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Abstract
This paper examines the usefulness of Kalai (2020)’s measure of the viability of
Nash equilibrium. We experimentally study a class of participation games, which
differ in the number of players, the success threshold, and the payoff to not par-
ticipating. We find that Kalai’s measure captures well how the viability of the
everyone-participates (eP) equilibrium depends on the success threshold; the mea-
sure does not capture other elements of the game which affect the likelihood that
the eP equilibrium is played.
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1 Introduction
Nash equilibrium is a fundamental solution concept in game theory. However, Nash
equilibria differ in the likelihood that they are played. In some games a Nash equi-
librium is played robustly, i.e., it is viable, while in other games no Nash equilibria
are viable. Kalai (2020) proposes two simple indices—a "formation" index and a "defec-
tion" index—to measure the viability of an equilibrium in a n-player strategic form
game. The formation index of a Nash equilibrium is the minimum number of players,
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called loyalists, who, when committed to playing their part of the equilibrium, make
it a (weakly) dominant strategy for each of the remaining players to play their part as
well. In other words, the formation index measures the number of loyalists required to
form an equilibrium. An equilibrium is less viable as the formation index is larger.

The present paper tests the empirical usefulness of Kalai’s viability measure. Is a
Nash equilibrium indeed less likely to be played as the formation index is larger? We
also investigate whether the viability of an equilibrium depends on aspects of the game
which are not accounted for in Kalai (2020)’s viability measure.

Our experiment studies n-player "participation" games, in which players simulta-
neously choose whether or not to participate. A participation game is characterized by
three parameters: the number of players (n), a success threshold (t), and a probabil-
ity (k) which governs the payoffs to players who choose not to participate. There are
two possible payoffs: if t+1 or more players participate, then each participating player
gets the "success" payoff; otherwise, each participating player gets the "failure" pay-
off; players who do not participate obtain a lottery which gives the success payoff with
probability k and the failure payoff with probability 1− k. A participation game has
two pure strategy Nash equilibria: everyone-participates (eP) and no-one-participates
(nP). The formation index of the eP equilibrium is t. Thus, according to Kalai (2020)’s
measure, the eP equilibrium is less viable as t increases. This nice feature of varying
viability with a single parameter, t, allows us to examine the empirical usefulness of
the measure directly.

We find that the formation index t of the eP equilibrium is empirically a useful
measure of equilibrium viability, holding other aspects of the game fixed: subjects par-
ticipate with lower probability in participation games with higher values of t. However,
we also find that the formation index does not capture all aspects of the viability of the
eP equilibrium. In particular, the viability of the eP equilibrium depends on n and k,
which do not enter into the formation index.

Related Literature
Closely related to the formation index is the notion of critical mass introduced in Kalai
and Kalai (2024). Informally, a strategy profile π of an n-player game is a critical mass
equilibrium of mass m if, for any collection of m players, it is optimal for each of these
m players to follow π, when the other m−1 player follow π, regardless of the actions of
the complementary n−m players. A dominant strategy Nash equilibrium is a critical
mass equilibrium of mass 1 since it is optimal for each player to follow his dominant
strategy regardless of the actions of the n−1 other players. At the other extreme, a Nash
equilibrium is a critical mass equilibrium of mass n since it is optimal for each of the n
players to follow π when the other n−1 follow π. The critical mass of an equilibrium is
equal to the formation index plus 1.

Other papers study notions closely related to the defection index, e.g., fault toler-
ance (Ben-Or et al, 1988; Eliaz, 2002; Gradwohl and Reingold, 2014) and resilience
(Abraham et al, 2006). We experimentally study the empirical usefulness of the
formation index which is indirectly related to these notions via duality.

To the best of our knowledge, few studies have directly investigated how the charac-
teristics of a game would affect the viability of its Nash equilibria. Li (2017) introduces
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the notion of an obviously dominant strategy, and shows experimentally that if a game
has an equilibrium in obviously dominant strategies, then that equilibrium is more
likely to be played than other equilibria. Bartling and Netzer (2016) study robustness
of Nash equilibrium to the presence of externalities not captured by the description of
a game. While both notions above are related to the defection index, these studies do
not directly test the empirical usefulness of the viability indices.

Our paper is related to the literature on coordination games. Following Harsanyi
and Selten (1988)’s introduction of the notion of Pareto-dominant and risk-dominant
equilibria, many studies such as Carlsson and van Damme (1993), Cooper et al (1990),
Van Huyck et al (1990), and Van Huyck et al (1991) investigate whether the Pareto-
dominant or risk-dominant equilibrium is more likely to be played. Crawford (1995)
develops a learning model of play in repeated coordination games, and estimates it
on experimental data. More recent contributions to this literature include Kim (1999),
Rankin et al (2000), Kosfeld (2002), Van Huyck et al (2018), Duffy and Fehr (2018), and
Bilancini and Boncinelli (2018). Our focus is distinguished from the existing studies
as we study the viability of the Pareto-dominant equilibrium as the formation index
varies. We study initial play, rather than dynamics and convergence to equilibrium.

Participation games are also related to the weakest-link public goods game (Hir-
shleifer, 1983) and the threshold public goods game (Palfrey and Rosenthal, 1984). In
particular, a participation game with threshold n− 1 is a weakest-link public goods
game. Unlike a participation game, the weakest-link game lacks a parameter which
varies the formation index. In the threshold public goods game all the players enjoy
the public good if the threshold is reached, whereas in a participation game only those
players who participate benefit when the threshold is reached.

2 Theory and Hypotheses
In this section, we introduce basic definitions and examples from Kalai (2020).

2.1 Basic Theory
Let Γ = (N, (A i)i∈N , (ui)i∈N ) be a game in strategic form, where N = {1, . . . ,n} is the
set of players and for each i ∈ N, A i is player i’s set of actions and ui is player i’s
utility function. Let α = (α1, . . . ,αn) ∈ A1 × ·· ·× An be a strategy profile. We say α is a
best response to strategy profile β if, for each player i ∈ N we have that ui(αi,β−i) ≥
ui(α′

i,β−i) for all α′
i ∈ A i.

Let π = (π1, . . . ,πn) denote an arbitrary fixed focal strategy profile. The strategy
profile α is a d-defector profile from π if

|{i ∈ N|αi ̸=πi}| = d,

i.e., if there are exactly d players whose actions in α are different from π.
Kalai (2020) proposes two indices to measure the viability of an equilibrium, the

defection index and (its dual) the formation index.
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Definition 1. The defection index of π, denoted by D(π), is the smallest integer d ∈
{0, . . . ,n} such that π is not a best response to some d-defector profile α from π. If π is the
best response to any profile α, then define D(π)= n.

If D(π) = 0, then π is not a best response to itself and thus π is not a Nash equilib-
rium. If D(π) ≥ 1, then π is a best response to the 0-defector profile α from π, i.e., it is
Nash. If D(π)= 1, then π is not a best response to some 1-defector profile α from π, i.e.,
there is a deviation by a single player such that at least one other player would then
find it optimal to deviate as well. While such a strategy profile π is a Nash equilib-
rium, it is not highly viable. At the other extreme, if D(π)= n, then π is an equilibrium
in dominant strategies—for any deviation by n−1 players, it remains optimal for the
remaining player to follow his part of π. Such an equilibrium profile is highly viable.

As D(π) increases, an equilibrium profile π is increasingly viable. It is more resis-
tant to known deviations by the other players and to uncertainty about whether the
other players will follow their part of equilibrium.

We illustrate the defection index with two examples. The first example, the Party
Line Game, is due to Kalai (2020). The second example, the Participation Game, is due
to Kalai and Kalai (2024).

Example 1. The Party Line Game: Three Democrats and five Republicans simul-
taneously select one of two choices, E and F. The payoff of a player is the number
of opposite-party players whose choice she mismatches. In the divisive equilibrium,
Div, all the Democrats choose F and all the Republicans choose E. Democrats and
Republicans obtain payoffs of 5 and 3, respectively.

In the Party Line Game, D(Div)= 2. In particular, if two Democrats deviate to E it
is no longer optimal for Republicans to choose F.1 By contrast, if only a single player—
Democrat or Republican—deviates from Div, it remains optimal for each player to play
their part of Div.

Example 2. The Participation Game: In the n-player Participation Game with thresh-
old t, the players simultaneously choose whether to participate (P) or not (N). The
payoff of each participant is 1 if the number of participants exceeds t and is 0 otherwise.
The payoff of each non-participant is k, where 0 < k < 1. In the everyone-participates
equilibrium, eP, each player obtains a payoff of 1.

A participation game is defined by a triple (n, t,k). In a n-player participation game,
the defection index of the eP equilibrium is D(eP)= n−t. This is the smallest number of
players who can deviate from eP such that eP is not a best response to the deviation.2

If n− t−1 or fewer players deviate from eP to N (leaving t+1 or more players choosing
P), it remains optimal for every player to choose P.

Proposition 1 of Kalai (2020) shows that D(π) can equivalently be viewed as the
maximum number of defectors that π deters. In particular, if one fixes the actions of
any coalition S ⊂ N consisting of n−D(π) players to π(S) := {πi ∈ π|i ∈ S}, then in the
game induced on the remaining D(π) players the action πi is a dominant strategy for
each player i ∈ N\S.3

1Formally, π= (F,F,F;E,E,E,E,E) is not a best response to the 2-defector profile (F,E,E;E,E,E,E,E) from π.
2If n− t players deviate to N, then it is no longer optimal for the remaining t players to participate.
3See Kalai (2020) for a formal description of the result, which we describe only informally here.
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This result is easy to see for participation games. Imagine fixing the actions of t
players in the Participation Game (n, t,k) to P. This induces a participation game on the
remaining n− t players. In the induced game, P is a dominant strategy for every player
since a player obtains a payoff of 1 choosing P and obtains k choosing N, regardless of
the actions of the other n− t−1 players.

Kalai (2020)’s second index, the formation index, is defined as follows.

Definition 2. The formation index of π is defined by F(π)= n−D(π).

Kalai (2020) shows that the formation index F(π) has a natural interpretation as
the minimal number of players required to form π. In particular, if one fixes the actions
of any coalition S consisting of F(π) players to π(S), then in the game induced on the
remaining n−F(π) players the action πi is a dominant strategy for each player i ∈ N\S.
This result is easy to see for the Participation Game (n, t,k), where F(eP)= n−D(eP)=
t. If the actions of t players are fixed to P, then P is a dominant strategy for each of the
n− t players in the induced game.

To sum up, an equilibrium π is more viable as D(π) increases or as F(π) decreases.
A higher D(π) implies that π is more resistant to deviations, while a lower F(π) implies
that π is more easily formed.

2.2 The Experimental Game
To evaluate the empirical usefulness of these indices, we study participation games
experimentally. This is an attractive class of games to study since the viability of the eP
equilibrium is determined by a single parameter t, for n fixed. Moreover, participation
games are simple and thus well suited to experimental investigation: subjects can be
expected to understand the relevant strategic considerations at the first play. We also
study how the viability of equilibrium varies in n, in which case D(π) and F(π) are no
longer dual. Last, we investigate whether the viability of equilibrium depends on k.

The Participation Game (n, t,k) has two-pure strategy—everyone-participates (eP)
and no-one-participates (nP)—equilibria. There is also a unique symmetric mixed-
strategy equilibrium in which each player participates with probability pm which
solves

n−1∑
i=t

(
n−1

i

)
pi

m(1− pm)n−i−1 = k.

The formation index of the mixed-strategy equilibrium is n−1, suggesting that it is
unlikely to be formed.4 Hence, we focus on pure-strategy equilibria. While we frame
our results in terms of the viability of eP we could, equivalently, frame them in terms
of the viability of nP since D(eP)= F(nP) and F(eP)= D(nP).

2.3 Hypotheses
Let p(n, t,k) be the true but unknown probability that a randomly selected player in the
Participation Game (n, t,k) plays P. We use p(n, t,k) as the measure of the viability of

4The defection index of the symmetric mixed-strategy Nash equilibrium is 1 since if a single player deviates from the
equilibrium mixture, the best response of each remaining player is a pure strategy. Furthermore, it is easy to verify that pm
is increasing in t and k, but decreasing in n. As we will see later, our data are inconsistent with these comparative statics.
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eP, with the equilibrium being more viable as p(n, t,k) increases. It would be equivalent
to measure the viability of eP by the probability that the threshold is reached or by the
probability that eP is played, i.e., everyone participates.

We now describe our hypotheses.

Hypothesis 1. The eP equilibrium is less viable as t increases, i.e., t < t′ implies
p(n, t,k)> p(n, t′,k).

Note that F(eP) does not depend on n or k. The next hypotheses concern whether
the empirical viability of eP depends on n or k.

Hypothesis 2. The viability of the eP equilibrium does not vary with n, i.e., p(n, t,k)=
p(n′, t,k) for n ̸= n′.

If we reject Hypotheses 2, it means either F(eP) should be understood to be a mea-
sure of viability for a fixed number of players, or a richer measure of viability is required
for comparing equilibria in games with different n.

An alternative intuitive measure of equilibrium viability is the fraction of players
who must participate to reach the threshold: the eP equilibrium is less viable as the
fraction increases.

Hypothesis 3. The eP equilibrium is less viable as t/n increases, i.e., t/n < t′/n′ implies
p(n, t,k)> p(n′, t′,k).

Kalai (2020)’s measure of viability of the eP equilibrium does not depend on k. Our
last hypothesis concerns whether the empirical viability of eP depends on k.
Hypothesis 4. The viability of the eP equilibrium does not depend on k, i.e., p(n, t,k)=
p(n, t,k′) for k ̸= k′.

3 The Experiment
The experiment had three treatments, each with four rounds. The Main treatment pro-
ceeded as follows: In each round, a threshold t of either 4, 8, 12, or 16, was announced,
and then 20 subjects simultaneously decided to participate (P) or not (N). We call a
subject who chose P a "participant" and a subject who chose N a "non-participant."
The payment of each participant was =C8 if the number of participants exceeded t and
=C0 otherwise. Each non-participant received the lottery that gives =C8 with probability
1/2 and =C0 otherwise. At each round, they played the same game but with a different
threshold. Subjects received no feedback between rounds, and each subject engaged in
only one treatment.5

This experiment implements the participation game described in Example 2. It is
without loss of generality to assign a utility of 1 to receiving =C8 and a utility of 0
to receiving =C0. The expected utility of the lottery is 1/2. Since there are only two
outcomes, =C8 or =C0, there is no scope for risk preferences to affect equilibrium play.

5To control for order effects, we counterbalanced the order of the thresholds. In the first Main session, the threshold order
was 8–16–12–4. In the second and third sessions, the threshold orders were 16–12–4–8 and 12–4–8–16, respectively. The
same thresholds and orders were used in the Scale and Small treatments, except that the thresholds were reduced by one half
in Small. Since subjects were unaware of the threshold until it was announced, from a subject’s perspective the thresholds
were randomly ordered. Using the Kruskal-Wallis test, for each threshold t we cannot reject at the 5% significance level the
null hypothesis that the participation probabilities for threshold t are the same in all three sessions.
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The Small treatment was the same as the Main treatment except that the group
size and the thresholds were reduced by one half. The Scale treatment differed from
the Main treatment in that each non-participant received =C8 with probability 3/4 and
=C0 otherwise. Table 1 summarizes the three treatments.

Treatment Group Size NP Lottery P Payment Thresholds

Main 20 (8,0.50) 8 or 0 {4, 8, 12, 16}
Small 10 (8,0.50) 8 or 0 {2, 4, 6, 8}
Scale 20 (8,0.75) 8 or 0 {4, 8, 12, 16}

Table 1 Treatments

In the experiment, subjects chose between P or N by clicking a button. We set P
as the default, as illustrated in Figure 1. In particular, P was initially selected and a
subject could choose P by merely clicking the Continue button. Thus, the equilibrium
eP is focal, and we test the viability of eP.6

Fig. 1 Screenshot of the Game

One round was randomly selected for payment. In addition to their earning, subjects
also received =C5 for participating in the experiment.

4 Results

4.1 Data Summary
Let Yi(n, t,k) denote subject i’s decision when the group size is n, the threshold is t,
and the winning probability of the non-participation lottery is k, where Yi(n, t,k) = 1
if the subject chooses P and 0 otherwise. We had three sessions for each treatment,
and hence there are 3n observations for each Participation Game (n, t,k). Let Y (n, t,k)

6Since P was the default, it had "primary salience" according to Mehta et al (1994). Subjects were not told that P was the
default, and hence P did not have "secondary salience."
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denote the random variable for the total number of participation decisions in game
(n, t,k) over the three sessions, and let Y (n, t,k)=Y (n, t,k)/3n be the participation rate.
Table 2 summarizes the realized values of these random variables for each (n, t,k).

Treatment Obs. Participation Decision Participation Rate
(n,k) 3n Y (n, t,k) Y (n, t,k)

Main 60 t=4 t=8 t=12 t=16 t=4 t=8 t=12 t=16

(20,0.5) 57 54 43 26 0.95 0.90 0.72 0.43

Small 30 t=2 t=4 t=6 t=8 t=2 t=4 t=6 t=8

(10,0.5) 29 28 21 11 0.97 0.93 0.70 0.37

Scale 60 t=4 t=8 t=12 t=16 t=4 t=8 t=12 t=16

(20,0.75) 59 49 30 17 0.98 0.82 0.50 0.29

Table 2 Summary of Data

4.2 Results
In this section, we show that the formation index F(eP) is a good measure of the via-
bility of the eP equilibrium. In particular, the participation probability increases as
t decreases, holding n and k fixed. We also show that the participation probability
depends on n and k.

To test Hypothesis 1, we conduct a one-tailed Fisher exact test for every pair of
thresholds within each treatment. In particular, for any two thresholds t and t′ such
that t < t′, we consider the null and alternative hypotheses that

H0 : p(n, t,k)= p(n, t′,k) vs. H1 : p(n, t,k)> p(n, t′,k).

Rejecting the null provides evidence that the participation probability decreases
as t increases from t to t′. There are 60 participation decisions made for each thresh-
old. Under the null hypothesis, the probability that Y (n, t,k) = y, conditional on z
participation decisions in total for thresholds t and t′, is

P[Y (n, t,k)= y|Y (n, t,k)+Y (n, t′,k)= z]=
(60

y
)( 60

z−y
)

(120
z

)
for y ∈ {max{0, z−60}, . . . ,min{60, z}} according to Siegel and Castellan (1988).7

For y≥max{0, z−60}, the p-value associated with an outcome Y (n, t,k)= y is

min{60,z}∑
w=y

P[Y (n, t,k)= w|Y (n, t,k)+Y (n, t′,k)= z].

7Conditional on Y (n, t,k)+Y (n, t′,k) = z, then Y (n, t,k) must take an integer value between max{0, z−60} and min{60, z}.
See pp. 102–111 in Siegel and Castellan (1988).
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We reject the null hypothesis at the 5 percent significance level if the p-value is
less than 0.05. In the Main treatment, for example, we have Y (20,4,0.5) = 57 and
Y (20,12,0.5) = 43. Hence for the null hypothesis p(20,4,0.5) = p(20,12,0.5), the
associated p-value is

60∑
w=57

(60
w

)( 60
100−w

)(120
100

) ≈ 0.0005.

We reject this null hypothesis at even the 1 percent significance level.

Y (10, t,0.5)

t

20%

2

40%

4

60%

6

80%

8

∗∗

∗∗∗

Small Treatment

Y (20, t,0.5)

t

20%

40%

60%

80%

4 8 12 16

∗∗∗

∗∗∗

Main Treatment

Y (20, t,0.75)

t

20%

40%

60%

80%

4 8 12 16

∗∗∗
∗∗∗

∗∗

Scale Treatment

Fig. 2 Participation Rates by Treatment
∗∗ and ∗∗∗ indicate statistical significance of Fisher exact test at the 5% and 1% level, respectively.

Figure 2 summarizes the data, showing the empirical participation rates for each
threshold and treatment. It also shows the results of tests of the hypothesis that par-
ticipation probabilities are equal at adjacent thresholds. The null hypothesis that these
participation probabilities are the same is rejected for all but two comparisons: the
pair t = 2 and t′ = 4 in the Small treatment and the pair t = 4 and t′ = 8 in the Main
treatment. This null is rejected for every comparison of non-adjacent thresholds.8

We obtain the following result.
Result 1. Participation probabilities decrease in t.

Result 1 shows that F(eP) is a good measure of viability for changes in the thresh-
old t. In particular, as F(eP) increases, the eP equilibrium becomes less viable. When
playing the Participation Game (n, t,k), an expected utility maximizer chooses P if
their subjective probability that t or more other players will choose Participate exceeds
k. Result 1 shows that this subjective probability exceeds k for fewer subjects as t
increases.9

Hypothesis 2 is that the viability of eP does not depend on n. We test this hypothesis
using data from the Main (n = 20) and Small (n = 10) treatments. We consider the null

8Alternatively, we also test whether the four participation rates with different thresholds are in decreasing order, using
four nonparametric trend tests—the Jonckheere-Terpstra test, the Cochran-Armitage test, the linear-by-linear trend test,
and the Cuzick test. We find the decreasing trend is statistically significant, rejecting the null hypothesis of no trend with
p-values less than 0.0001 for all tests in all treatments.

9By contrast, if choosing Participate is a trusting action, then a betrayal-averse decision maker (e.g., Koehler and Gershoff,
2003; Aimone and Houser, 2012) might choose not to participate even if their subjective probability that t or more other
players choose Participate exceeds k.
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and alternative hypotheses that

H0 : p(20, t,0.5)= p(10, t,0.5) vs. H1 : p(20, t,0.5) ̸= p(10, t,0.5),

for t = 4 and t = 8. Under the null hypothesis that p(20, t,0.5)= p(10, t,0.5), the Pearson
goodness of fit test statistic is

Q = ∑
n∈{10,20}

{
(Y (n, t,0.5)−3np̂)2

3np̂
+ (3n−Y (n, t,0.5)−3n(1− p̂))2

3n(1− p̂)

}
,

where
p̂ = Y (20, t,0.5)+Y (10, t,0.5)

3(20)+3(10)
,

and it is asymptotically distributed chi-square with 1 degree of freedom. Given a
realized value Q̂ of Q, the associated p-value is the probability that Q exceeds Q̂.

Figure 3 depicts participation rates in the Main and Small treatments for t = 4 and
t = 8. We cannot reject the null that p(20, t,0.5)= p(10, t,0.5) for t = 4 (p-value of 0.745),
while we reject the null at the 1 percent significance level for t = 8 (p-value<0.001). We
reject the joint null hypothesis that both p(20,4,0.5) = p(10,4,0.5) and p(20,8,0.5) =
p(10,8,0.5) at the 1 percent significance level.

Y (n, t,0.5)

t

20%

40%

60%

80%

4 8

∗∗∗

Main (black) and Small (blue) Treatments

Fig. 3 Participation Rates for Main and Small
∗∗∗ indicates statistical significance of Pearson’s χ2 test at the 1% level.

Result 2. Participation probabilities depend on n.
Results 1 and 2 established that participation probabilities vary not only with t but

also with n. A natural conjecture consistent with these results is that the participation
probability decreases as the fraction of participants required to reach the threshold
increases. Table 3 provides evidence in support of this conjecture. It considers pairs
of participation rates (Y (20, t,0.5), Y (10, t′,0.5)) for t and t′ such that t/20 ̸= t′/10. It
shows, for each pair, that Y (20, t,0.5)>Y (10, t′,0.5) when t/20< t′/10, and Y (20, t,0.5)<
Y (10, t′,0.5) when t/20> t′/10.
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n = 10
t = 2 t = 4 t = 6 t = 8

t/n 0.2 0.4 0.6 0.8

n = 20

t = 4 0.2 - (.95, .93) (.95, .70) (.95, .37)
t = 8 0.4 (.90, .97) - (.90, .70) (.90, .37)
t = 12 0.6 (.72, .97) (.72, .93) - (.72, .37)
t = 16 0.8 (.43, .97) (.43, .93) (.43, .70) -

Table 3 Pairwise Comparison of Participation Rates

The first and second entries are participation rates in Main and Small, respec-
tively.

Hypothesis 3 is that the eP equilibrium is less viable as t/n increases. We consider
the null and alternative hypotheses that

H0 : p(n, t,0.5)= p(n′, t′,0.5) vs. H1 : p(n, t,0.5)> p(n′, t′,0.5),

for t/n < t′/n′. Rejecting the null provides evidence in favor of Hypothesis 3.
We conduct a one-tailed Fisher exact test for every pair of games in Table 3. Table 4

shows for the null p(10,4,0.5) = p(20,4,0.5) and alternative p(10,4,0.5) < p(20,4,0.5)
the p-value of the Fisher exact test is 0.543. We do not reject the null. For the null
p(10,4,0.5) = p(20,12,0.5) and the alternative p(10,4,0.5) > p(20,12,0.5), the p-value
is 0.014. In this case we reject the null in favor of the alternative. In Table 4, except for
two pairs, the null is rejected for each pairwise comparison.

n = 10
t = 2 t = 4 t = 6 t = 8

t/n 0.2 0.4 0.6 0.8

n = 20

t = 4 0.2 - 0.543 0.002∗∗∗ 0.000∗∗∗
t = 8 0.4 0.253 - 0.020∗∗ 0.000∗∗∗
t = 12 0.6 0.003∗∗∗ 0.014∗∗ - 0.002∗∗∗
t = 16 0.8 0.000∗∗∗ 0.000∗∗∗ 0.015∗∗ -

Table 4 p-values for Fisher Exact Tests

∗∗ and ∗∗∗ indicate statistical significance at the 5% and 1% level, respectively.

Figure 4 compares participation rates in the Main and the Small treatments
ordered by the value of t/n. We cannot reject that participation probabilities are the
same in games with the same ratio t/n, i.e., we cannot reject the null hypothesis
that p(n, t,0.5) = p(n′, t′,0.5) for t/n = t′/n′ against the two-sided alternative. Specif-
ically, for the nulls (i) p(10,2,0.5) = p(20,4,0.5), (ii) p(10,4,0.5) = p(20,8,0.5), (iii)
p(10,6,0.5) = p(20,12,0.5), and (iv) p(10,8,0.5) = p(20,16,0.5), the associated p-values
are 1.000, 0.714, 1.000, and 0.651.

Taken together, these results establish that participation probabilities are deter-
mined by t/n and are decreasing in t/n.
Result 3. Participation probabilities are determined by t/n and decreasing in t/n.
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Y (n, t,0.5)

t/n

20%

40%

60%

80%

0.2 0.4 0.6 0.8
Main (black) and Small (blue) Treatments

Fig. 4 Comparison between Main and Small
Two-sided Fisher exact tests

Hypothesis 4 is that the viability of eP does not depend on k, i.e., the null and
alternative hypotheses are

H0 : p(n, t,0.5)= p(n, t,0.75) vs. H1 : p(n, t,0.5) ̸= p(n, t,0.75).

We test this hypothesis using the data from the Main and Scale treatments. As in the
test for Hypothesis 2, we use the Pearson goodness of fit test.

Figure 5 depicts participation rates in the Main and Scale treatments for each
t ∈ {4,8,12,16}. We reject the null hypothesis that p(20, t,0.5) = p(20, t,0.75) for t = 12
at the 5 percent significance level (p-value of 0.015) and t = 16 at the 10 percent signif-
icance level (p-value=0.087). We reject the joint null that p(20, t,0.5)= p(20, t,0.75) for
all t ∈ {4,8,12,16} at the 5 percent significance level (p-value of 0.021). Hence we obtain
the following result.
Result 4. Participation probabilities depend on k, the winning probability of the non-
participation lottery.

Y (20, t,k)

t

20%

40%

60%

80%

4 8 12 16

∗∗

∗

Main (k = 0.5, black) and Scale (k = 0.75, gray) Treatments

Fig. 5 Participation Rates for Main and Scale
∗ and ∗∗ indicate statistical significance of Pearson’s χ2 test at the 10% and 5%, respectively.
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The measure F(eP) does not depend on k. We find that the empirical viability
of the eP equilibrium varies with k. Figure 5 shows that the participation proba-
bilities tend to decrease in k. In other words, the formation index does not capture
the greater attractiveness of the strategy N that results from an increase in the
winning-probability of the non-participation lottery.

5 Discussion and Conclusion
The hypotheses we study can be viewed as hypotheses about the nature of the "iso-
probability" curves that govern the probability that a player chooses to participate (P).
The iso-probability curve for entry probability p̄ in Participation Game (n, t,k) can be
defined as

{(n, t)|p(n, t,k)= p̄}.

Figure 6 below illustrates two examples of iso-probability curves, for a fixed k.10

t

n

p(n, t,k)= p̄
p(n, t,k)> p̄

p(n, t,k)< p̄

t

n

p(n, t,k)= p̄

p(n, t,k)> p̄

p(n, t,k)< p̄

Fig. 6 Examples of Iso-Probability Curves

Hypothesis 1, if true, rules out that iso-probability curves are anywhere vertical.
It also implies, as shown in Figure 6, that p(n, t,k) > p̄ for (n, t) that lie below the iso-
probability curve p(n, t,k)= p̄. Result 1 finds support for Hypothesis 1. Hypothesis 2 is
that iso-probability curves are flat, i.e., p(n, t,k) in participation games does not depend
on n. Result 2 rejects Hypothesis 2, thereby ruling out that iso-probability curves are
anywhere flat. Hypothesis 3, if true, implies that iso-probability curves are upward
sloping. Result 3 finds support for Hypothesis 3. It finds, in addition, that the data
is consistent with linear iso-probability curves. Result 4 shows that p(n, t,k) indeed
depends on k and thus a change in k leads to a shift of the iso-probability curves. The
data is consistent with the iso-probability curve for entry probability p̄ shifting down
as k increases.

We find that Kalai (2020)’s formation index is a useful measure of the viability of the
everyone-participates equilibrium as t varies, holding n and k fixed (Result 1). We also
find that Kalai (2020)’s viability indices do not capture all the aspects of a participation
game that affect the empirical viability of equilibrium, e.g., changes in the group size n
(Result 2) or in the winning probability k of the non-participation lottery (Result 4).

10Changes in k potentially shift the iso-probability curves.
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Appendix A Experiment Instructions
Sample Instructions (Main treatment)

Welcome to this experiment. Please read these instructions carefully.
In this experiment you will play the Participation Game for several rounds. Your

earnings will depend on the decisions you make, as well as the decisions of the other
players.

Task: Participation Game
You will play the Participation Game with 19 other players. At the start of each round,
a threshold number T is announced to all the players. You and the other players then
each choose an action: Participate or Not Participate.

Your earnings in the round are determined as follows:

• If you choose Not Participate, then you earn a lottery ticket that gives you 8 Euro
with a probability 0.5 and gives you 0 Euro otherwise.

• If you choose Participate, then you earn 8 Euro if the number of players who
chose Participate, including yourself, is strictly greater than the threshold number T.
Otherwise, you earn 0 Euro.

Payment
At the end of the experiment, one round will be randomly chosen for payment. For that
round, you will learn the number of players who chose Participate and your earning in
the round. Your total payment will be these earnings plus the show-up fee of 5 Euro.
Since each round is equally likely to be selected for payment, it is in your best interest
to take each round seriously.

Comprehension check

Suppose that the threshold is 12, and you chose Participate. If there are 10 subjects
who chose Participate, what is your payoff?

Appendix B Experiment Procedure
The experimental sessions were conducted in English using subjects recruited from the
Mannheim Laboratory for Experimental Economics of the University of Mannheim.
Due to COVID-19, we did not bring subjects to the lab. Instead, we invited them to join
an online meeting to get announcements from the experimenter and report technical
issues to the experimenter during the session, distributed the unique link for partici-
pating in the online experiment, and paid them via online transfers (either PayPal or
bank transfer) afterward.

Three sessions were conducted for each treatment, and a total of 150 subjects par-
ticipated in one of the nine (= 3×3) sessions. We used an interactive online platform
called LIONESS (Live Interactive Online Experimental Server Software, Arechar et al,
2018). After the subjects joined an online meeting, the experimenter asks them to turn
off the webcam, remove their profile photos, if any, and rename their displayed names
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to two alphabet letters they arbitrarily chose so that their identities, hence decisions,
remain anonymous to the experimenter as well as other subjects. Subjects were asked
to read the instructions displayed on their screens carefully and to pass a comprehen-
sion quiz. The average payment per subject was =C10.12. The payments were made via
online transfer after receiving the personal payment code generated at the end of the
experiment. Each session lasted less than 30 minutes.
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