Coherence of confined matter in lattice gauge theories at the mesoscopic scales

Luigi Amico Quantum Research Centre, Technology Innovation Institute Abu Dhabi

National University of Singapore

We are TII Technology Innovation Institute

Our goal is to be a leading global research center dedicated to pushing the frontiers of knowledge. Our teams of scientists, researchers, and engineers work in an open, flexible, and agile environment to deliver discovery science and transformative technologies that will not just prepare us for the future but, create it.

About 850 researchers; about 60 nationalities

Technology Innovation. Institute (TII)

5.0 $\star \star \star \star \star$ 19 reviews

https://www.go

Research centers

Quantum Research Center	Autonomous Robotics Research Center	Crypto Resear	
Directed Energy	Secure Systems		
Research Center	Research Center	Resear	

EL2 Communities:

TII – Technology Innovation Institute Innovation for a better world

ography rch Center Advanced Materials Research Center Digital Science Research Center

ative Energy rch Center Biotechnology Research Center **Propulsion Research Center**

Artificial intelligence cross-center unit

Quantum Research Center

~70 Researchers; 6 permanents,~30 Postdocs, ~30 Ph.D students

People

Atomtronics

Dr. Juan Polo Lead Researcher

Wayne Chetcuti Junior Researcher

Dr. Andreas Osterloh Senior Researcher

Francesco Perciavalle Junior Researcher

Dr. Vijay Singh Postdoctoral Researcher

Enrico Domanti Junior Researcher

Philip Kitson JSF PhD student

Prof. Luigi Amico Executive Director

Superconducting

Dr. Gianluigi Catelani Dr. Giampiero Marchegiani Prof. Frederico Brito Lead Researcher

Abbas Hirkani **ICTP-TII PhD student**

Senior Researcher

Guglielmo La Magna Intern Student

Ben Blain Junior Researcher

Atomtronics

Atomtronics is an emerging field in quantum technology seeking to realize laser-generated micro-optical traps or circuits.

Cold atom circuits: 'Quantum many particles in ring-shaped potentials', Amico, Osterloh, Cataliotti, PRL 2005. "Atomtronics: Ultracold-atom analogs of electronic devices.", Seaman, Kramer, Anderson, Holland, PRA (2007).

Amico, Anderson, Boshier, Brantut, Minguzzi, Kwek, Rev. Mod. Phys. 2022

Some goals

- Bridging mesoscopic and cold-atoms physics.
- New quantum devices.
- Quantum sensing.
- Hybrid systems.

.

"Roadmap on Atomtronics: state of the art and perspectives', Amico, Boshier, Birkl, Kwek, Miniatura, Minguzzi et al, AVS Quantum Science 2021, arXiv:2008.04439. 'Roadmap on quantum optical systems', Amico, Boshier 'Atomtronics' J.Optics 2016

New J. Phys. Focus on 'Atomtronics enabled quantum technology' 2015, Amico, Birkl, Boshier, Kwek Eds.

atomic circuits exploiting ultra-cold atoms manipulated in micro-magnetic or

Enlarge the scope of cold atoms quantum simulators (currents).

Many-body physics (exotic quantum phases of matter: topological order..)

Insights in foundational aspects of quantum science.

Painting

Boshier@LANL 2014 -

Input binary

Cassettari St. Andrews (UK) 2018-2019

Barredo, Lienhard, de Léséleuc, Lahaye, Browaeys, Nature 561, 79 (2018)

Persistent current in interacting manybody systems in ring shaped potentials (ex Laguerre-Gauss)

G. Campbell, W. Phillips, C. Clark and co-workers@NIST, (2013–2015)

Ring circuits

Amico, Osterloh, Cataliotti PRL 2005

G. Roati group PRX 2022 @Florence

PRL 2022 Kevin Wright group@Darthmouth

von Klitzing group@Heraklion, Nature 2019

Perrin group@Paris, PRL 2019

Lines of research in Atomtronics @TII:

- Rotation sensors: Bose gases
 - Interferometry
 - Qubits made out of currents
 - Shapiro steps

• SU(N) fermions

- Persistent currents and correlations
- Interferometry
- Rydberg Atomtronics
 - Flow of excitations
- Quantum analogues
 - Lattice gauge theories
 - QCD

Dr. Juan Polo

Dr. Vijay Singh

Dr. Andreas Osterloh Wayne Chetcuti

Paolo Castorina INFN Catania

Enrico Domanti

Philip Kitson JSF PhD student

Dario Zappalà **INFN** Catania

State of the art

ARTICLES https://doi.org/10.1038/s41567-019-0649-7

Floquet approach to \mathbb{Z}_2 lattice gauge theories with ultracold atoms in optical lattices

Christian Schweizer^{1,2,3}, Fabian Grusdt^{0,3,4}, Moritz Berngruber^{1,3}, Luca Barbiero⁵, Eugene Demler⁶, Nathan Goldman⁵, Immanuel Bloch^{1,2,3} and Monika Aidelsburger^{1,2,3*}

ARTICLES https://doi.org/10.1038/s41567-021-01194-3

Domain-wall confinement and dynamics in a quantum simulator

W. L. Tan^{1,3}, P. Becker^{1,3}, F. Liu¹, G. Pagano^{1,2}, K. S. Collins¹, A. De¹, L. Feng¹, H. B. Kaplan¹, A. Kyprianidis¹, R. Lundgren¹, W. Morong¹, S. Whitsitt¹, A. V. Gorshkov¹ and C. Monroe¹

Confined Phases of One-Dimensional Spinless Fermions Coupled to Z_2 Gauge Theory

Umberto Borla, Ruben Verresen, Fabian Grusdt, and Sergej Moroz Phys. Rev. Lett. 124, 120503 – Published 26 March 2020

PHYSICAL REVIEW X									
Highlights	Recent	Subjects	Accepted	Collection	s Authors	Referees	Search		
Open Access Lattice Gauge Theories and String Dynamics in Rydberg Atom Quantum Simulators Federica M. Surace, Paolo P. Mazza, Giuliano Giudici, Alessio Lerose, Andrea Gambassi, and Marcello Dalmonte Phys. Rev. X 10 , 021041 – Published 21 May 2020									
PRX Q a Physical	UANT Review jour	UM rnal							
Highlights	Recent	Accepted	Authors	Referees	Search Abo	out Scope	Editorial Tea		
Editors' Suggestion Open Access Simulating 2D Effects in Lattice Gauge Theories on a Quantum Computer Danny Paulson, Luca Dellantonio, Jan F. Haase, Alessio Celi, Angus Kan, Andrew Jena, Christian Kokail, Rick van Bijnen, Karl Jansen, Peter Zoller, and Christine A. Muschik PRX Quantum 2, 030334 – Published 25 August 2021									
PRX G a Physical	UANT Review jou	UM urnal							
Highlights Open Acc	Recent	Accepted	Authors	Referees	Search A	About Scop	e Editorial		
Digital Quantum Simulation of the Schwinger Model and Symmetry Protection with Trapped Ions									
Nhung H. Nguyen, Minh C. Tran, Yingyue Zhu, Alaina M. Green, C. Huerta Alderete, Zohreh Davoudi, and									

PRX Quantum **3**, 020324 – Published 4 May 2022

Norbert M. Linke

Mesons

Kormos, M., Collura, M., Takács, G. *et al.* Real-time confinement following a quantum quench to a non-integrable model. *Nature Phys* 13, 246–249 (2017).

Federica Maria Surace and Alessio Lerose 2021 New J. Phys. 23 062001.

Coherence of confined matter in lattice gauge theories at the mesoscopic scales

E. C. Domanti, P. Castorina, D. Zappalà, L. Amico (2023) - arXiv:2304.12713

1d Z₂ lattice gauge theory

- $G_j = \sigma_{j-}^z$

$$\left[w\left(e^{i(2\pi/L)\Phi/\Phi_{0}}c_{j}^{\dagger}c_{j+1}+h.c.\right)\sigma_{j+\frac{1}{2}}^{x}+\frac{\tau}{2}\sigma_{j+\frac{1}{2}}^{z}\right]\right]$$

$$-\frac{1}{2}(-1)^{n_j}\sigma^z_{j+\frac{1}{2}}$$

• Generator of local \mathbb{Z}_2 transformations $G_j : [\mathcal{H}, G_j] = 0 \implies$ gauge sectors • Neutral gauge sector: $G_i = 1 \ \forall j$

Implementation: Driven matterwave

Two atomic species, obtained from the internal levels of ⁸⁷Rb, ulletare trapped in a species dependent double well potential

$$H = -J(a_2^{\dagger}a_1 + f_2^{\dagger}f_1 + h.c.) + U\sum_{j=1}^2 n_j^a n_j^f + \Delta_f n_1^f + A\cos(a_j^{\dagger}a_j^{\dagger} + \Delta_f n_1^f + A\cos(a_j^{\dagger}a_j^{\dagger}) + A\cos$$

- Tunneling processes are suppressed by large interaction U
- High frequency driving with $w \sim U$ restore the tunnelings, that acquire a density dependence

$$H_{eff} = -J_a \,\tau^z (a_2^{\dagger} a_1 + h.c.) - J_f \,\tau^x$$

$$\tau^z = n_2^f - n_1^f \qquad \qquad \tau^x = f_2^\dagger f_1 + f_1^\dagger f_2$$

Schweizer, C., Grusdt, F., Berngruber, M. *et al.* Floquet approach to \mathbb{Z}_2 lattice gauge theories with ultracold atoms in optical lattices. *Nature* Phys 15, 1168–1173 (2019).

L. Barbiero, C. Schweizer, M. Aidelsburger, E. Demler, N. Goldman, F. Grusdt, Coupling ultracold matter to dynamical gauge fields in optical lattices: From flux attachment to Z₂ lattice gauge theories, Sci. Adv. (2019)

Implementation: Rydberg atoms $H = \sum_{j} \left[J_j \left(\sigma_j^+ \sigma_{j+1}^- + h.c. \right) + \frac{\Omega_j}{2} \sigma_j^x + \frac{\Delta_j}{2} \sigma_j^z \right]$ (Δ_+, Ω) (δ, ω)

- \bullet
- Red sites = gauge field links: detuning δ and Rabi frequency ω \bullet
- •

$$H_{LGT} = \sum_{j} \left[\frac{\omega}{2} \tau_{j}^{x} + \frac{J\Omega}{2\Delta} (s_{j}^{z} + \gamma_{j+1}^{z}) \tau_{j}^{x} + \frac{m}{2} (\gamma_{j}^{z} - s_{j}^{z}) + Y(\gamma_{j}^{+} s_{j}^{-} + h.c.) - \frac{J^{2}}{\Delta} (s_{j}^{+} \tau_{j}^{z} \gamma_{j+1}^{-} + h.c.) \right]$$

Purple sites = matter sites: alternating detunings $\Delta_{\pm}=\Delta\pm m\,$ and Rabi frequency Ω_{\pm} In the limit of very large Δ and for $\delta=rac{2J^2}{\Lambda}$ we obtain an effective lattice gauge theory

> $\gamma_j, s_j \to \text{matter variables}$ $\tau_i \rightarrow$ gauge variables

$\psi_E(s,r) = \mathcal{N} e^{iKs} \phi_E(K,r)$

$$\phi_E(K,r) = \frac{\mathcal{J}_{E/\tau-r}\left[w(K,\Phi)\right]}{\mathcal{J}_{E/\tau}\left[w(K,\Phi)\right]} - \frac{\mathcal{Y}_{E/\tau-r}}{\mathcal{Y}_{E/\tau}\left[w(K,\Phi)\right]}$$

$$w(K,\Phi) = 2 w \cos\left(\frac{K}{2} + \frac{2\pi\Phi}{L\Phi_0}\right), \ K = \frac{2\pi}{L}n$$

Meson on a ring

 $[w(K,\Phi)]$ $\overline{w(K,\Phi)}]$

As a lattice effect, coupling between center of mass and relative coordinate dynamics

E. C. Domanti, P. Castorina, D. Zappalà, L. Amico (2023) - arXiv:2304.12713

Quench dynamics: $\Phi = 0 \rightarrow \phi \neq 0$

E. C. Domanti, P. Castorina, D. Zappalà, L. Amico (2023) - <u>arXiv:2304.12713</u>

Quench dynamics: current

E. C. Domanti, P. Castorina, D. Zappalà, L. Amico (2023) - arXiv:2304.12713

Quench dynamics: Aharonov-Bohm

The relative coordinate dynamics is coupled with the magnetic field!

E. C. Domanti, P. Castorina, D. Zappalà, L. Amico (2023) - arXiv:2304.12713

Conclusions

Atomtronics-enabled quantum simulation of lattice gauge theories: able to resolve features of the theory that are very hard (if not impossible) to access through particle accelerators.

- relative motion of confined particles
- Aharonov-Bohm oscillations

• The dynamics of the current reflects the coupling between the center of mass and the

•Mesoscopic properties of confined matter can be accessed through the meson current