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Abstract

Previous work suggests that aggregate probabilistic forecasts on a binary event are

often conservative. Extremizing transformations that adjust the aggregate forecast

away from the uninformed prior of 0.5 can improve calibration in many settings. How-

ever, such transformations may be problematic in decision problems where forecasters

share a biased prior. In these problems, extremizing transformations can introduce

further miscalibration. We develop a two-step algorithm where we first estimate the

prior using each forecasters’ belief about the average forecast of others. We then trans-

form away from this estimated prior in each forecasting problem. Our algorithm works

in single-question forecasting problems and does not require past data. Evidence from

experimental prediction tasks suggest that the resulting average probability forecast is

robust to biased priors and improves calibration.
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1 Introduction1

Problems of practical decision-making often require probabilistic forecasts of uncertain2

events. Knowledge regarding the true likelihood of the event is often scattered across multiple3

individuals leading to an information aggregation problem where individual forecasts must be4

combined into a single forecast. Constructing the best aggregation method is difficult because5

forecasters may make errors when updating their information, may differ in expertise, and6

may vary in the overlap of the information they have available.7

In data-rich environments, it is often possible to use information from training data8

or other forecasts to better understand the structure of information that exists amongst9

forecasters. In ideal settings, training data from past forecasts of known outcomes can be10

used to empirically estimate the diversity of information across individuals and aggregate11

unknown events accordingly (Breiman, 1996; Raftery et al., 1997; Satopää, Baron, et al.,12

2014; Satopää, Jensen, et al., 2014; Atanasov et al., 2017; Dana et al., 2019). Alternatively,13

in cases where forecasters are answering many questions, it may be possible to use answers14

from many questions to estimate features of the data-generating process that are useful to15

improving aggregation (Satopää et al., 2017; Lichtendahl Jr et al., 2022).16

Unfortunately, decision-makers may not always have access to data that is relevant to17

the questions of importance. For example, the performance of forecasters on problems with18

known outcomes may not be relevant to the unknown problem of interest, and collecting19

relevant data on similar problems may be impractical (Clemen, 1989; Genre et al., 2013).20

The challenge in these “single-question” forecasting problems is to make the best forecast21

possible with data related only to the question being asked. We concentrate on the single-22

question problems for the rest of the paper.23

The simple average is a common method to aggregate probability forecasts in the single-24

question domain (Winkler et al., 2019). Combining independent judgments from many25

forecasters can lead many individual-specific errors to cancel out leading to improved fore-26

casts via the “wisdom of crowds” effect (Larrick & Soll, 2006; Surowiecki, 2004). However,27
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previous work suggests that the average probability forecast has a major shortcoming: ag-28

gregated forecasts tend to be too conservative with the probability of unlikely events being29

over-predicted and the probability of near-certain events being under-predicted (Ariely et30

al., 2000; Turner et al., 2014). This aggregate conservatism naturally arises in settings where31

information is scattered and forecasters have access to different sets of information (Baron32

et al., 2014). It also arises even when individual forecasts are well-calibrated since the linear33

combination of probability forecasts is always theoretically miscalibrated and lacks sharpness34

(Ranjan & Gneiting, 2010).35

One way to address the conservative bias is to recalibrate aggregate forecasts using an

extremization function. Consider the linear log odds (LLO) transformation

t(p) =
δpγ

δpγ + (1− p)γ
, (1)

where p and t(p) are the original and transformed probabilities, and {δ, γ} are parameters.136

Extremizing transformations of the LLO form typically improve the accuracy of aggregate37

probabilistic forecasts (Atanasov et al., 2017; Budescu et al., 1997; Han & Budescu, 2022).38

However, a second potential issue arises in cases where the prior is biased. In many “wicked”39

forecasting problems, the majority is wrong (Prelec et al., 2017; Wilkening et al., 2022)40

and/or inaccurate forecasters express higher confidence (Koriat, 2008, 2012; Hertwig, 2012;41

Lee & Lee, 2017). In these cases, the average forecast often falls on the wrong side of 0.5.42

Extremizing wrong-sided average forecasts using the LLO transformation has the potential43

of pushing the forecast away from the true probability and can increase miscalibration rather44

than improving accuracy.45

1The LLO transformation follows from a linear log-odds model

log

(
t(p)

1− t(p)

)
= γlog

(
p

1− p

)
+ τ, (2)

where γ is the slope and τ = log(δ) gives the intercept (Turner et al., 2014). A simplified implementation sets
δ = 1 (Karmarkar, 1978; Erev et al., 1994; Shlomi & Wallsten, 2010), which is shown to improve calibration
of the aggregate probability in forecasting geopolitical events (Mellers et al., 2014).
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In this paper, we ask whether it is possible to estimate the prior in a single-question46

framework and to use this as the starting point for recalibration. Our main contribution is47

to show that the common prior can be estimated in the single-question domain by eliciting48

forecasts and meta-predictions about the forecasts of others. We demonstrate how this49

information can be used to improve recalibration over standard singe-question recalibration50

methods, and discuss its performance relative to other single-question algorithms that have51

recently been developed.52

We consider an environment in which individuals share a common prior that an event53

may occur, which may be biased.2 Forecasters receive independent signals conditional on the54

actual state leading to an average probability forecast that puts a higher probability on the55

actual state than the prior. When the prior that the event occurs is 0.5, the average forecast56

in these problems always falls on the correct side of 0.5 as the overall crowd size grows large,57

but the resulting forecast is always conservative. Thus, in these cases, extremization away58

from 0.5 can improve calibration. However, in a biased decision problem, wrong-sidedness59

can occur. For example, if the prior is 0.7, there exists cases where the posterior is below 0.760

but above 0.5. In these cases, the LLO transformation would extremize the average forecast61

towards 1, even though the information contained in the forecaster’s private signals suggest62

a lower probability than the prior.63

To address this issue, we elicit each forecaster’s estimate on the average forecast of others64

(referred to as their meta-prediction) as well as their probabilistic forecast. We show that65

these two measures can be combined with prediction data to estimate the prior in our setting,66

and then implement an LLO transformation that recalibrates away from the estimated prior67

rather than using a neutral prior of 0.5.68

To evaluate how well our robust recalibration algorithm calibrates, we estimate calibra-69

tion curves across a variety of decision problems related to general knowledge, sports, and70

2We are agnostic as to where this bias might come from, but the setup is consistent with one where
all forecasters initially observe the same common-signal and then receive a private idiosyncratic one. The
common signal leads to the initial prior that differs from 0.5.
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the price of art works. For recalibration parameters in the range of those suggested in Baron71

et al. (2014), we find that our algorithm generally improves calibration relative to a variety72

of alternative algorithms that have been explored in the literature. These include the min-73

imal pivoting algorithm (Palley & Soll, 2019), the knowledge weighting mechanism (Palley74

& Satopää, 2023), the meta probability weighting algorithm (Martinie et al., 2020), and75

the surprising overshoot (SO) algorithm (Peker, 2023). Robust recalibration also generates76

very low brier scores across decision problems, suggesting that it has very good accuracy77

characteristics overall.78

The rest of this paper is organized as follows: Section 2 reviews the recalibration literature79

and summarizes the other single-question algorithms that we compare our algorithm with.80

Section 3 introduces the Bayesian framework. Sections 4 discusses the existence of wrong-side81

average forecasts in biased decision problems and develops the robust recalibration method82

that utilizes meta-predictions. Section 5 provides empirical evidence from experimental83

prediction tasks. Section 6 provides an overview of our contribution and concludes.84

2 Related Literature85

Recalibration approaches that seek to account for the partial overlap in shared infor-86

mation amongst forecasters have been shown in a variety of settings to improve outcomes87

over techniques that allow only for a weighted average of individual predictions (Baron et88

al., 2014; Turner et al., 2014). Recalibration typically involves the use of an extremization89

function, which adjusts forecasts toward extreme outcomes. The most popular choices are90

logit and probit transformations (Baron et al., 2014; Satopää, Baron, et al., 2014; Satopää et91

al., 2016; Turner et al., 2014).92

Recalibration functions are typically symmetric around 0.5. However, as noted in Turner93

et al. (2014), it is possible and often beneficial to allow for more flexible calibration ap-94

proaches by extremizing from a different initial prior. A challenge in improving calibration95

5



is therefore to incorporate information about the prior into the aggregation algorithm (Diet-96

rich, 2010; Satopää, 2022). Recent work developed Bayesian frameworks and used multiple97

predictions within the same survey to allow for a non-uniform prior across a range of pre-98

diction tasks (Satopää et al., 2017; Lichtendahl Jr et al., 2022).99

Our approach within the recalibration literature is similar to Lichtendahl Jr et al. (2022),100

which also stress the importance of using a value other than 0.5 as the basis for extremiza-101

tion. In their paper, the authors explore data-generating processes in which experts observe102

multiple independent and identically distributed signals from a joint distribution along with103

multiple commonly observed private signals. The authors show that with multiple forecasts104

and historical data, it is possible to develop estimation procedures that are well calibrated105

and which “antiextremizes” the average in a large number of cases.106

We see the empirical approach taken in Lichtendahl Jr et al. (2022) as being highly107

useful in environments where there is substantial historical data to estimate base rates and108

some confidence in the error structures generated from the data generating process. Our109

approach, which estimates the prior from meta-predictions and predictions alone, is likely110

more valuable in environments where forecasters have limited historical data and where there111

is significant uncertainly about the underlying data generating process. We note the two112

approaches are not mutually exclusive: it is an open and interesting question of how to best113

combine the two approaches when historical data, training data, and meta-prediction data114

is available.115

Our paper also contributes to the emerging literature on forecast aggregation methods116

that rely on higher order beliefs (Prelec et al., 2017; Palley & Soll, 2019; Martinie et al.,117

2020; Wilkening et al., 2022; Palley & Satopää, 2023; Peker, 2023; Chen et al., 2021). The118

elicitation of higher-order beliefs allows the researcher additional information about the119

signals that individuals receive. Such information can be useful in cases where signals are120

either correlated or noisy, and where forecasters themselves have more information about121

the data-generating process than the aggregator.122
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Meta-prediction algorithms have been developed both for binary classification (e.g., Pr-123

elec et al. (2017); Wilkening et al. (2022); Chen et al. (2021)) problems and in settings like124

ours where the aggregator wishes to make a probabilistic forecast. In this second class of125

problems, four main alternative approaches have been proposed: meta-probability weight-126

ing, minimal pivoting, knowledge weighting, and the surprising overshoot (SO) algorithm.127

Meta-probability weighting aims to use forecasters’ meta-prediction as well as their predic-128

tion to deal with biased priors or shared information. Forecasters whose prediction and129

meta-prediction diverge receive higher weights in the subsequent weighted average of pre-130

dictions (Martinie et al., 2020). Minimal pivoting adjusts the average predictions based on131

how much it differs from the average meta-prediction (Palley & Soll, 2019). The adjustment132

corrects for the shared-information bias in the aggregate resulting from forecasters’ common133

information. Knowledge-weighting proposes a weighted aggregation that seeks to overweight134

forecasters who are better at predicting the forecasters of their peers (Palley & Satopää,135

2023). Finally, the surprising overshoot algorithm corrects for shared information using the136

observation that the prediction and meta-prediction of an individual should both fall on the137

same side of a well-calibrated average (Peker, 2023).138

Our formal framework is similar to Wilkening et al. (2022) and Martinie et al. (2020) in139

that individuals receive private noisy signals but share a common biased prior. This frame-140

work naturally introduces conservative forecasts since all individuals have only imperfect141

information about the true state. Palley & Soll (2019), Palley & Satopää (2023) and Peker142

(2023) use an alternative framework that allows for intermediate types of shared informa-143

tion, but places stronger restrictions on the types of signals received. The framework used in144

knowledge weighting lies between the two approaches and considers an environment where145

forecasters make noisy predictions and meta-predictions based on their true information.146

Although it is not emphasized in the previous literature, the framework used in Palley147

& Soll (2019) is one in which the meta-prediction and prediction correspondences are linear148

and where the intersection of these lines corresponds to the common prior that exists after149
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accounting for publicly observable information. As a result, the ordering of the prediction150

and meta-prediction correspondences switch at the uninformative prior. An implication of151

this is that the minimum pivoting mechanism—which uses the difference in the average pre-152

diction and meta-prediction to adjust forecasts—is fundamentally an extremizing procedure153

that adjusts forecasts away from the common prior. As seen in the results section, our algo-154

rithm with the suggested extremizing parameters of Baron et al. (2014) is more aggressive155

than the adjustment made in the pivot mechanism and performs better. Thus, at least in156

the data sets considered, our results suggest that the minimum pivot mechanism is too con-157

servative. This finding is similar to the contemporaneous work presented in Rilling (2024)158

that explores a neutral pivoting mechanism that is more aggressive than the original minimal159

pivot mechanism.160

Our recalibration procedure relies on a regression approach that is similar to the fitting161

technique used in Palley & Satopää (2023) that seeks to estimate a meta-prediction function162

using reported predictions and meta-predictions. Regression approaches have also been pro-163

posed by Libgober (2023) to identify information regarding the underlying data-generating164

process.165

3 Framework166

Our framework is similar to Wilkening et al. (2022) but adapted to the forecasting do-167

main. We are interested in predicting the probability that a binary even E will occur. The168

probability that this event occurs varies with a state that is unobservable to the decision169

maker. However, forecasters receive signals regarding the underlying state and have common170

knowledge regarding the likelihood of each potential signal in each potential state.171

We consider a setting where there are two potential underlying states. Let ω ∈ {ωG, ωB}172

be the state of the world where G and B represent “Good” and “Bad” states respectively.173

The occurrence of the event occurs with probability Pr(E|ωG) = g in the good state and174
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with probability Pr(E|ωB) = b in the bad state, satisfying g > b. Nature determines the175

state with unknown probability Pr(ω = ωG). Thus, a probability forecast g of E when the176

state is good and b when the state is bad would be a perfectly well-calibrated forecast.177

An aggregator elicits and aggregates judgments from a crowd of N forecasters. Forecast-178

ers share a common prior that the state is good, q, resulting in a common prior belief that179

the event E will occur with probability Pr(E|q) = qg+ (1− q)b.3 Each forecaster k receives180

a signal σk from S ≡ {s1, . . . , sm} ∪ {s∅} regarding the underlying state. Without loss of181

generality, signals are normalized so that si := p(ωG|si), where p(ωG|si) is forecaster k’s pos-182

terior belief on the probability of the true state being ωG when σk = si. The uninformative183

signal satisfies s∅ := q and the signal space is bounded in [0, 1].184

Let p(si|ω) denote the probability of a signal si in state ω, satisfying
∑
si∈S

p(si|ω) = 1 for185

each ω ∈ {ωG, ωB}. The conditional distribution of signals is represented by a likelihood186

matrix [Qωj]2×(m+1). The first and second rows give the likelihoods of each signal in states ωG187

and ωB respectively. Thus, QωGi = Q1i ≡ p(si|ωG). We will assume there exists at least one188

signal sl ∈ {s1, . . . , sm}, where Qωi ∈ (0, 1), which implies that at least one signal provides189

noisy information about the underlying state.4 Consistent with our naming convention of190

states, we also assume E[σk|ωG] > s∅ > E[σk|ωB], which implies that signals are informative191

and the expected posterior belief is higher in the good state than the bad state.192

It is useful at this point to note a distinction that we are making regarding events and193

states. In our framework, the values b and g connected to the state represents the best194

prediction that could be made by an aggregator if he knew the structure of the information195

service and observed an infinite number of draws from it. In some settings, such as asking196

about the answer to an objective true/false knowledge question, signals may be fully revealing197

and we could set g and b to 1 and 0 respectively. However, in other settings, such as predicting198

3As can be seen here, there is a one-to-one correspondence between the prior q on ωG and the prior
qg + (1− q)b on the event E. A similar one-to-one correspondence exists between posteriors on ωG and E.
We will use the words prior and posterior to refer to beliefs over both states and events and will differentiate
between them if there is potential ambiguity.

4This assumption implies that the signal distribution is non-degenerate in either state since
∑

j Qωj = 1.
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whether someone will be convicted of a crime, some aspects of the problem (e.g., the detailed199

knowledge of the jurists) may be unobservable. In these cases g and b represent the best200

possible predictions that could be made about the event based on all possible information201

available.202

Given a signal si such that p(si|ωG) + p(si|ωB) > 0, the posterior belief that the state is

ωG is given by

p(ωG|si) =
p(ωG)p(si|ωG)

p(ωG)p(si|ωG) + p(ωB)p(si|ωB)
= si.

A forecaster with signal σk predicts that the event E will occur with probability Pr(E|σk) =203

σkg + (1− σk)b.204

The signal densities {QGi, QBi}, prior q, and state-conditional event probabilities {g, b}205

are common knowledge to the forecasters but unknown to the aggregator. Each forecaster k206

is asked to report i) a prediction Pk on the probability of event E and ii) a meta-prediction207

Mk on the average of others’ predictions. Since the likelihood of E depends on the state, a208

forecaster’s probability prediction is dependent on the forecaster’s signal. We will assume209

that all forecasters report their best estimate for prediction and meta-prediction, and it is210

common knowledge that they do so. Let P (σk) denote the prediction function of event E,211

where212

P (σk) = σk g + (1− σk) b. (3)

Further, let Pi be the prediction of forecaster i and let P̄−k = 1
N−1

∑
i ̸=k

Pi be the average213

prediction made by the other N − 1 forecasters. Forecaster k’s meta-prediction is given by214

Mk = E[P̄−k|σk].215

For a given outcome state ω, the expected prediction made by a randomly selected other

forecaster is given by

E[P |ω] ≡
∑
si∈S

p(si|ω)[gsi + b(1− si)].
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Noting that we have assumed that signals are independent once we have conditioned on the216

state, E[P̄−k|ω] = E[P |ω] for all k. Thus, the meta-prediction function, denoted by M(σk),217

can be written as218

M(σk) = σkE[P |ωG] + (1− σk)E[P |ωB]. (4)

Figure 1 plots P (σk) and M(σk) in the space of predictions and signals. We note three219

general properties that are the basis for our recalibration algorithm. First, both functions220

increase linearly in σk with the prediction line being more steep than the meta-prediction221

line. Note that P (σk) ∈ [b, g] and M(σk) ∈ [E[P |ωB],E[P |ωG]]. We also have E[P |ωB] > b222

and E[P |ωG] < g, i.e. the average prediction will be underconfident in our setting in both223

states.5224

Second, the prediction and meta-prediction lines cross exactly once. Figure 1 illustrates225

this result. Both functions are monotonically increasing, linear in σk, and the range of meta-226

predictions is a subset of predictions, resulting in a unique crossing point. Lemma 1 (proof227

in Appendix A) shows that this crossing point occurs at the uninformative prior.228

Lemma 1. M(s∅) = P (s∅), i.e. a forecaster k’s meta-prediction is equal to her prediction229

at the prior.230

Finally, since both lines are linear, it is possible to identify P (s∅) when there are at least

two forecasters with different signals using the crossing point property and a projection. To

see this, note that it is possible to rewrite the prediction function as:

σk =
P (σk)− b

g − b
.

5To illustrate this result, consider the case ω = ωG where the true probability of the event is g. Then, a
forecaster k has a perfectly calibrated prediction P (σk) = g only if σk = 1 and predictions are conservative
for all σk < 1. Recall that at least one noisy signal about the state occurs with strictly positive probability
by assumption. Thus, in a large enough sample, there will always exist forecasters with σk < 1, leading to
an average prediction lower than g. A similar reasoning holds for ω = ωB .
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Figure 1: Prediction and meta-prediction functions for a case of s∅ > 0.5. Note that, in
this example, the average forecast is higher than 0.5 in both the good and the bad state.
Section 4 will explore a potential pitfall in recalibrating such forecasts.

Substituting this in Equation 4 yields

M(σk) = α(Q, q, g, b) + β(Q, q, g, b)P (σk),

where α(Q, q, g, b) :=
gE[P |ωB]− bE[P |ωG]

g − b
and β(Q, q, g, b) :=

E[P |ωG]− E[P |ωB]

g − b
are con-231

stants that do not vary with σk. Using any two forecasts and meta-predictions that differ,232

the terms α(Q, q, g, b) and β(Q, q, g, b) can be solved. Prior prediction P (s∅) can then be233

identified by finding the point where M(s∅) = P (s∅).234

Before turning to our recalibration strategy, we note that our model presents an ideal235

environment in which all forecasters perfectly map their signals to predictions and meta-236

predictions and there are exactly two states. Previous work suggests that the crossing point237

property between the meta-prediction and prediction correspondence is reasonably robust to238
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systematic individual-level miscalibrations. Wilkening et al. (2022) show that the crossing239

property holds in decision problems where probability forecasts are miscalibrated as long as240

miscalibrated forecasts are common knowledge. Chen et al. (2021) show that the crossing241

continues to hold in decision problems where signals are correlated.6 Nonetheless, it is242

likely that there is idiosyncratic noise, particularly in the report of meta-predictions. As243

seen below, we use regression approaches to estimate the prediction and meta-prediction244

correspondences in order to help reduce the impact of such noise.245

In Appendix B, we extend the theoretical discussion and provide two examples that show246

that the properties of the algorithm are not guaranteed when there are more than two states.247

The first example shows that the prediction and meta-prediction lines may cross multiple248

times when we increase the state space and that the estimated prior may not be correct.249

Nonetheless, the algorithm may still function well as long as the estimated prior still identifies250

the correct direction for extremization.251

The second example identifies a situation where our algorithm fails to extremize in the252

correct direction for one of the states. The counter-example highlights a case where signals253

are very informative about the signals of others but only weakly informative about the254

underlying likelihood of the event. We see such situations as being quite rare: it requires255

a very specific signal structure where the event of interest is only weakly connected to the256

signals. Nonetheless, the possibility of such cases warrants a careful empirical exploration of257

the algorithm to assess its applicability in real-world settings.258

6Both of these papers explore prediction algorithms that try to correctly predict the correct state rather
than make a probabilistic forecast. Wilkening et al. (2022) use the ordering of the average prediction and
average meta-prediction to the left and the right of the prior to make predictions. Chen et al. (2021) predict
E[P̄ |ω] in each state using the relationship between predictions and meta predictions and selects the state
where the average prediction is closest to the predicted average.
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4 Robust recalibration259

As discussed in Section 1, the traditional approach to extremizing compares the average260

probability, P = 1
N

N∑
i=1

Pi to the threshold of 0.5 for determining whether forecasts are ex-261

tremized towards 0 or 1. This approach can improve forecasts that are underconfident, but262

problems can arise in some settings where the prior is not 0.5. Figure 1 illustrates the poten-263

tial problem. The prior is biased towards true and the average prediction in the bad state264

is above 0.5. As seen in Equation 1, the LLO transformation leads to either t(P̄ ) > P̄ > 0.5265

or t(P̄ ) < P̄ < 0.5 for P̄ ̸= 0.5. Figure 1 depicts an example where E[P |ωB] > 0.5 while266

b < 0.5. Thus, in state ωB, t(P̄ ) is expected to be even more inaccurate than the original267

average probability. We refer to such problems as being wrong sided:268

Definition 1 (Wrong-sided average prediction). Average prediction P̄ is wrong-sided if i)269

ω = ωG and P̄ < 0.5 < g or, ii) ω = ωB and P̄ > 0.5 > b.270

Extremization away from 0.5 increases the miscalibration in a wrong-sided average pre-271

diction. When can the average prediction be wrong-sided? First, it must be the case that272

P (s∅) ̸= 0.5 for forecasts to be wrong-sided as the sample size grows infinitely large. To see273

this, note that in a two-state environment, E[P |ωB] < P (s∅) < E[P |ωG] and the average274

prediction will the expected prediction in each state as the sample grows large. Second,275

wrong-sidedness can only occur in one of the two states. This follows from the fact that276

the prior is always between 0 and 1 and the expected posterior is equal to the prior. This277

implies that on average extremization away from 0.5 can still be beneficial (as found in the278

literature) but suggests that an algorithm that better identifies cases where wrong-sidedness279

may occur can improve outcomes.280

To account for situations where the average prediction can be wrong-sided, we propose281

the following Robust Recalibration procedure. We first use the data to estimate the prior.282

Following a similar approach to Palley & Satopää (2023), we allow for random noise ϵ in283
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reported meta-predictions and assume:284

Mk = β0 + β1Pk + ϵ. (5)

Denoting the estimates {β̂0, β̂1}, the predicted probability at the prior is found by finding285

the probability where the prediction and meta-prediction are equal. This will be given by286

P̂ (s∅) = β̂0/(1− β̂1) for β̂1 ̸= 1.287

Next, using the estimated uninformed prediction P̂ (s∅), we propose a transformation288

function tr(P̄ ) that satisfies the following expression:289

log

(
tr(P̄ )

1− tr(P̄ )

)
= log

(
P̄

1− P̄

)
+ γ

[
log

(
P̄

1− P̄

)
− log

(
P̂ (s∅)

1− P̂ (s∅)

)]
. (6)

Equation 6 suggests a linear transformation in log odds where (i) P̄ ≥ P̂ (s∅) is adjusted290

towards 1 and (ii) P̄ < P̂ (s∅) is adjusted towards zero 0 when γ ≥ 0. Note that for291

P̂ (s∅) = 0.5, Equation 6 is the same as Equation 2 with a reparametrization of the slope—292

1+ γ instead of γ—and an intercept of zero. Thus, in the special case of the estimated prior293

being unbiased (P̂ (s∅) = 0.5), tr reduces to the LLO transformation away from 0.5 with294

δ = 1, also known as the Karmarkar equation (Karmarkar, 1978).295

Solving Equation 6 for tr(P̄ ), we get

tr(P̄ ) =
δP̄ 1+γ

δP̄ 1+γ + (1− P̄ )1+γ
(7)

where δ = [(1−P̂ (s∅)/P̂ (s∅)]
γ. Unlike simple extremization away from 0.5, tr(P̄ ) is robust to296

wrong-side average predictions. The average is transformed away from P̂ (s∅) instead of 0.5.297

If P̂ (s∅) estimates the unknown P (s∅) accurately, we should expect tr to adjust wrong-sided298

average predictions in the correct direction.299

We note that our algorithm essentially uses two pieces of information to generate the300

prediction. The first is the estimated common prior which reflects all the commonly shared301
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information in the system. We treat this information as being important to prediction, but do302

not recalibrate it as it reflects information that is common across all forecasters. The second303

is the difference between the actual prediction and the common prior. This value reflects304

the average change in prediction based on the private signals available to the forecasters. As305

these signals are likely to have less overlap, using the average is likely to be conservative.306

Thus, by extremizing the difference, we hope to improve the outcome of the estimate.307

In Equation 6, γ is a tuning parameter that controls the intensity of extremization away308

from the estimated prior. As shown in Figure 1, expected prediction in states {ωB, ωG}309

satisfies b < E[P |ωB] < s∅ < E[P |ωG] < g. Perfect calibration is achieved when extremiza-310

tion away from s∅ is such that the transformed probability is b in state ωB and g in state311

ωG. The optimal value of γ depends on the level of underconfidence in the average predic-312

tion and informativeness of the prior. To illustrate, suppose the actual state is ωG. Given313

s∅ < E[P |ωG] < g, optimal γ is lower if s∅ is closer to g. In contrast, optimal γ would be314

higher if the prior is biased towards b. Robust recalibration does not know the optimal value315

of γ as b and g are unknown, and additional information (such as past data) that may allow316

estimation of γ is assumed to be unavailable within a single aggregation problem. In what317

follows, we present a wide range of values of γ to investigate how sensitive our approach is318

to the tuning parameter. When making performance comparisons to other single-question319

algorithms, we have restricted attention to the tuning parameter range suggested in Baron320

et al. (2014) and show that our algorithm outperforms the others for both the largest and321

smallest parameter in this range.322

Section 5 tests the robust recalibration method tr(P̄ ) using a variety of experimental323

data sets. Note that the case of P̂ (s∅) = 0.5 (Karmarkar equation) corresponds to the324

extremizing transformation proposed by Baron et al. (2014). Their LLO extremization can325

be considered as an implementation of tr where all decision problems are considered unbiased.326

Thus, we will consider tr(P̄ ) with P̂ (s∅) = 0.5 in all problems as a benchmark that represents327

“always extremize away from 0.5”. This benchmark allows us to evaluate if the use of meta-328
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predictions to estimate P (s∅) improves the calibration. The analysis will then compare tr329

with various single-question aggregation mechanisms that generate probability forecasts.330

5 Empirical evidence331

This section presents empirical evidence for the effectiveness of robust recalibration. We332

use data from experimental prediction tasks where subjects are asked to report a meta-333

prediction as well as their prediction. Section 5.1 introduces the data sets. Section 5.2334

presents preliminary evidence on the existence of wrong-sided average predictions and dis-335

cusses estimated priors. Section 5.3 offers a comparative analysis on the calibration of336

transformed probabilities. 7
337

5.1 Data Sets338

We investigate the empirical performance of robust recalibration using four distinct types339

of experimental tasks taken from Wilkening et al. (2022) and Howe et al. (2024). Appendix340

C provides example questions from each data set.341

The first set of data consists of simple true/false scientific statements. For each statement,342

participants report a probabilistic prediction on the statement being true as well as a meta-343

prediction on the average of other participants’ predictions. Wilkening et al. (2022) collected344

data from 500 such statements while Howe et al. (2024) replicated the experiment using a345

subset of these statements. Each implementation recruited a new sample of participants.346

Thus, we treat each statement-forecasting crowd combination as a distinct forecasting task.347

The resulting ‘Science’ data set includes 680 tasks in total and the number of participants348

in a task varied between 79 and 98.349

The second data set, referred to as ‘States’ data, was also collected by Wilkening et al.350

(2022). Each task presented a statement on the largest city of a U.S. state being the capital351

7Supplemental material includes the datasets and R scripts to reproduce all results (R Core Team, 2023;
RStudio Team, 2020; Wickham, 2007; Wickham et al., 2019; Neuwirth, 2022).
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city of the corresponding state. As seen in Prelec et al. (2017), many people erroneously352

predict that the largest city is highly likely to be the state capital when they do not know353

the true answer. As such, the dataset is naturally biased towards true. The States data set354

includes 50 tasks. In each task, a total of 89 subjects reported probabilistic predictions and355

meta-predictions on the truth of each statement.356

Howe et al. (2024) collected predictions and meta-predictions on various other domains357

and we use their questions related to art and NFL trivia. In the ‘Artwork’ data set, subjects358

saw a picture of a drawing and were asked to predict how likely it is that the market value359

was more than $10000. Our data includes 40 decision problems that were repeated in two360

separate experiments to produce 80 total tasks. The sample size for each task varied between361

79 and 87 forecasters. The ‘NFL’ domain tasks presented 50 trivia statements about the362

NFL draft to a US-based subject pool. Similar to the Artwork data, two runs produced 100363

tasks in total. The sample size per task was either 98 or 99.364

We note that in two tasks of the Science data, the estimated priors used in the robust365

recalibration algorithm were outside (0, 1). This can be considered as a failure to estimate366

P (s∅) accurately. Appendix D provides the estimated meta-prediction functions and reveals367

that these were questions where almost all forecasters perfectly predicted the correct answer.368

Thus, it is likely that these are problems where there is very limited amounts of private369

information regarding the true state and where idiosyncratic noise in meta-predictions played370

a large role. We exclude these two science tasks from the results in Section 5.3 and discuss371

the potential issue as a potential limitation of our approach in Section 6.8372

Excluding the two science questions, we had a total of 908 tasks in our data.373

8Alternative approaches to dealing with these two observations such as ignoring the bounds on the prior
and running the algorithm or using the original prediction do not change the significance of any test in the
paper.
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5.2 Preliminary evidence on priors and wrong-sided average pre-374

dictions375

Robust recalibration is expected to improve over simple extremization in transforming376

wrong-sided average probabilities. Thus, a first step in the analysis is to evaluate the extent377

to which wrong-sidedness is a problem in the data.378

As with most practical forecasting problems, we cannot directly observe the correctly379

calibrated values of g and b in each of our decision problems. Thus, to classify problems as380

being wrong-sided, we have to make an assumption regarding these values. In this section,381

we will assume that b = 0 and g = 1 so that the state corresponds to the true answer. This382

assumption is based on the fact that the majority of decision problems are questions that383

have an objectively correct answer that could be known by a very well-informed forecaster.384

Thus, the true state could potentially be predicted by a forecaster who receive an infinite385

number of draws from the potential information system.386

Figure 2 shows the number of tasks in each data set where the average prediction is387

wrong-sided under the above assumption that b = 0 and g = 1. As seen, the average388

prediction is wrong-sided in a considerable number of tasks in each of the data sets. Further,389

wrong-sided averages are more common in false statements in all task types suggesting that390

there is a bias towards true in all datasets.391
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Figure 2: The number of wrong-sided averages in each data set.

Figure 3 estimates the prior using the first stage of our robust recalibration procedure and392

also supports the conjecture that there is a bias towards true in the data. Estimated priors are393

typically higher than 0.5. As such, there are likely to be cases where the robust recalibration394

algorithm transforms an average prediction above 0.5 towards 0 while extremization pushes395

the same average further towards 1.396

To understand how the estimated priors influence extremization, we also report the num-397

ber of decision problems where standard recalibration and robust recalibration procedure398

recalibrate forecasts towards and away from the true outcome. Tables 1a and 1b show how399

average predictions compare to 0.5 and the estimated priors respectively. Observations along400

the diagonal are extremized in the correct direction while observations in the off-diagonal401

are adjusted in the wrong direction. As can be seen, there are 263 observations in which402

the average prediction is above 0.5 but the correct answer is false. Of these, the robust403

recalibration algorithm correctly anti-extremizes 223 observations, while the remaining 40404

are still transformed towards 1 as the average prediction is above the estimated prior as well.405

There are also 415 observations in which the average prediction is above 0.5 and the correct406
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answer is true. Of these, the robust recalibration algorithm incorrectly anti-extremizes 146407

observations and the remaining 269 are correctly transformed towards 1. We evaluate how408

these differences in prediction affect accuracy and calibration in the next section.409
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Figure 3: The distribution of estimated priors in each data set.

(a)

Correct answer

True False Total

P̄ > 0.5 415 263 678

P̄ < 0.5 21 209 230

Total 436 472 908

(b)

Correct answer

True False Total

P̄ > P̂ (s∅) 269 40 309

P̄ < P̂ (s∅) 167 432 599

Total 436 472 908

Table 1: Average prediction vs. 0.5 or estimated prior for “True” and “False” statements
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5.3 Results410

This section investigates the accuracy and calibration of the robust-recalibrated proba-411

bility forecasts. We run comparative analyses where alternative methods are implemented412

as benchmarks. The first analysis compares robust recalibration to the average prediction413

and the average extremized away from 0.5. The former is the untransformed simple aver-414

age of predictions while the latter transforms the average prediction using Equation 7 with415

P̂ (s∅) = 0.5, which corresponds to δ = 1. We consider γ ∈ {0.5, 1, 1.5, 2, 2.5, 3} in our416

implementations of Equation 7 for both extremization and robust recalibration.417

Our second analysis compares robust recalibration to various alternative singe-question418

aggregation algorithms that use meta-predictions to improve accuracy. To make comparisons419

here meaningful, we restrict attention to the range of parameters suggested in Baron et al.420

(2014) and report results using γ ∈ {1.5, 2}, which correspond to the suggested lowest and421

highest values in our reparametrization. We will consider our algorithm as outperforming422

an alternative if it achieves higher accuracy for both values of γ considered.423

The main text reports the analysis when all 908 tasks are used as the basis of the analysis.424

We provide summary statistic tables for the figures provided in the main text in Appendix E.425

We also provide an alternative analysis where we compare performance for each of the four426

prediction tasks separately in Appendix F.427

5.3.1 A comparison of robust recalibration to the average prediction and the428

average extremized away from 0.5429

Figure 4 shows the distribution of Brier scores of the average prediction, extremized430

average and robust-recalibrated prediction across all tasks.9 Lower scores indicate more431

accurate forecasts. Each row in the 3×6 grid shows the implementation of extremization away432

from 0.5 and robust recalibration for various values of γ. We also classify the tasks in terms433

9Summary statistics for this analysis is provided in Appedix E. Additional task-level analysis is available
in Figure Appendix F.
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of how extreme the untransformed average prediction is. Average probability predictions434

above 0.5 correspond to the confidence for “True”, while for an average probability below435

0.5, one minus the probability gives the confidence for “False”. The coloring in Figure 4436

breaks down the distribution of score for five different confidence levels of the corresponding437

average prediction.438
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Figure 4: Brier scores of simple average, extremized average and robust-recalibrated proba-
bilities, 908 observations in each panel

Figure 4 demonstrates that extremizing the average prediction away from 0.5 increases439

the expected accuracy. This result agrees with previous findings on extremization (Han &440

Budescu, 2022). The robust recalibration procedure offers additional improvements in Brier441

score over both the average and standard extremization approach for all potential γ parame-442

ters that we explored. As seen in Table 2, the performance difference between extremization443

and robust recalibration is significant for all values of γ in a paired Wilcoxon sign rank444

test that treats each decision problem as an observation. Table F1 in Appendix F performs445
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pairwise tests separately for each data set and compares standard extremization to simple446

average of predictions as well. Robust recalibration achieves substantial and significant im-447

provement in the Science and States tasks, while the level of accuracy is similar to standard448

extremization in the Artwork and NFL trivia tasks.449

γ Method.1 Method.2 Avg.diff Med.diff Test stat. p-value

0.5 robust.recalibr extrem.average -0.0249 -0.0072 V=137029 <0.0001

1 robust.recalibr extrem.average -0.0431 -0.0052 V=143280 <0.0001

1.5 robust.recalibr extrem.average -0.0563 -0.0022 V=148088 <0.0001

2 robust.recalibr extrem.average -0.0658 -0.0008 V=151761 <0.0001

2.5 robust.recalibr extrem.average -0.0728 -0.0003 V=154699 <0.0001

3 robust.recalibr extrem.average -0.0778 -0.0001 V=157007 <0.0001

Table 2: Two-sided paired Wilcoxon signed rank test of Brier scores, Robust recalibration
vs Extremizing away from 0.5. Negative differences indicate higher accuracy for robust
recalibration.

Figure 4 also suggests that robust recalibration is particularly effective in transforming450

low-confidence average predictions. Robust recalibration achieves lower Brier scores when451

the corresponding average prediction is 50-60% confident, while extremization away from452

0.5 leads to higher Brier scores for many such average predictions. Gains in accuracy are453

especially strong for larger γ. Figure 5 graphs pairwise difference in Brier scores between454

extremization and robust recalibration. In most tasks where robust recalibration achieves455

lower Brier scores than simple extremization, the corresponding average prediction is 50-60%456

confident.457
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Figure 5: Pairwise differences in Brier score, robust recalibration vs extremized average for
γ ∈ {0.5, 1, 1.5, 2, 2.5, 3}. Negative differences indicate higher accuracy for robust recalibra-
tion.

Why does robust recalibration make the most difference in low-confidence average pre-458

dictions? Table 3 shows the number of wrong-sided average predictions by confidence across459

all tasks and reveals that most wrong-sided averages are within the 50-60% confidence cate-460

gory. Recall that wrong-sided averages occur mostly in false statements in our experimental461

prediction tasks (Table 1) and that estimated priors tend to be above 0.5. As such, simple462

extremization wrongly transforms these average prediction into high-confidence true pre-463

dictions. Robust recalibration, by contrast, pushes the average prediction away from the464

estimated prior instead. This anti-extremization produces better Brier scores on average.465

As we noted in the previous section, robust recalibration also incorrectly anti-extremizes466

some observations that were true and that had an average prediction above 0.5. Such incor-467

rect recalibrations hurt accuracy relative to the theoretical optimal, but may or may not affect468

the overall calibration of the algorithm depending on the resulting predicted probabilities.469
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Confidence of the average prediction (%)
50-60 60-70 70-80 80-90 90-100 Total

Wrong-sided 182 85 17 0 0 284
Not wrong-sided 198 160 163 94 9 624
Total 380 245 180 94 9 908

Table 3: Number of wrong-sided average predictions by confidence level.

To better understand how well the algorithm calibrates forecast, we constructed calibration470

curves for each method by first separating the data into bins of {[0, 0.1], (0.1, 0.2], . . . , (0.9, 1]}471

based on the predictions of each method. We then plotted the predicted probability of true472

in each bin against the actual proportion of problems where true was the correct answer.473

Figure 6 shows the calibration curves with a separate panel for each γ in the analysis474

set. The shaded regions represent the range of proportion true at which the probability475

predictions in the corresponding bin are considered well-calibrated. Intuitively, the shaded476

regions are analogous to the 45-degree line of perfect calibration.477

Figure 6 suggests that the transformed probabilities from robust recalibration achieve478

better calibration than standard extremization and the average. In particular for γ ≥ 1.5,479

robust-recalibrated probabilities on true closely reflect the actual frequency of true in most480

bins. In contrast, for extremized averages, the actual proportion of true is typically lower481

than the predicted probability in the corresponding bin. In other words, extremized averages482

typically overestimate the probability of true. Figures 4 and 6 together imply that the robust483

recalibration presents a probability transformation that manages to improve both accuracy484

and calibration.485
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Figure 6: Calibration curves for simple average, extremized average and robust-recalibrated
probabilities.

5.3.2 A comparison of robust recalibration to other forecasting algorithms that486

use meta-predicitons487

Our analysis thus far compared robust recalibration to methods that do not use meta-488

prediction data. One might wonder how it performs against alternative existing methods489

that seek to use meta-predictions to produce forecasts. To answer this question, we formed490

predictions using a number of alternative algorithms that exist in the literature. We elaborate491

on how these algorithms were constructed before continuing on to our second comparative492

analysis.493

We consider four alternative algorithms that seek to exploit meta-predictions to improve494
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forecasts:495

1. Meta-probability weighting: This algorithm constructs a weighted average of prob-496

abilistic forecasts, where a forecaster’s weight is proportional to the absolute difference497

between her prediction and meta-prediction (Martinie et al., 2020). Consider the sce-498

nario where the average forecast is wrong-sided because only a minority of forecasters499

endorse the correct state. If accurate forecasters anticipate that they are in the mi-500

nority, we may observe a larger absolute difference between their own forecast and501

meta-prediction on the average forecast of others. In that case, such forecasters would502

be weighted more heavily, potentially transforming a wrong-sided forecast correctly in503

the opposite direction of extremization.504

2. Knowledge-weighting: This algorithm, developed in (Palley & Satopää, 2023), seeks505

to construct optimal weights that minimize the “peer-prediction gap”. This gap mea-506

sures the difference between a weighted average of forecasters meta-predictions and507

the actual realization of the average forecast. If forecasters use their information opti-508

mally in forming meta-predictions, the weights that minimize the peer-prediction gap509

minimize the error in aggregate forecast as well. Intuitively, if the accurate minority510

of forecasters are also more accurate in their meta-predictions, knowledge-weighting511

is expected to put a higher weight on their forecasts, which may transform a wrong-512

sided average forecast in the correct direction. Knowledge-weighting is applicable in all513

forms of continuous variables, including non-probabilistic predictions. The knowledge-514

weighted prediction was outside of [0, 1] in some of our tasks. We winsorize these515

predictions such that aggregates below 0 (above 1) are set at 0 (1).516

3. Minimal pivoting: This algorithm uses meta-prediction data to correct for a poten-517

tial shared-information bias in the average forecast (Palley & Soll, 2019). Information518

commonly available to forecasters may bias probabilistic forecasts in a particular direc-519

tion, which could lead to a wrong-side average forecast. Minimal pivoting adjusts the520

28



average forecast according to the difference between average forecast and the average521

meta-prediction. Meta-predictions are expected to be influenced more heavily by the522

shared information because forecasters anticipate that their peers will also incorporate523

it in their forecasts. The pivoting procedure estimates the shared and private informa-524

tion in the crowd wisdom, and moves the average away from the shared component.525

Since shared information contains the prior, correction for the shared-information bias526

is analogous to an extremization away from the prior and it may improve the calibra-527

tion as well. Similar to the knowledge-weighting algorithm, transformed probabilities528

that are outside of [0, 1] are winsorized.529

4. Surprising Overshoot (SO) algorithm: This algorithm is another aggregation530

method that addresses the shared-information problem (Peker, 2023). Information531

available to a forecaster determines the meta-prediction as well as the prediction, result-532

ing in a positive correlation between the two. Then, prediction and meta-prediction of533

an individual should typically fall on the same side of a well-calibrated average predic-534

tion. As mentioned above, shared information biases meta-predictions more strongly.535

A significant difference between the percentage of predictions and meta-predictions536

that overshoot the average prediction would constitute an “overshoot surprise”, which537

suggests a miscalibration in the average prediction itself. The SO algorithm produces538

an aggregate forecast that corrects for the shared-information bias using the informa-539

tion in the size and direction of an overshoot surprise.540

As can be seen from the description above, the alternative meta-prediction methods do541

not have a tuning parameter and thus comparing these algorithms to the robust recalibration542

method with an extremization parameter that is optimized using a subset of the data is not543

a fair comparison. To avoid this issue, we instead compare methods using the upper and544

lower bounds of the parameters that are recommended in the litarature. Baron et al. (2014)545

estimated that the optimal parameter value in the standard LLO transformation (Equation 2)546

for the average forecast is between 2.5 and 3, depending on the expertise of forecasters. In547
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our transformation (Equation 6), this would correspond to γ ∈ [1.5, 2], as we define the548

tuning parameter as 1 + γ. When making direct comparisons, we report comparisons using549

both the lower and upper value in this set and consider the robust recalibration algorithm550

as an improvement only if it generates an improvement for both of these bounds.10551

Figure 7 presents the frequency distribution of Brier scores for each of the benchmark552

algorithms and our robust recalibration method. Panels in the second and third rows show553

the results for robust recalibration for each γ ∈ {0.5, 1, 1.5, 2, 2.5, 3}. Similar to Figure 4, we554

color-coded the confidence levels of the average prediction in the corresponding prediction555

task to identify potential patterns over types of decision problems.556
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Figure 7: Brier scores of simple average, extremized average and robust-recalibrated proba-
bilities.

Figure 7 demonstrates that robust recalibration achieves very small Brier scores more557

10Table F3 in Appendix F provides comparisons for all γ ∈ {0.5, 1, 1.5, 2, 2.5, 3} for completeness.

30



often than the benchmarks, in particular for γ ≥ 1. The difference between the Brier scores558

of algorithms is significant (ANOVA test, F-value = 5.371, p < 0.0001).559

We next look at pairwise comparisons of the robust recalibration method with γ ∈ {1.5, 2}560

to the other methods. Table 4 shows that the robust recalibration method achieves higher561

accuracy against all benchmarks for both values of γ. Table F4 in Appendix F reports the562

same pairwise tests for each dataset separately. We observe significantly higher accuracy563

for robust recalibration in the Science and States tasks but find that performance is similar564

between algorithms in the Arts and NFL trivia tasks. Thus the performance differences565

between algorithms are likely to relate to characteristics of the underlying data generating566

process.567

Method Benchmark Avg.diff Med.diff Test stat. p-value Signif. better?

robust.recalibr.γ=1.5 know.weight -0.0230 -0.0150 V=96184 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 meta.prob.weight -0.0212 -0.0363 V=103043 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 min.pivot -0.0296 -0.0257 V=103024 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 surp.overshoot -0.0197 -0.0118 V=123548 <0.0001 robust.recalibr

robust.recalibr.γ=2 know.weight -0.0257 -0.0216 V=102362 <0.0001 robust.recalibr

robust.recalibr.γ=2 meta.prob.weight -0.0239 -0.0467 V=107335 <0.0001 robust.recalibr

robust.recalibr.γ=2 min.pivot -0.0323 -0.0328 V=110455 <0.0001 robust.recalibr

robust.recalibr.γ=2 surp.overshoot -0.0224 -0.0188 V=122617 <0.0001 robust.recalibr

Table 4: Comparison of Brier scores, two-sided paired Wilcoxon signed rank tests, robust
recalibration with γ ∈ {1.5, 2} vs benchmarks.

In addition to the Brier score, we also constructed the calibration curve for each algorithm568

to understand how each algorithm is reshaping the predictions. These calibration curves are569

presented in Figure 8 and were constructed using the same methodology as Figure 6.570
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Figure 8: Calibration curves for simple average, extremized average and robust-recalibrated
probabilities.

As seen in the diagram, robust recalibration achieves better calibration than the alter-571

natives in most bins for γ ∈ {1.5, 2, 2.5, 3}. Predicted probabilities of robust-recalibrated572

aggregates are very close to the actual frequencies. Similar to the results in accuracy above,573

robust recalibration with sufficiently high γ appears to improve calibration over the alterna-574

tives.575

6 Conclusion576

Probabilistic forecasts are often too conservative, which leads to average probability fore-577

casts not being sufficiently extreme. Previous work documented that extremizing transfor-578
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mations that adjust the average away from 0.5 improve calibration. However, such transfor-579

mations may have shortcomings. In some forecasting problems, the crowd may have a biased580

prior that favors a certain outcome. Then, the average forecast may put a higher probabil-581

ity on the wrong outcome even when individuals receive informative signals conditional on582

the correct outcome. Extremizing a wrong-sided average forecast would introduce further583

miscalibration.584

We show that forecasters’ meta-beliefs on others’ predictions can be used to estimate585

the prior in single-question forecasting problems. We then propose a recalibration function586

that transforms the average away from the estimated prior instead of 0.5. A bias in crowd’s587

prior probability is reflected in the estimated prior. Thus, unlike simple extremization away588

from 0.5, robust recalibration is capable of correctly transforming wrong-side averages in the589

opposite direction of extremization, which should produce aggregate probability forecasts590

with better calibration.591

We test the performance of robust recalibration using prediction and meta-prediction592

data from four distinct experimental tasks. We implement robust recalibration with var-593

ious values of γ, which is a tuning parameter that controls the intensity of extremization594

away from the estimated prior. Our findings suggest that robust recalibration is effective in595

improving the accuracy and calibration of probability forecasts. We first demonstrate that596

robust recalibration outperforms simple extremization away from 0.5 for all values of γ we597

explored. Robust-recalibrated probabilities achieve lower Brier scores in most tasks and pre-598

dict the actual frequency of occurrence more accurately than extremized averages. Robust599

recalibration is particularly effective in transforming wrong-sided averages which are close600

to 50%, which characterize most wrong-sided averages in our data set. We show that, unlike601

simple extremization, prior estimation using meta-predictions can detect and transform such602

wrong-sided averages towards the correct extreme.603

We also compared robust recalibration to four single-question aggregation algorithms604

developed by recent work (Palley & Soll, 2019; Palley & Satopää, 2023; Martinie et al.,605
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2020; Peker, 2023). These algorithms also rely on meta-predictions as well as predictions,606

but unlike robust recalibration, they do not require a tuning parameter. Thus, they present607

natural alternatives to our algorithm when meta-prediction data are available. We find that608

robust recalibration achieves significantly higher accuracy in most tasks when using tuning609

parameters suggested in the literature. The method also improves calibration provided that610

γ is sufficiently high. Intuitively, the aggregation algorithms we considered are expected611

to achieve some improvement in accuracy over simple averaging. Robust recalibration real-612

izes further gains when transformation away from the estimated prior is sufficiently strong,613

implying that prior estimation is effective in finding the correct direction to transform the614

average prediction.615

Similar to the benchmark algorithms, robust recalibration considers a single forecasting616

problem where no data other than predictions and meta-predictions are available. Optimal617

value of γ in a given problem is unknown. Our results suggest that the aggregator may618

prefer to be aggressive rather than cautious in extremizing away from the estimated prior.619

Subsequent work may test if this result generalizes to a larger set of forecast aggregation620

problems. Furthermore, task-level analysis suggests that there is heterogeneity in the relative621

effectiveness of our algorithm across the tasks studied. Robust recalibration achieved higher622

accuracy in Science and States tasks, while we see a similar performance to other benchmarks623

in Artwork and NFL tasks. Future work may investigate if the gains in accuracy differ in624

various other domains of forecasting as well.625

Robust recalibration procedure may have practical limitations due to the prior estima-626

tion stage. In two tasks out of 910 in our original data set, the estimated prior probability627

is not within (0, 1). Appendix D shows that the estimated meta-prediction functions in628

these two tasks imply meta-predictions outside (0, 1), leading to invalid prior estimates. We629

observe that in both tasks, predictions are clustered at the correct extreme (0 or 1 depend-630

ing on the correct answer). In other words, a strong majority of the forecasters were very631

accurate in their predictions. Robust recalibration uses a linear regression model to esti-632
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mate the parameters. The actual meta-prediction function may not be estimated accurately633

when predictions are heavily clustered or the sample of forecasters is small. As discussed in634

Section 5.2, prior estimation is inaccurate if the estimated meta-prediction function implies635

meta-predictions outside of the probability scale. Thus, in practical applications, the aggre-636

gator can use the information from the estimation procedure to decide on the applicability637

of robust recalibration.638
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Appendices744

A Proofs745

Proof of Lemma 1: This result is due to the fact that the expected posterior prediction746

generated from an information service is equal to the prediction that would be made at the747

prior. At the prior:748

P (s∅) = P (E|σk = s∅) =
∑
i

[P (E|si)P (si|s∅)]

=
∑
i

[qP (E|si)P (si|ωG) + (1− q)P (E|σi)P (si|ωB)]

= q
∑
i

[P (E|si)P (si|ωG)] + (1− q)
∑
i

[P (E|si)P (si|ωB)]

= qE[P |ωG] + (1− q)E[P |ωB].

In the main text, we showed that

M(σk) = σkE[P |ωG] + (1− σk)E[P |ωB].

and thus

M(s∅) = qE[P |ωG] + (1− q)E[P |ωB].

It follows immediately that P (s∅) = M(s∅). ■.749

B Robust Recalibration with more than two states750

In the main text, we showed that it is always possible to correctly estimate the prior using751

prediction and meta-predictions in an environment where there is exactly two states. This752

ensured that the algorithm would always identify the correct direction for extremization in753

large sample. In this section, we use two examples to show that this the properties of the754
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algorithm are not guaranteed when there are more than two states. The first example shows755

that the prediction and meta-prediction lines may cross multiple times when we increase the756

state space and that the estimated prior may not be correct. Nonetheless, the algorithm757

may still function well as long as the estimated prior still identifies the correct direction for758

extremization.759

The second example identifies a situation where our algorithm fails to extremize in the760

correct direction for one of the states. The counter-example highlights a case where the761

monotone likelihood ratio principal is violated and where signals are very informative about762

the signals of others but only weakly informative about the underlying likelihood of an event.763

In such cases, it is possible to construct situations where the meta-prediction line is non-764

linear and create perverse cases where the algorithm fails. We see such situations as being765

quite rare, but the possibility of such cases warrant an empirical exploration of the algorithm.766

In both examples, we use a general likelihood matrix Q where the rows correspond to767

states and the columns relate to signals. Predictions and meta-predictions can be written768

using the posterior beliefs for each state just as in Section 3.769

Example 1: Multiple Cross Points where the estimated posterior is incorrect770

but the direction of extremization is correct. Suppose there are four states with771

probabilities of E given by {.8, .6, .4, .2}. For simplicity, we will refer to the states by using772

the corresponding probability. Forecasters have a prior of {1/4, 1/4, 1/4, 1/4} over the states.773

Each forecaster receives a signal from {s1, s2, s∅, s3, s4}. The likelihood matrix is given by774

Q =



0 0 0 1
3

2
3

0 0 0 2
3

1
3

1
3

2
3

0 0 0

2
3

1
3

0 0 0


.

Rows 1 to 4 (top to bottom) give the likelihoods for states 0.8, 0.6, 0.4 and 0.2 respectively775

while columns 1 to 5 (left to right) represents the signals s1, s2, s∅, s3 and s4. Unlike the binary776
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framework, the signals do not represent the posterior beliefs on one of the states. However,777

signals with a higher index indicate a weakly higher posterior probability on the “best” state778

(i.e. state 0.8). In this example, {s3, s4} are generated when we are in state .8 or .6, while779

{s1, s2} occur in states .4 and .2. Posterior belief on state 0.8 is highest for s4, followed by780

s3 and s1, s2 where the last two imply zero probability. Figure B1 depicts the corresponding781

prediction and meta-prediction functions.782

Figure B1: Example 1 prediction and meta-prediction functions (linear extrapolations from
the predictions and meta-predictions at σk ∈ {s1, s2, s∅, s3, s4}).

The prediction and meta-prediction functions intersect at two distinct values other than783

s∅. Thus, solving for M(x) = P (x) does not uniquely recover the prior. Nevertheless,784

this example demonstrates that robust recalibration could transform the average in the785

correct direction despite the inaccuracy in estimating s∅. To see this, we first calculate the786

average prediction, which are {0.71, 0.69, 0.31, 0.29} in states {0.8, 0.6, 0.4, 0.2} respectively.787

If the true state is 0.2 or 0.4, we get σk ∈ {s1, s2}. Then, the estimated prior will be788

0.3, as it would be the unique intersection of the prediction and meta-prediction functions789

in the corresponding range. Robust recalibration transforms 0.29 and 0.31 away from 0.3,790

which could lead to transformed probabilities closer to the true probability (0.2 and 0.4791
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respectively). In contrast, extremizing away from 0.5 adjusts 0.31 in the wrong direction in792

state 0.4. A similar result holds in states 0.6 and 0.8. Then, the estimated prior will be 0.7.793

Average predictions of 0.69 and 0.71 are robust-recalibrated in the correct direction while794

extremizing away from 0.5 pushes 0.69 further away from the true probability of the event795

in state 0.6.796

Note that the robust recalibration procedure is effective even though it does not produce797

an accurate estimate of the actual prior (P (s∅)) in any state. The likelihood matrix suggests798

that the forecasters have a non-zero posterior probability for two states only. The prediction799

and meta-prediction functions are locally linear and estimated prior gives the intersection.800

Example 2: Violation of MLRP. Consider an example with three states with prob-

abilities {0.7, 0.4, 0}. Forecasters have a uniform prior {1/3, 1/3, 1/3} over the states. Each

forecaster receives a signal from {s1, s∅, s2, s3} according to the following likelihood matrix:

Q =


.3 0 1

3
.367

0 0 2
3

1
3

.7 0 0 .3


Rows 1 to 3 give the likelihoods of each signal in states 0.7, 0.4 and 0 respectively. Signals801

are ordered in the implied posterior belief on the best state (i.e. state 0.7) as s3 > s2 > s1.802

The prediction function satisfies P (s1) = 0.21, P (s∅) = 0.367, P (s2) = 0.5 and P (s3) = 0.39.803

For meta-predictions, we first calculate the average prediction in each state, which leads804

to E[P̄ |state = 0] = 0.264, E[P̄ |state = 0.4] = 0.463 and E[P̄ |state = 0.7] = 0.373. For any805

agent with signal σk ∈ {s1, s∅, s2, s3}, M(σk) will be a convex combination of E[P̄ |state] with806

weights being the posterior probabilities over the states. The resulting meta-prediction func-807

tion satisfies M(s1) = 0.296, M(s∅) = 0.367, M(s2) = 0.433 and M(s3) = 0.37. Figure B2808

depicts the prediction and meta-prediction functions.809
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Figure B2: Example 2 prediction and meta-prediction functions

To see how robust recalibration performs, we randomly draw a sample of 10000 pre-810

dictions and meta-predictions according to the functions in Figure B2. Then, we intro-811

duce random noise in meta-predictions and estimate the prior as described in Section 4.812

This procedure is repeated 100 times. Average estimated priors in each state is given by813

{0.366, 0.344, 0.357} with standard errors strictly smaller than 0.001. Recall that the average814

predictions are 0.264, 0.463 and 0.373 in states 0, 0.4 and 0.7 respectively. Thus, the average815

should be recalibrated down in states 0 and 0.4 and up in state 0.7. Robust recalibration816

transforms the average predictions in states 0 and 0.7 in the correct direction. However, in817

state 0.4, the robust recalibration procedure transforms the average in the wrong direction818

while extremization away from 0.5 would push the average towards 0.4.819

The miscalibration in state 0.4 is a result of the intermediate signal being very informative820

about the predictions of others and the likelihood that the state is not 0. Recall that the821

posteriors in states {0.7, 0.4, 0} following s3 and s2 are {0.367, 1/3, 0.3} and {1/3, 2/3, 0}822

respectively. Signal s3 leads to the highest posterior on state 0.7 (followed by s2 and s1).823

However, s2 rules out the worst state and leads to a higher probability prediction and meta-824

prediction overall. Since s2 is more frequent in state 0.4, the resulting average prediction on825
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the occurrence of the event is higher in state 0.4 than state 0.7, even though the event is826

more likely in the latter.827

The miscalibration in this example would not occur if the likelihoods in state 0.4 are such828

that the resulting average prediction satisfies E[P̄ ] < E[P̄ |state = 0.4] < E[P̄ |state = 0.7].829

In the binary framework, signals can be normalized to represent the posterior beliefs on the830

good state (ωG). Thus, higher expected signal in ωG implies E[P̄ |ωG] > E[P̄ |ωB]. The same831

is not necessarily true for the “best state” in a multiple state framework where a signal is832

informative for beliefs on more than one state. Note that the example considers a likelihood833

matrix where, given s3 > s2 > s1, the expected signal is smaller in state 0.7 than state 0.4. In834

other words, the information in state 0.4 favors high states (and hence, a higher probability835

for the event) more than the information in state 0.7 on average. Such information structures836

are likely to be rare in practice, because it would imply that the evidence itself is expected to837

incorrectly suggest a higher probability in a lower state. Thus, we expect robust recalibration838

to perform well in most applications with more than two states.839
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C Prediction tasks840

Table C1: Sample statements from Science and States data. See the supplemental material
of Wilkening et al. (2022) for full list of statements

Data set Statement

Science Scurvy and anemia are diseases not caused by bacteria or viruses

Science Secondary industries dominate the market in emerging economies

Science Earthquakes and volcanoes typically occur at the boundaries of tectonic

plates

Science A substance with a pH of 8 is a strong acid

Science Hamsters hate to run

Science Plant cells are easier to clone than animal cells

Science Convex lenses are used to correct for short-sightedness

Science Darwin’s theory was not widely accepted when it was first published in

the late 19th century

Science Increasing the number of impermeable rocks in rivers help decrease the

flood risk

States Jacksonville is the capital city of Florida

States Los Angeles is the capital city of California

States Denver is the capital city of Colorado
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Table C2: Sample NFL statements

Statement

In the 2018 NFL draft, Mark Andrews was drafted by the Minnesota Vikings

In the 2018 NFL draft, the New York Giants were the only team to draft a player out

of FCS champion North Dakota State University

In the 2017 NFL draft, the Big Ten was one of the athletic conferences where no players

were drafted that year

In the 2016 NFL draft, Rico Gathers was drafted by the Oakland Raiders

In the 2016 NFL draft, David Onyemata was drafted by the New Orleans Saints

In NFL rules, a player who wears illegal equipment is to be suspended for the next two

games

In NFL rules, a delay of game penalty at the start of either half is a 5-yard penalty

In NFL rules, the penalty for attempting to use more than 3 timeouts in a half is 5

yards

In NFL, a “Hail Mary” is a play in which the receivers are all sent downfield towards

the end zone

In NFL, a “two-point conversion” is a play a team attempts instead of kicking a one-

point conversion immediately after it scores a touchdown
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Figure C1: Sample items from the Artwork data set
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D Two tasks where robust recalibration failed to esti-841

mate the prior842

Figure D1 shows the estimated meta-prediction function for the two Science tasks where843

estimated prior lies outside (0, 1). The statements are “Centimetres are a measure of length”844

and “Fish have fur to keep them warm” with correct answers being true and false respectively.845

Centimetres are a measure of length Fish have fur to keep them warm
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Figure D1: Estimated meta-prediction functions (blue line) in two tasks where estimated
prior is not within (0, 1)

Estimated meta-prediction functions (as in Equation 5) are Mk = −0.0302 + 0.9778Pk846

(left panel) and Mk = 0.1428+0.8622Pk (right panel). Note that β̂0 < 0 for “Centimetres are847

a measure of length”, which leads to a negative estimated prior of −1.3602 from β̂0/(1− β̂1).848

In “Fish have fur to keep them warm”, we have β̂0 + β̂1 = 1.0049 > 1, which leads to an849

estimated prior of 1.0359. Estimated prior probabilities are not within (0, 1).850
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E Summary statistics and additional figures851

Answer = "False" Answer = "True"
A

rtw
ork

N
F

L
S

cience
S

tates

0 0.25 0.50 0.75 1 0 0.25 0.50 0.75 1

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

Average Prediction

co
un

t

Figure E1: The distribution of average predictions for “True” and “False” statements in
each data set.
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Artwork NFL
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Figure E2: Correlation between predictions and meta-predictions. Each data point repre-
sents a task, 910 in total.
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method γ min max mean lower quartile median upper quartile

average 0.0018 0.5878 0.1901 0.0769 0.1737 0.2821

extrem.average 0.5 0.0001 0.7331 0.1859 0.0369 0.1418 0.2987

extrem.average 1 0.0000 0.8376 0.1886 0.0165 0.1143 0.3158

extrem.average 1.5 0.0000 0.9051 0.1944 0.0070 0.0909 0.3332

extrem.average 2 0.0000 0.9459 0.2012 0.0029 0.0715 0.3509

extrem.average 2.5 0.0000 0.9696 0.2083 0.0011 0.0556 0.3688

extrem.average 3 0.0000 0.9831 0.2150 0.0004 0.0428 0.3869

robust.recalibr 0.5 0.0001 0.6529 0.1610 0.0478 0.1314 0.2405

robust.recalibr 1 0.0000 0.7755 0.1455 0.0269 0.0968 0.2224

robust.recalibr 1.5 0.0000 0.8793 0.1381 0.0141 0.0689 0.2037

robust.recalibr 2 0.0000 0.9380 0.1354 0.0068 0.0494 0.1918

robust.recalibr 2.5 0.0000 0.9689 0.1355 0.0031 0.0370 0.1809

robust.recalibr 3 0.0000 0.9846 0.1372 0.0014 0.0259 0.1715

Table E1: Summary statistics, Brier scores in Figure 4.

method γ min max mean lower quartile median upper quartile

min.pivot 0.0000 0.7031 0.1677 0.0527 0.1399 0.2512

know.weight 0.0000 1.0000 0.1611 0.0366 0.1136 0.2377

meta.prob.weight 0.0014 0.6384 0.1593 0.0723 0.1315 0.2207

surp.overshoot 0.0000 0.7569 0.1578 0.0324 0.1024 0.2500

robust.recalibr 0.5 0.0001 0.6529 0.1610 0.0478 0.1314 0.2405

robust.recalibr 1 0.0000 0.7755 0.1455 0.0269 0.0968 0.2224

robust.recalibr 1.5 0.0000 0.8793 0.1381 0.0141 0.0689 0.2037

robust.recalibr 2 0.0000 0.9380 0.1354 0.0068 0.0494 0.1918

robust.recalibr 2.5 0.0000 0.9689 0.1355 0.0031 0.0370 0.1809

robust.recalibr 3 0.0000 0.9846 0.1372 0.0014 0.0259 0.1715

Table E2: Summary statistics, Brier scores in Figure 7.
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F Results by data set852

(a) Brier scores, Artwork data only.
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(b) Brier scores, NFL data only.
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(c) Brier scores, Science data only.
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(d) Brier scores, States data only.
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Figure F1: Brier scores of simple average, extremized average and robust-recalibrated prob-
abilities.
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(a) Brier scores, Artwork data only.
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(b) Brier scores, NFL data only.
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(c) Brier scores, Science data only.
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(d) Brier scores, States data only.
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Figure F2: Brier scores of robust recalibration and other benchmarks.
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(a) Artwork data only

γ Method.1 Method.2 Avg.diff Med.diff Test stat. p-value Signif. better?

0.5 extrem.average average 0.0135 0.0096 V=2121 0.0164 Method.2

0.5 robust.recalibr extrem.average -0.0105 -0.0032 V=1215 0.0524 No diff.

1 extrem.average average 0.0292 0.0193 V=2149 0.0112 Method.2

1 robust.recalibr extrem.average -0.0169 0.0021 V=1261 0.0855 No diff.

1.5 extrem.average average 0.0460 0.0291 V=2174 0.0079 Method.2

1.5 robust.recalibr extrem.average -0.0206 0.0130 V=1334 0.1709 No diff.

2 extrem.average average 0.0630 0.0391 V=2213 0.0045 Method.2

2 robust.recalibr extrem.average -0.0224 0.0265 V=1379 0.2487 No diff.

2.5 extrem.average average 0.0795 0.0492 V=2234 0.0033 Method.2

2.5 robust.recalibr extrem.average -0.0232 0.0281 V=1414 0.3243 No diff.

3 extrem.average average 0.0951 0.0594 V=2249 0.0026 Method.2

3 robust.recalibr extrem.average -0.0230 0.0212 V=1446 0.4053 No diff.

(b) NFL data only

γ Method.1 Method.2 Avg.diff Med.diff Test stat. p-value Signif. better?

0.5 extrem.average average -0.0067 -0.0129 V=1557 0.0009 Method.1

0.5 robust.recalibr extrem.average -0.0051 -0.0079 V=2130 0.1750 No diff.

1 extrem.average average -0.0098 -0.0254 V=1627 0.0020 Method.1

1 robust.recalibr extrem.average -0.0062 -0.0097 V=2303 0.4463 No diff.

1.5 extrem.average average -0.0106 -0.0373 V=1699 0.0045 Method.1

1.5 robust.recalibr extrem.average -0.0044 -0.0080 V=2440 0.7714 No diff.

2 extrem.average average -0.0102 -0.0452 V=1772 0.0097 Method.1

2 robust.recalibr extrem.average -0.0007 -0.0055 V=2508 0.9548 No diff.

2.5 extrem.average average -0.0089 -0.0531 V=1849 0.0202 Method.1

2.5 robust.recalibr extrem.average 0.0042 -0.0034 V=2571 0.8757 No diff.

3 extrem.average average -0.0072 -0.0622 V=1900 0.0318 Method.1

3 robust.recalibr extrem.average 0.0098 -0.0020 V=2604 0.7872 No diff.
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(c) Science data only

γ Method.1 Method.2 Avg.diff Med.diff Test stat. p-value Signif. better?

0.5 extrem.average average -0.0063 -0.0254 V=81582 <0.0001 Method.1

0.5 robust.recalibr extrem.average -0.0264 -0.0050 V=74929 <0.0001 Method.1

1 extrem.average average -0.0045 -0.0377 V=87242 <0.0001 Method.1

1 robust.recalibr extrem.average -0.0461 -0.0024 V=78104 <0.0001 Method.1

1.5 extrem.average average 0.0006 -0.0431 V=91266 <0.0001 Method.1

1.5 robust.recalibr extrem.average -0.0608 -0.0007 V=80416 <0.0001 Method.1

2 extrem.average average 0.0069 -0.0471 V=94089 <0.0001 Method.1

2 robust.recalibr extrem.average -0.0718 -0.0002 V=82239 <0.0001 Method.1

2.5 extrem.average average 0.0134 -0.0489 V=96155 0.0002 Method.1

2.5 robust.recalibr extrem.average -0.0801 -0.0001 V=83672 <0.0001 Method.1

3 extrem.average average 0.0195 -0.0510 V=97698 0.0007 Method.1

3 robust.recalibr extrem.average -0.0864 -0.0000 V=84804 <0.0001 Method.1

(d) States data only

γ Method.1 Method.2 Avg.diff Med.diff Test stat. p-value Signif. better?

0.5 extrem.average average 0.0002 -0.0116 V=584 0.6089 No diff.

0.5 robust.recalibr extrem.average -0.0667 -0.0808 V=155 <0.0001 Method.1

1 extrem.average average 0.0071 -0.0224 V=640 0.9846 No diff.

1 robust.recalibr extrem.average -0.1183 -0.1256 V=161 <0.0001 Method.1

1.5 extrem.average average 0.0170 -0.0276 V=688 0.6293 No diff.

1.5 robust.recalibr extrem.average -0.1566 -0.1465 V=171 <0.0001 Method.1

2 extrem.average average 0.0279 -0.0316 V=708 0.4992 No diff.

2 robust.recalibr extrem.average -0.1850 -0.1593 V=187 <0.0001 Method.1

2.5 extrem.average average 0.0388 -0.0350 V=725 0.401 No diff.

2.5 robust.recalibr extrem.average -0.2069 -0.1604 V=192 <0.0001 Method.1

3 extrem.average average 0.0494 -0.0357 V=741 0.3201 No diff.

3 robust.recalibr extrem.average -0.2244 -0.1563 V=196 <0.0001 Method.1

Table F1: Two-sided paired Wilcoxon signed rank tests of Brier scores in each data set.
Compares robust recalibration, extremizing away from 0.5 and simple average.

Data set Degrees of Freedom Mean Sq. Error F-stat p-value
Artwork 9 0.0438 1.097 0.362
NFL 9 0.00388 0.142 0.998

Science 9 0.1919 8.125 < 0.0001
States 9 0.07304 13.99 < 0.0001

Table F2: One-way ANOVA test of Brier scores across 10 methods (four benchmark algo-
rithms and robust recalibration with γ ∈ {0.5, 1, 1.5, 2, 2.5, 3}) in each data set. Results
suggest significant differences in Science and States data.
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Method Benchmark Avg.diff Med.diff Test stat. p-value Signif. better?

robust.recalibr.γ=0.5 know.weight -0.0001 0.0021 V=247540 <0.0001 know.weight

robust.recalibr.γ=0.5 meta.prob.weight 0.0017 -0.0075 V=200532 0.4623 No difference

robust.recalibr.γ=0.5 min.pivot -0.0067 -0.0017 V=121239 <0.0001 robust.recalibr

robust.recalibr.γ=0.5 surp.overshoot 0.0032 0.0053 V=246687 <0.0001 surp.overshoot

robust.recalibr.γ=1 know.weight -0.0156 -0.0056 V=123231 <0.0001 robust.recalibr

robust.recalibr.γ=1 meta.prob.weight -0.0138 -0.0238 V=121218 <0.0001 robust.recalibr

robust.recalibr.γ=1 min.pivot -0.0222 -0.0164 V=93364 <0.0001 robust.recalibr

robust.recalibr.γ=1 surp.overshoot -0.0123 -0.0047 V=153070 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 know.weight -0.0230 -0.0150 V=96184 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 meta.prob.weight -0.0212 -0.0363 V=103043 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 min.pivot -0.0296 -0.0257 V=103024 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 surp.overshoot -0.0197 -0.0118 V=123548 <0.0001 robust.recalibr

robust.recalibr.γ=2 know.weight -0.0257 -0.0216 V=102362 <0.0001 robust.recalibr

robust.recalibr.γ=2 meta.prob.weight -0.0239 -0.0467 V=107335 <0.0001 robust.recalibr

robust.recalibr.γ=2 min.pivot -0.0323 -0.0328 V=110455 <0.0001 robust.recalibr

robust.recalibr.γ=2 surp.overshoot -0.0224 -0.0188 V=122617 <0.0001 robust.recalibr

robust.recalibr.γ=2.5 know.weight -0.0256 -0.0240 V=110829 <0.0001 robust.recalibr

robust.recalibr.γ=2.5 meta.prob.weight -0.0238 -0.0550 V=114400 <0.0001 robust.recalibr

robust.recalibr.γ=2.5 min.pivot -0.0322 -0.0383 V=116401 <0.0001 robust.recalibr

robust.recalibr.γ=2.5 surp.overshoot -0.0223 -0.0220 V=125542 <0.0001 robust.recalibr

robust.recalibr.γ=3 know.weight -0.0239 -0.0274 V=118513 <0.0001 robust.recalibr

robust.recalibr.γ=3 meta.prob.weight -0.0221 -0.0588 V=120723 <0.0001 robust.recalibr

robust.recalibr.γ=3 min.pivot -0.0305 -0.0421 V=121302 <0.0001 robust.recalibr

robust.recalibr.γ=3 surp.overshoot -0.0206 -0.0244 V=129139 <0.0001 robust.recalibr

Table F3: Comparison of Brier scores, two-sided paired Wilcoxon signed rank tests, robust
recalibration with γ ∈ {0.5, 1, 1.5, 2, 2.5, 3} vs benchmarks.
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(a) Artwork data only

Method Benchmark Avg.diff Med.diff Test stat. p-value Signif. better?

robust.recalibr.γ=0.5 know.weight -0.0395 -0.0050 V=1368 0.2277 No difference

robust.recalibr.γ=0.5 meta.prob.weight -0.0038 -0.0070 V=1535 0.6853 No difference

robust.recalibr.γ=0.5 min.pivot -0.0046 -0.0011 V=1281 0.1045 No difference

robust.recalibr.γ=0.5 surp.overshoot -0.0162 -0.0010 V=1413 0.3220 No difference

robust.recalibr.γ=1 know.weight -0.0302 -0.0039 V=1275 0.0985 No difference

robust.recalibr.γ=1 meta.prob.weight 0.0054 -0.0005 V=1710 0.6677 No difference

robust.recalibr.γ=1 min.pivot 0.0047 0.0070 V=1645 0.9065 No difference

robust.recalibr.γ=1 surp.overshoot -0.0069 0.0036 V=1480 0.5034 No difference

robust.recalibr.γ=1.5 know.weight -0.0170 -0.0119 V=1203 0.0458 robust.recalibr

robust.recalibr.γ=1.5 meta.prob.weight 0.0186 -0.0124 V=1731 0.5961 No difference

robust.recalibr.γ=1.5 min.pivot 0.0178 0.0133 V=1799 0.3919 No difference

robust.recalibr.γ=1.5 surp.overshoot 0.0062 -0.0010 V=1718 0.6400 No difference

robust.recalibr.γ=2 know.weight -0.0019 -0.0289 V=1387 0.2648 No difference

robust.recalibr.γ=2 meta.prob.weight 0.0337 -0.0051 V=1845 0.2816 No difference

robust.recalibr.γ=2 min.pivot 0.0329 0.0198 V=1928 0.1403 No difference

robust.recalibr.γ=2 surp.overshoot 0.0214 -0.0070 V=1926 0.1428 No difference

robust.recalibr.γ=2.5 know.weight 0.0139 -0.0027 V=1642 0.9179 No difference

robust.recalibr.γ=2.5 meta.prob.weight 0.0495 -0.0029 V=1977 0.0873 No difference

robust.recalibr.γ=2.5 min.pivot 0.0487 0.0264 V=2047 0.0408 min.pivot

robust.recalibr.γ=2.5 surp.overshoot 0.0372 -0.0096 V=2048 0.0403 robust.recalibr

robust.recalibr.γ=3 know.weight 0.0296 0.0099 V=1840 0.2924 No difference

robust.recalibr.γ=3 meta.prob.weight 0.0652 -0.0104 V=2106 0.0199 robust.recalibr

robust.recalibr.γ=3 min.pivot 0.0645 0.0332 V=2118 0.0170 min.pivot

robust.recalibr.γ=3 surp.overshoot 0.0529 0.0176 V=2115 0.0177 surp.overshoot
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(b) NFL data only

Method Benchmark Avg.diff Med.diff Test stat. p-value Signif. better?

robust.recalibr.γ=0.5 know.weight -0.0005 0.0030 V=3060 0.0661 No difference

robust.recalibr.γ=0.5 meta.prob.weight -0.0014 0.0000 V=2550 0.9329 No difference

robust.recalibr.γ=0.5 min.pivot -0.0011 -0.0004 V=2222 0.2983 No difference

robust.recalibr.γ=0.5 surp.overshoot 0.0083 0.0077 V=3441 0.0016 No difference

robust.recalibr.γ=1 know.weight -0.0047 -0.0016 V=2198 0.2616 No difference

robust.recalibr.γ=1 meta.prob.weight -0.0056 -0.0132 V=1933 0.0420 robust.recalibr

robust.recalibr.γ=1 min.pivot -0.0053 -0.0110 V=1970 0.0566 No difference

robust.recalibr.γ=1 surp.overshoot 0.0041 0.0003 V=2673 0.6120 No difference

robust.recalibr.γ=1.5 know.weight -0.0037 -0.0105 V=1981 0.0617 No difference

robust.recalibr.γ=1.5 meta.prob.weight -0.0046 -0.0253 V=2015 0.0798 No difference

robust.recalibr.γ=1.5 min.pivot -0.0044 -0.0204 V=2148 0.1955 No difference

robust.recalibr.γ=1.5 surp.overshoot 0.0050 -0.0062 V=2445 0.7846 No difference

robust.recalibr.γ=2 know.weight 0.0004 -0.0168 V=2173 0.2268 No difference

robust.recalibr.γ=2 meta.prob.weight -0.0004 -0.0402 V=2210 0.2795 No difference

robust.recalibr.γ=2 min.pivot -0.0002 -0.0268 V=2307 0.4546 No difference

robust.recalibr.γ=2 surp.overshoot 0.0092 -0.0119 V=2472 0.8568 No difference

robust.recalibr.γ=2.5 know.weight 0.0066 -0.0218 V=2319 0.4798 No difference

robust.recalibr.γ=2.5 meta.prob.weight 0.0057 -0.0511 V=2332 0.5080 No difference

robust.recalibr.γ=2.5 min.pivot 0.0060 -0.0291 V=2415 0.7065 No difference

robust.recalibr.γ=2.5 surp.overshoot 0.0153 -0.0158 V=2518 0.9822 No difference

robust.recalibr.γ=3 know.weight 0.0139 -0.0250 V=2454 0.8085 No difference

robust.recalibr.γ=3 meta.prob.weight 0.0130 -0.0558 V=2454 0.8085 No difference

robust.recalibr.γ=3 min.pivot 0.0133 -0.0313 V=2517 0.9794 No difference

robust.recalibr.γ=3 surp.overshoot 0.0227 -0.0191 V=2586 0.8352 No difference
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(c) Science data only

Method Benchmark Avg.diff Med.diff Test stat. p-value Signif. better?

robust.recalibr.γ=0.5 know.weight 0.0005 0.0014 V=135238 <0.0001 know.weight

robust.recalibr.γ=0.5 meta.prob.weight 0.0005 -0.0087 V=105406 0.0577 No difference

robust.recalibr.γ=0.5 min.pivot -0.0084 -0.0024 V=55092 <0.0001 robust.recalibr

robust.recalibr.γ=0.5 surp.overshoot 0.0017 0.0045 V=133503 0.0003 surp.overshoot

robust.recalibr.γ=1 know.weight -0.0174 -0.0068 V=53859 <0.0001 robust.recalibr

robust.recalibr.γ=1 meta.prob.weight -0.0175 -0.0272 V=57205 <0.0001 robust.recalibr

robust.recalibr.γ=1 min.pivot -0.0264 -0.0166 V=39850 <0.0001 robust.recalibr

robust.recalibr.γ=1 surp.overshoot -0.0163 -0.0058 V=73182 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 know.weight -0.0269 -0.0162 V=43809 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 meta.prob.weight -0.0270 -0.0389 V=47981 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 min.pivot -0.0359 -0.0253 V=43628 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 surp.overshoot -0.0258 -0.0123 V=55148 <0.0001 robust.recalibr

robust.recalibr.γ=2 know.weight -0.0316 -0.0216 V=46463 <0.0001 robust.recalibr

robust.recalibr.γ=2 meta.prob.weight -0.0317 -0.0481 V=48503 <0.0001 robust.recalibr

robust.recalibr.γ=2 min.pivot -0.0406 -0.0327 V=46822 <0.0001 robust.recalibr

robust.recalibr.γ=2 surp.overshoot -0.0305 -0.0192 V=54264 <0.0001 robust.recalibr

robust.recalibr.γ=2.5 know.weight -0.0334 -0.0244 V=49251 <0.0001 robust.recalibr

robust.recalibr.γ=2.5 meta.prob.weight -0.0335 -0.0557 V=50472 <0.0001 robust.recalibr

robust.recalibr.γ=2.5 min.pivot -0.0424 -0.0378 V=49365 <0.0001 robust.recalibr

robust.recalibr.γ=2.5 surp.overshoot -0.0323 -0.0225 V=55183 <0.0001 robust.recalibr

robust.recalibr.γ=3 know.weight -0.0336 -0.0278 V=51837 <0.0001 robust.recalibr

robust.recalibr.γ=3 meta.prob.weight -0.0337 -0.0576 V=52322 <0.0001 robust.recalibr

robust.recalibr.γ=3 min.pivot -0.0426 -0.0416 V=51598 <0.0001 robust.recalibr

robust.recalibr.γ=3 surp.overshoot -0.0325 -0.0254 V=56356 <0.0001 robust.recalibr
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(d) States data only

Method Benchmark Avg.diff Med.diff Test stat. p-value Signif. better?

robust.recalibr.γ=0.5 know.weight 0.0551 0.0463 V=1246 <0.0001 know.weight

robust.recalibr.γ=0.5 meta.prob.weight 0.0337 0.0322 V=932 0.0045 meta.prob.weight

robust.recalibr.γ=0.5 min.pivot 0.0019 0.0008 V=798 0.1225 No difference

robust.recalibr.γ=0.5 surp.overshoot 0.0448 0.0210 V=1167 <0.0001 surp.overshoot

robust.recalibr.γ=1 know.weight 0.0104 0.0039 V=911 0.0084 know.weight

robust.recalibr.γ=1 meta.prob.weight -0.0110 -0.0182 V=417 0.0337 robust.recalibr

robust.recalibr.γ=1 min.pivot -0.0429 -0.0537 V=44 <0.0001 robust.recalibr

robust.recalibr.γ=1 surp.overshoot 0.0001 0.0071 V=696 0.5756 No difference

robust.recalibr.γ=1.5 know.weight -0.0180 -0.0124 V=273 0.0004 robust.recalibr

robust.recalibr.γ=1.5 meta.prob.weight -0.0394 -0.0419 V=84 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 min.pivot -0.0712 -0.0868 V=46 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 surp.overshoot -0.0283 -0.0132 V=318 0.0021 robust.recalibr

robust.recalibr.γ=2 know.weight -0.0356 -0.0272 V=138 <0.0001 robust.recalibr

robust.recalibr.γ=2 meta.prob.weight -0.0570 -0.0590 V=4 <0.0001 robust.recalibr

robust.recalibr.γ=2 min.pivot -0.0889 -0.1092 V=51 <0.0001 robust.recalibr

robust.recalibr.γ=2 surp.overshoot -0.0459 -0.0220 V=178 <0.0001 robust.recalibr

robust.recalibr.γ=2.5 know.weight -0.0465 -0.0327 V=106 <0.0001 robust.recalibr

robust.recalibr.γ=2.5 meta.prob.weight -0.0679 -0.0675 V=1 <0.0001 robust.recalibr

robust.recalibr.γ=2.5 min.pivot -0.0998 -0.1152 V=52 <0.0001 robust.recalibr

robust.recalibr.γ=2.5 surp.overshoot -0.0569 -0.0295 V=146 <0.0001 robust.recalibr

robust.recalibr.γ=3 know.weight -0.0533 -0.0361 V=99 <0.0001 robust.recalibr

robust.recalibr.γ=3 meta.prob.weight -0.0748 -0.0740 V=7 <0.0001 robust.recalibr

robust.recalibr.γ=3 min.pivot -0.1066 -0.1174 V=58 <0.0001 robust.recalibr

robust.recalibr.γ=3 surp.overshoot -0.0637 -0.0351 V=138 <0.0001 robust.recalibr

Table F4: Comparison of Brier scores, two-sided paired Wilcoxon signed rank tests, robust
recalibration vs benchmarks in each data set.
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