel. observables describing  
that are inv. under both - & - 

reorientations  all internal -relations 

S
R1 R2

⇒ S

Ahmad, Galley, PH, Lock, Smith PRL ’22; 
de la Hamette, Galley, PH, Loveridge, Müller  

2110.13824; 
Kotecha, Mele, PH to appear 



Upshot: frame-dependent gauge-inv. properties
“frames  and  mean different inv. DoFs when they refer to subsystem ” R1 R2 S

if factorizability in two frame perspectives, i.e. 
              but                 𝒜phys ≃ 𝒜S|R1

⊗ 𝒜R2|R1
≃ 𝒜S|R2

⊗ 𝒜R1|R2
𝒜S|R2

≠ 𝒜S|R1

then correlations/entanglement of  with its complement will in general differ in two perspectivesS
(see also Giacomini, Castro-Ruiz, Brukner ’19; Castro-Ruiz, Oreshkov ’21)

Ahmad, Galley, PH, Lock, Smith PRL ’22; 
de la Hamette, Galley, PH, Loveridge, Müller  

2110.13824 



Upshot: frame-dependent gauge-inv. properties
“frames  and  mean different inv. DoFs when they refer to subsystem ” R1 R2 S

if factorizability in two frame perspectives, i.e. 
              but                 𝒜phys ≃ 𝒜S|R1

⊗ 𝒜R2|R1
≃ 𝒜S|R2

⊗ 𝒜R1|R2
𝒜S|R2

≠ 𝒜S|R1

then correlations/entanglement of  with its complement will in general differ in two perspectivesS

 gauge-inv. entanglement entropy in general  for same global physical state⇒ S(ρS|R2
) ≠ S(ρS|R1

)

(see also Giacomini, Castro-Ruiz, Brukner ’19; Castro-Ruiz, Oreshkov ’21)

Ahmad, Galley, PH, Lock, Smith PRL ’22; 
de la Hamette, Galley, PH, Loveridge, Müller  

2110.13824 

 dynamics of  can be closed/isolated relative to  and open relative to  
(can map unitary dynamics/zero heat & work exchange into  

open dynamics/ non-zero heat & work exchange in other perspective)

⇒ S R1 R2

 QRF relativity of superpositions, correlations, equilibrium, thermodynamics, …⇒

Kotecha, Mele, PH to appear



Conclusions

Natural extension of relativity principle into quantum realm 
based on internal QRFs  in terms of group structures really the same as in SR 

Systematic method for changing QRF perspectives 
accommodates RFs in relative superposition 

Gauge-inv. subsystems depend on choice of QRF (“quantum relativity of subsystems”) 
 correlations, thermal properties, dynamics, …. depend on frame 

⇒

⇒

 works completely analogously with (so far classical) dynamical frames in gauge theory and gravity⇒

Carrozza, PH 2109.06184; Carrozza, Eccles, PH 2205.00913; Goeller, PH, Kirklin 2206.01193



Appendix



Symmetry-induced QRF changes
changes of relational observables, recall:

de la Hamette, Galley, PH, Loveridge, Müller 2110.13824 

 va = va′� Λa′�
a

relational observable rel. to e relational observable rel. to e′�

RF transformation between two frames is        
         relational observable describing 1st rel. to 2nd frame 

Λa′�
a = e′�a′�

μ eμ
a ∈ SO+(3,1) relation-conditional frame reorientation



Symmetry-induced QRF changes
de la Hamette, Galley, PH, Loveridge, Müller 2110.13824 

relational observable rel. to R1

relational observable rel. to R2

relation-conditional frame reorientation

can do analog in QT: G-twirl for symmetries VR1
(g) ⊗ 1R2S


