Coherence of confined matter in lattice gauge theories at the mesoscopic scales

Luigi Amico
Quantum Research Centre, Technology Innovation Institute Abu Dhabi

We are TII
 Technology Innovation Institute

Our goal is to be a leading global research center dedicated to pushing the frontiers of knowledge. Our teams of scientists, researchers, and engineers work in an open, flexible, and agile environment to deliver discovery science and transformative technologies that will not just prepare us for the future but, create it.

About 850 researchers; about 60 nationalities

Research centers

Quantum				
Research Center	Autonomous Robotics Research Center	Cryptography Research Center	Advanced Materials Research Center	Digital Science Research Center
Directed Energy	Secure Systems Research Center	Alternative Energy Research Center	Biotechnology Research Center	Propulsion Research Center

Artificial intelligence cross-center unit

Quantum

Research Center

Quantum

People

Atomtronics

Dr. Juan Polo Lead Researcher

Dr. Andreas Osterloh Senior Researcher

Francesco Perciavalle Junior Researcher

Dr. Vijay Singh Postdoctoral Researcher

Enrico Domanti Junior Researcher

Dr. Gianluigi Catelan Lead Researcher

Abbas Hirkani ICTP-TII PhD student

Superconducting

Dr. Giampiero Marchegiani Prof. Frederico Brito Postdoctoral Researcher

Senior Researcher

Guglielmo La Magna Intern Student

Atomtronics

Atomtronics is an emerging field in quantum technology seeking to realize atomic circuits exploiting ultra-cold atoms manipulated in micro-magnetic or laser-generated micro-optical traps or circuits.

Amico, Anderson, Boshier, Brantut, Minguzzi, Kwek, Rev. Mod. Phys. 2022

Some goals

- Enlarge the scope of cold atoms quantum simulators (currents).
- Many-body physics (exotic quantum phases of matter: topological order..)
- Bridging mesoscopic and cold-atoms physics.
- Insights in foundational aspects of quantum science.
- New quantum devices.
- Quantum sensing.
- Hybrid systems.
-

nature

Sculpted light

Digital micromirror device

Rubinsztein-Dunlop \& Baker @ Queensland 2016-2019 Cassettari St. Andrews (UK) 2018-2019

Spatial light modulator

Barredo, Lienhard, de Léséleuc, Lahaye, Browaeys, Nature 561, 79 (2018)

[^0]
Ring circuits

Persistent current in interacting manybody systems in ring shaped potentials (ex Laguerre-Gauss)

Amico, Osterloh, Cataliotti PRL 2005

G. Campbell, W. Phillips, C. Clark and co-workers@NIST, (2013-2015)

Fermionic rings

G. Roati group PRX 2022 @Florence

PRL 2022 Kevin Wright group@Darthmouth

Lines of research in Atomtronics @TII:

- Rotation sensors: Bose gases
- Interferometry
- Qubits made out of currents
- Shapiro steps
- SU(N) fermions
- Persistent currents and correlations
- Interferometry

- Rydberg Atomtronics
- Flow of excitations
- Quantum analogues

- Lattice gauge theories
- QCD

State of the art

ARTICLES

https://doi.org/10.1038/s41567-019-0649-7

nature

physics

Floquet approach to \mathbb{Z}_{2} lattice gauge theories with ultracold atoms in optical lattices

Christian Schweizer ${ }^{1,2,3}$, Fabian Grusdt $\oplus^{3,4}$, Moritz Berngruber ${ }^{1,3}$, Luca Barbiero ${ }^{5}$, Eugene Demler ${ }^{6}$, Nathan Goldman ${ }^{5}$, Immanuel Bloch ${ }^{1,2,3}$ and Monika Aidelsburger © $^{1,2,3 \star}$

Domain-wall confinement and dynamics in a quantum simulator

 A. Kyprianidis \oplus^{1}, R. Lundgren ${ }^{1}$, W. Morong ${ }^{\oplus^{1}}$, S. Whitsitt', A. V. Gorshkov ${ }^{{ }^{1}}$ and C. Monroe ${ }^{1}$

PHYSICAL REVIEW LETTERS

Highlights Recent Accepted Collections Authors Referees Search Pre

Confined Phases of One-Dimensional Spinless Fermions Coupled to Z_{2} Gauge Theory
Umberto Borla, Ruben Verresen, Fabian Grusdt, and Sergej Moroz
Phys. Rev. Lett. 124, 120503 - Published 26 March 2020

PHYSICAL REVIEW X

Open Access

Lattice Gauge Theories and String Dynamics in Rydberg Atom Quantum Simulators

Federica M. Surace, Paolo P. Mazza, Giuliano Giudici, Alessio Lerose, Andrea Gambassi, and Marcello
Phys. Rev. X 10, 021041 - Published 21 May 2020

PRX QUANTUM
 a Physical Review journal

Highlights Recent Accepted Authors Referees Search About Scope Editorial Tea

Editiors' Suggestion Open Access
Simulating 2D Effects in Lattice Gauge Theories on a Quantum Computer

Danny Paulson, Luca Dellantonio, Jan F. Haase, Alessio Celi, Angus Kan, Andrew Jena, Christian Kokail, Rick van Bijnen, Karl Jansen, Peter Zoller, and Christine A. Muschik
PRX Quantum 2, 030334 - Published 25 August 2021

PRX QUANTUM

a Physical Review journal
Highlights Recent Accepted Authors Referees Search About Scope Editorial

Open Access

Digital Quantum Simulation of the Schwinger Model and
Symmetry Protection with Trapped Ions
Nhung H. Nguyen, Minh C. Tran, Yingyue Zhu, Alaina M. Green, C. Huerta Alderete, Zohreh Davoudi, and Norbert
PRX Quantum 3, 020324 - Published 4 May 2022

Mesons

Kormos, M., Collura, M., Takács, G. et al. Real-time confinement following a quantum quench to a non-integrable model. Nature Phys 13, 246-249 (2017).

Federica Maria Surace and Alessio Lerose 2021 New J. Phys. 23062001.

Coherence of confined matter in lattice gauge theories at the mesoscopic scales

E. C. Domanti, P. Castorina, D. Zappalà, L. Amico (2023) - arXiv:2304.12713

1d Z_{2} lattice gauge theory

$$
\begin{aligned}
\mathcal{H} & =\sum_{j}\left[w\left(e^{i(2 \pi / L) \Phi / \Phi_{0}} c_{j}^{\dagger} c_{j+1}+h . c .\right) \sigma_{j+\frac{1}{2}}^{x}+\frac{\tau}{2} \sigma_{j+\frac{1}{2}}^{z}\right] \\
G_{j} & =\sigma_{j-\frac{1}{2}}^{z}(-1)^{n_{j}} \sigma_{j+\frac{1}{2}}^{z}
\end{aligned}
$$

- Generator of local \mathbb{Z}_{2} transformations $G_{j}:\left[\mathcal{H}, G_{j}\right]=0 \Longrightarrow$ gauge sectors
- Neutral gauge sector: $G_{j}=1 \forall j$

Implementation: Driven matterwave

- Two atomic species, obtained from the internal levels of ${ }^{87} \mathrm{Rb}$, are trapped in a species dependent double well potential

$$
H=-J\left(a_{2}^{\dagger} a_{1}+f_{2}^{\dagger} f_{1}+h . c .\right)+U \sum_{j=1}^{2} n_{j}^{a} n_{j}^{f}+\Delta_{f} n_{1}^{f}+A \cos (w t+\phi)\left(n_{1}^{a}+n_{1}^{f}\right)
$$

- Tunneling processes are suppressed by large interaction U
- High frequency driving with $w \sim U$ restore the tunnelings, that acquire a density dependence

$$
\begin{gathered}
H_{e f f}=-J_{a} \tau^{z}\left(a_{2}^{\dagger} a_{1}+h . c .\right)-J_{f} \tau^{x} \\
\tau^{z}=n_{2}^{f}-n_{1}^{f} \quad \tau^{x}=f_{2}^{\dagger} f_{1}+f_{1}^{\dagger} f_{2}
\end{gathered}
$$

matter (a-particles)
 gauge field (f-particles)

Schweizer, C., Grusdt, F., Berngruber, M. et al. Floquet approach to \mathbb{Z}_{2} lattice gauge theories with ultracold atoms in optical lattices. Nature Phys 15, 1168-1173 (2019).
L. Barbiero, C. Schweizer, M. Aidelsburger, E. Demler, N. Goldman, F. Grusdt, Coupling ultracold matter to dynamical gauge fields in optical lattices: From flux attachment to \mathbf{Z}_{2} lattice gauge theories, Sci. Adv. (2019)

Implementation: Rydberg atoms

$$
H=\sum_{j}\left[J_{j}\left(\sigma_{j}^{+} \sigma_{j+1}^{-}+h . c .\right)+\frac{\Omega_{j}}{2} \sigma_{j}^{x}+\frac{\Delta_{j}}{2} \sigma_{j}^{z}\right]
$$

- Purple sites = matter sites: alternating detunings $\Delta_{ \pm}=\Delta \pm m$ and Rabi frequency Ω
- Red sites = gauge field links: detuning δ and Rabi frequency ω
- In the limit of very large Δ and for $\delta=\frac{2 J^{2}}{\Delta}$ we obtain an effective lattice gauge theory

$$
\begin{aligned}
& H_{L G T}=\sum_{j}\left[\frac{\omega}{2} \tau_{j}^{x}+\frac{J \Omega}{2 \Delta}\left(s_{j}^{z}+\gamma_{j+1}^{z}\right) \tau_{j}^{x}+\frac{m}{2}\left(\gamma_{j}^{z}-s_{j}^{z}\right)+Y\left(\gamma_{j}^{+} s_{j}^{-}+h . c .\right)-\frac{J^{2}}{\Delta}\left(s_{j}^{+} \tau_{j}^{z} \gamma_{j+1}^{-}+h . c .\right)\right] \\
& \gamma_{j}, s_{j} \rightarrow \text { matter variables } \\
& \tau_{j} \rightarrow \text { gauge variables }
\end{aligned}
$$

Meson on a ring

$$
\begin{aligned}
\psi_{E}(s, r) & =\mathcal{N} e^{i K s} \phi_{E}(K, r) \\
\phi_{E}(K, r) & =\frac{\mathcal{J}_{E / \tau-r}[w(K, \Phi)]}{\mathcal{J}_{E / \tau}[w(K, \Phi)]}-\frac{\mathcal{Y}_{E / \tau-r}[w(K, \Phi)]}{\mathcal{Y}_{E / \tau}[w(K, \Phi)]} \\
w(K, \Phi) & =2 w \cos \left(\frac{K}{2}+\frac{2 \pi \Phi}{L \Phi_{0}}\right), K=\frac{2 \pi}{L} n
\end{aligned}
$$

As a lattice effect, coupling between center of mass and relative coordinate dynamics

Quench dynamics: $\Phi=0 \rightarrow \phi \neq 0$

E. C. Domanti, P. Castorina, D. Zappalà, L. Amico (2023) - arXiv:2304.12713

Quench dynamics: current

Quench dynamics: Aharonov-Bohm

E. C. Domanti, P. Castorina, D. Zappalà, L. Amico (2023) - arXiv:2304.12713

$$
P\left(s_{0}+L / 2\right)=\sum_{r}\left|\psi\left(s_{0}+L / 2, r\right)\right|^{2}
$$

$\tau=0.1$

$$
\tau=10
$$

The relative coordinate dynamics is coupled with the magnetic field!

Ground state current

$$
\mathcal{I}(\Phi)=-i \frac{2 \pi w}{L \Phi_{0}} \sum_{j}\left(e^{i \frac{2 \pi}{L} \Phi / \Phi_{0}} c_{j}^{\dagger} \sigma_{j+\frac{1}{2}}^{x} c_{j+1}-h . c .\right)
$$

E. C. Domanti, P. Castorina, D. Zappalà, L. Amico (2023) - arXiv:2304.12713

Conclusions

- Atomtronics-enabled quantum simulation of lattice gauge theories: able to resolve features of the theory that are very hard (if not impossible) to access through particle accelerators.
- The dynamics of the current reflects the coupling between the center of mass and the relative motion of confined particles
- Mesoscopic properties of confined matter can be accessed through the meson current
-Aharonov-Bohm oscillations

[^0]: Boshier@LANL 2014 -

