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Abstract

A recurring theme in the study of society is the concentration of influence and power
that is driven through unequal membership of groups and associations. In some instances
these bodies constitute a small world while in others they are fragmented into distinct
cliques. This paper presents a new model of clubs and networks to understand the
sources of individual marginalization and the origins of different club networks.

In our model, individuals seek to become members of clubs while clubs wish to have
members. Club value is increasing in its size and in the strength of ties with other clubs.
We show that a stable membership profile exhibits marginalization of individuals and
that this is generally not welfare maximizing. Our second result shows that if returns
from strength of ties are convex (concave) then stable memberships support fragmented
networks with strong ties (small worlds held together by weak ties).

We illustrate the value of these theoretical results through case studies of inter-locking

directorates, boards of editors of journals, and defence and R&D alliances.
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1 Introduction

Economists study group formation using the theory of coalitions/clubs and the theory of
network formation. In the coalitions approach individual payoffs are defined on the partition
of players into mutually exclusive groups and in the networks literature individuals can join
any number of groups but each of the groups is of size 2. However, in some important
instances — examples include inter-locking directorates, R&D alliances, boards of editors of
journals, and defence alliances — groups have size larger than 2 and individuals typically join
multiple groups. Importantly, the productivity of a group depends on both its size and how
it is connected to other groups through overlapping memberships. In these contexts, a major
concern is that a few individuals take up most memberships while everyone else is left out
thereby giving rise to a very unequal distribution of payoffs.! A second and related concern
is that groups may be fragmented into cliques when a few individuals join them and that this
may undermine openness and the performance of the system as a whole. Our paper proposes
a new model of clubs and networks to examine these concerns.?

In our model, individuals seek to become members of clubs while clubs wish to have
members. Clubs have capacity constraints (due to congestion effects) and individuals can
only join up to a certain number of clubs (due to time limitations). Links between two clubs
arise when an individual joins both clubs. The value of joining a club is increasing in the
number of members (until the capacity is reached) and it may be increasing or decreasing
in the strength of ties with other clubs. Individual utility is increasing in the sum of the
productivity of the clubs they join. We define a notion of stable memberships that takes into
account the incentives of individuals and clubs. Our interest is in understanding patterns of
individual memberships and on the network of connections across clubs.

The main body of the analysis focuses on a setting where club value is increasing in
link strength: in this case, a club prefers individuals who are members of more clubs and
an individual prefers a club that links with more clubs. We show that stable outcomes
exhibit a strong marginalization property: when club capacity is the binding constraint, a few
individuals exhaust their membership capacity, while all others join no clubs; when individual

availability is the binding constraint, a few clubs are fully occupied while all others go empty.?

1 Durlauf and Young (2004) present an influential account of the groups based perspective on inequality

and poverty. In section 6 we present case studies on a number of empirical contexts.

There is a small set of papers that allow for membership of multiple groups, e.g. Page and Wooders
(2010) and Fershtman and Persitz (2021); we discuss these papers in detail later in the introduction after
presenting our model and results.

For concreteness suppose that the number of individuals is 8, the number of clubs is 4, every individual



We next show that this marginalization is not always in line with efficiency: when individual
utility is strongly concave, this marginalization is inefficient. Similarly, when club productivity
is a concave function of membership size, the marginalization of clubs is inefficient. Thus,
incentives of individuals and clubs and the collective interest is generally not aligned.

We then study the network of connections among the clubs. When the returns to link
strength are linear, the distribution of link strength across clubs is not important for the
productivity of clubs: as a result, a variety of club networks are stable. In applications,
however, the marginal returns from link strength are likely to be non-linear. For instance, in
case club links are used for information sharing, we would expect marginal returns to decline
with link strength. On the other hand, if links help members coordinate activities of the clubs
then the marginal returns may be increasing in link strength. We show that if the marginal
returns from link strength are increasing, i.e., they are convex, then incentives of clubs and
individuals push towards disconnected cliques of clubs with full strength links. If, on the other
hand, the marginal returns from link strength are decreasing, i.e., they are concave, then the
club network entails larger components that are held together by weak links.*

We also consider a setting where club value is decreasing in link strength with other clubs:
a club prefers individuals who are not members of other clubs. In this setting, when club
capacity is the binding constraint, stable outcomes entail isolated clubs. On the other hand, if
individual availability is the binding constraint then clubs may be obliged to accept individuals
who are also members of other clubs.

The paper closes with brief case studies on inter-locking directorates, defence alliances,
R&D alliances and editorial boards of journals. There is a large and distinguished body
of work on inter-locking directorates, see e.g., Brandeis (1915), Brandeis (2009), Mizruchi
(1996), Levine (1977), Useem (1984), and Davis, Yoo and Baker (2003); for a recent networks
perspective on this literature see Kogut (2012). This literature argues that a major function

of boards is to encourage best practices and that this is facilitated when a board member also

can join up to 4 clubs and every club has capacity 4. The total club capacity is 16, so in principle every
individual could belong to 2 clubs each. We will say that a membership profile exhibits marginalization
when 4 individuals become members of 4 clubs each while the other four individuals are completely left
out.

For concreteness suppose that number of individuals is 16, number of clubs is 6, every individual can
join up to 2 clubs and every club has capacity 5. If returns are convex in link strength then the unique
club-efficient and stable outcome is three cliques of two clubs each, and the links have maximal strength
with 5 common members. If returns are concave in link strength then the unique club-efficient and stable
membership profile is a connected network where every club has a link with one common member with
every other club. These networks of clubs are illustrated in Figure 4 in section 4 below).



has ties with other firms’ boards. If information sharing is important then it is reasonable to
suppose that the marginal returns from the strength of links is declining. In this setting the
theory predicts that the stable (and efficient) club network will contain weak ties and exhibit
high connectivity. This is in line with the empirical evidence: Baker, Davis and Yoo (2001)
and Kogut (2012) show that inter-locking directorates exhibit a small-world property — weak
ties form the basis for a large connected network.®

In the context of defence alliances, a general presumption is that memberships bring ad-
ditional resources but that overlaps in memberships could be detrimental for the security
of an alliance, as a member may share valuable information with potentially adversarial al-
liances; for overviews of the literature on defence alliances see Bloch and Dutta (2012), Bloch,
Sanchez-Pagés and Soubeyran (2006), and Jackson and Nei (2015). The potential negative
impact of common memberships leads us to a model in which the value of a club is falling in
link strength. Our model then predicts that defence alliances will have exclusive membership:
this prediction is in line with the empirical evidence.

R&D alliances among firms have become increasingly common since the 1980’s (Hagedoorn
(2002) and Gulati (2007)). The empirical research suggests that there is great inequality in
the number of alliances firms participate in, the degree distribution has a power law (Powell
et al. (2005) and Konig et al. (2019)). This unequal degree distribution is consistent with our
marginalization results and the connectivity of the network of alliances is consistent with the
prediction of our model in case of concave returns from links.

Our final application pertains to editorial boards of journals. We draw on the work of
Ductor and Visser (2021) to study the membership of authors in these boards and the con-
nections between boards defined by common editors. There exists very significant inequality
in editorial memberships: a very small fraction of authors become editors. Moreover, most
editors serve only on one or two boards, but there exists a core group of editors who serve

on 4 or more journals. The network of the editorial boards is connected that is held together

5 The work on inter-locking directorates is also related to a more general study of elites and power structures

in sociology. In the nineteenth century, the Italian school of sociology proposed a theory of elites defined in
terms of the membership of the top echelons of different — government and non-government — organizations
(Pakulski (2018)). Building on this tradition, in his well-known study of mid-twentieth-century American
society, Wright Mills (1956) argued that the power to make major decisions was highly concentrated: a
very small group of individuals moved between the top levels of the Federal government, a few hundred
largest corporations, and the military. He referred to these individuals as the power Elite. Similar claims
have been made about the concentration of power and influence in other societies. For an overview of the
theory of elites, see Bottomore (1993), and for a critique of theories of elite power and control, see Dahl
(1958). Our model and case studies draw attention to economic forces that push toward concentration of
power in modern society.



with (mostly) weak links. These patterns are consistent with our theoretical predictions on
marginalization and on club networks (in the presence of concave returns from link strength).

There is a voluminous literature on coalitions and networks; for surveys of this work see
e.g., Demange and Wooders (2005), Bloch and Dutta (2012), Bramoullé, Galeotti and Rogers
(2016) and Goyal (2022). Our model draws on the theory of clubs and the theory of networks
to explain phenomena such as marginalization, the small world of interlocking directorates,
and power elites. Specifically, we combine the ideas of congestion and capacity constraints
from club theory (Buchanan, 1965; Cornes, 1996; Demange and Wooders, 2005) with the ideas
of multiple memberships and returns from links from the theory of networks (Bala and Goyal,
2000; Jackson and Wolinsky, 1996; Bloch and Dutta, 2012). We now discuss two earlier papers
that seek in different ways to combine networks and clubs.

In an early paper Page and Wooders (2010) study a setting of bipartite networks in which
individuals decide on which clubs to join. Individual utility depends on own choices as well as
the choices of others. Page and Wooders (2010) focus on the conditions under which the game
of club memberships has a potential function (and this allows them to study the existence of
Nash equilibrium). In our approach the clubs are owned by players who can choose to admit
and expel members; these owners seek to maximize club productivity. The interaction between
players and club owners gives rise to different incentives and strategic effects and hence to
a different solution concept. Moreover, the focus of the paper is on the characterization of
stable membership profiles. In particular we derive a marginalization result and a mapping
between marginal returns to link strength and club networks. While we consider more specific
functional forms and pay-off structures these results go beyond the Page and Wooders (2010)
paper.

A recent paper by Fershtman and Persitz (2021) also studies a model of clubs and networks.
At a general level, there are similarities — both papers study a memberships model. But the
motivation of the two papers is different and so the models and the main insights are also
different. For Fershtman and Persitz (2021) the principal object of interest is the social
network among individuals; by contrast, our interest is in understanding the membership
profile of individuals in clubs. We explore questions such as who joins which club and what is
the network of clubs that arises. This gives rise to very different types of results. Fershtman
and Persitz (2021) highlight a trade-off between the size of clubs, the depreciation of indirect
connections, and the membership fee. By contrast, we develop a marginalization property of
stable outcomes and show why this is socially inefficient. We also draw attention to how the

marginal returns from link strength — whether they are increasing or decreasing — determine

4



the architecture of club networks.

To clarify the relation between our approach and the coalitions and networks approaches it
is instructive to lay out the basic notation and then work through an example. In our model,
there are n individuals and m clubs, each individual can join up to D clubs and every club
can admit up to S members. It is assumed that club productivity is increasing in club size
and in strength of links with other clubs. In our approach we allow D and S to take arbitrary
values. In a coalitions model, the outcome is a partition, so individuals can join only one club,
so D = 1. Similarly, networks constitute a special case where every club can have exactly 2

members, roughly this means S = 2 and the payoff to the club from a single member is 0.

Example 1. Suppose there are 8 individuals and 4 clubs, with individuals able to join 4 clubs
and a club having a capacity of 4. In our model (so long as utilities are not too concave) the
stable and welfare maximizing membership profile involves 4 clubs that are occupied by the
same 4 members. This means that 4 individuals are marginalized. In the coalition framework,
the efficient and stable partition involves every individual joining one club each (thus two clubs
are occupied by 8 members), while the remaining 2 clubs remain unoccupied.® In contrast
to our result there is no marginalization and the network of clubs is empty. In the networks
framework, a relation is bilateral; so clubs consist of exactly 2 members. An efficient and stable
network involves all 4 clubs being occupied by the same 2 members. Thus six individuals are
left out of clubs and marginalization is even greater than in our model and clubs are smaller

(less connected and hence less productive). O

We close the introduction with a few words on the relation with the matching literature.
A key underlying motivation for the matching literature is that individuals (or firms) have
preferences over the individuals that are matched (see Roth and Sotomayor (1992)). This is
the driving force for the original one-to-one matching models and remains a central feature of
many-to-many matching models (see e.g., Hatfield and Kominers (2015), Rostek and Yoder
(2019), Bando and Hirai (2021), Echenique and Oviedo (2006), Klaus and Walzl (2009)). By
contrast, the focus in our paper is on the size of memberships (both for individuals and clubs)
and on the structure of connections between the clubs. The methods of analysis and the results

(on marginalization and on the structure of club networks) are therefore quite different.”

For our definitions of stability and efficiency see section 2 below.

‘We have also extended our model to a setting where individuals have preference for same-type club mates.
Our methods of analysis can be extended in a straightforward manner to cover this case: indeed a small
inclination for homophily leads to a strong division of individuals into distinct groups, and this further
exacerbate payoffs inequality and undermine overall efficiency.
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Figure 1: Comparison of our approach with coalitions and networks

Section 2 presents the model, section 3 presents an analysis of the marginalization and
section 4 presents our results on network structure of clubs. We show how research alliances
among competing firms can be studied using similar methods in section 5. Section 6 presents
case studies on defence alliances, inter-locking directorates, R&D alliances and boards of

editors of journals. All the proofs are presented in the Online Appendix.

2 The Model

There is a set of individuals I = {iy,...,4,} and a set of clubs C = {cy,...,cn}. We use i
to denote a typical individual and ¢ to denote a typical club. Individuals join clubs to become
members. A membership profile is represented by a matrix @ = (a;¢)ier ccc Where a;. € {0,1}
indicates whether individual 7 is a member of club c.

We define a few notions based on a membership profile a. The degree of individual ¢, given

a membership profile a, is the number of clubs joined by :

dz(a) = Z Qe

ceC

The membership size of club ¢, given a membership profile a, is the number of individuals



who join c:

se(a) = Z Qic.

There is a link between two clubs if they share common members. The link strength between

clubs ¢ and ¢, given a membership profile a, is the number of common members they share:

Gee! (CL) = Z Qi -

el

Following the large literature in club theory, we shall assume that there are strong con-
gestion effects that set limits to club capacity (see Buchanan (1965) and Page and Wooders
(2010)). Similarly, we assume that individuals can only join a certain number of clubs; this
is because they have a fixed amount of time and participating in a club has a minimum time
commitment. Formally, we assume that d;(a) < D, for all i € I, and s.(a) < S, for all
¢ € C, where D and S are two positive integers. The set of feasible membership profiles
is A ={a € {0,1}™ : di(a) < D,s.(a) < S}. We also assume that 2 < S < n and
2 < D < m: this ensures that at least one club can be fully occupied and at least one person
can join the maximum number of clubs.

A club provides goods and services to its members. The productivity of a club depends
on its size and on the links it has with other clubs. We assume that until the capacity is
reached, club productivity increases in the number of its members. And we assume that the
productivity of a club is increasing in the strength of the ties it maintains with other clubs.®
In different contexts, we can interpret clubs as different institutions. For example, a club can
be a board of a firm: links between boards, created by overlapping directors, may help the
transmission of best practices and the coordination of corporate strategies. A club can also be
a research alliance between firms: links between alliances, generated by shared participating
firms, can facilitate knowledge spillovers. Depending on the roles links serve, the marginal
returns from link strength vary. If the link helps to convey factual information then the
marginal returns from link strength may be declining. On the other hand, if the information

concerns complex issues such as new technologies or standards then marginal returns to link

8  In some contexts, club productivity may be falling in links with other clubs. This happens for instance if

the clubs are in a competitive setting and when individuals belong to many clubs, they allocate limited
time to each of their clubs and that lowers their productivity. The analysis of clubs and networks with
negative spillovers can be carried out using the same methods as we develop for the case of positive
spillovers across clubs. We comment on the implications of negative spillovers after presenting the results
for positive spillovers.



strength may be increasing. Similarly, if we are in a context of developing common standards
(technological or social) then there may be value in significant overlap of membership.

With these ideas in mind, let us define the productivity of club ¢ € C' in profile a as

m(a) = f(s(a)) + Y h(ge(a)), (1)

c#c

where returns from membership size, f, are strictly increasing with f(0) = 0, and the exter-
nality from links, A, is increasing with h(0) = 0. The next section studies the benchmark case
of linear increasing returns case: h(z) = ax, with a > 0. We take up the case of convex and
concave returns in Section 4.

Turning to individual utility, we assume that an individual enjoys benefits from the pro-

ductivity of clubs she joins. Given a profile a, the utility of individual ¢ € I is

ui(@) = v (Z aicwc(a)> : (2)

ceC

where v is strictly increasing with v(0) = 0. In situations where individuals are directors
of boards, it is natural to assume that their utility increases at a decreasing rate with the
aggregate productivity of clubs they are in, so v”(-) < 0. When individuals are firms that
participate in research alliances, their utility (profit) increases at an increasing rate with the
aggregate clubs they join. To see how, assume that firms reduce production costs by joining
research alliances; let the cost of firm ¢ under membership profile @ be yo — v . aicTe(a),
where vy and 7 are two positive real numbers. Suppose firms are monopolies that operate
in markets with an inverse demand function p = 8 — ¢;, where 8 > 7, then the equilibrium
output of firm i is (8 — v + 7D .cc @icTe(@))/2 and the equilibrium profit of firm i is (8 —
Yo + 7 D owec GieTe(@))? /4, which is a convex function of >° - a;eme(a).’

We study efficient and stable memberships. We consider two standards for a membership
profile to be efficient: maximizing the utilitarian welfare of individuals and maximizing the

aggregate productivity of clubs.

9 We also study the case where firms engage in Cournot competition. In that case, the profit of a firm

depends not only on the aggregate productivity of research alliances it joins, but also on the productivity
of alliances joined by other firms. We demonstrate, in Section 5, that our key results can be extended to
cover this case.



Definition 1. A membership profile a € A is the utilitarian optimum if for all a’ € A,

Z ui(a) > Z ui(a’).

1€l i€l

A membership profile a € A is clubs-efficient if for all a’ € A,

> mela) = m(a).

ceC ceC

Turning to strategic stability, it seems reasonable to require that individuals should be
able to quit clubs if that increases their utility and clubs should be able to expel members if
that raises their productivity. In addition, it seems reasonable to require that an individual
and a club cannot coordinate on a deviation that makes them both strictly better off. i.e., no
pair of individual ¢ and club ¢ can both benefit from a joint deviation where i is allowed to
quit any clubs she is in, ¢ is allowed to exile any members it has, and 7 joins c¢. We propose a
notion of stability that reflects these ideas.

Formally, let a; = (a;c)cec and a. = (a;.);er be the vectors recording the clubs ¢ joins and
the members ¢ has, and let a_; = (airc)irsicec and a_. = (@ )ier,e2c denote the club joining
of individuals other than 7 and member admission of clubs other than ¢. Moreover, we use
a—ic = (Qyrer)irtiee 0 represent the membership profile excluding individual ¢ and club e,
and we use a_;. = (¢ )ire2ic 10 Tepresent the membership profile excluding the relationship
between individual 7 and club ¢. We write a > d’ if a is element-wise greater than or equal to

a.

Definition 2. A membership profile a € A is stable if

1. Vie I,ce C: thereis no @’ € A with o} < a; and @’ ; = a_; such that u;(a’) > w;(a),

or a, < a. and a’_, = a_. such that m.(a’) > 7.(a), and

2. Vi€ I,c € C: there is no a’ € A with a}, = 1, a’
u;i(a’) > u;(a) and m.(a’) > m.(a).

/ —
ie < a_je, and a’; . = a_; . such that

3 Marginalization

This section presents an analysis of a benchmark model in which returns from links take a

linear form, h(x) = ax, where o > 0. So, there is a positive externality from links with other



clubs when a > 0.
We first investigate stable membership profiles. Substituting the linear functional form
for h(-) in the club productivity function in (1), we see that the productivity of a club ¢ € C

under a membership profile a is

l(a) = f(se(a)) + @) ai(di(a) - 1). (3)
ieC

Observe that a club prefers an individual who is also a member of other clubs. Similarly,
given their utility in (2), individuals prefer clubs with higher productivity. These two incen-
tives press in the same direction: clubs like well-connected individuals and individuals prefer
well-connected clubs. Thus, in this model, the incentives of clubs and individuals press toward

marginalizing poorly connected clubs and poorly connected individuals.
To make this precise, let us define a partition of individuals and clubs. Let 7* be the
highest productivity a club can achieve and u* be the highest utility an individual can enjoy.

Observe that in our benchmark model,

7= f(S)+aS(D —1) and u* = v(D7"). (4)

Next note that for a membership profile a, the set of individuals I can be partitioned into

four parts: a first group /;(a) that consists of individuals who join D clubs and obtain utility

*

u*; a second group Ir(a) that consists of individuals who join D clubs but do not obtain
utility u*; a third group, I3(a), who join some but not D clubs; and a fourth group, I4(a),

that consists of individuals who join no clubs.
(a)={i€l:di(a)=D,ui(a) =u"}

Ig(a,) = {l el: dz(a) = D,UZ'(G,) < U*}
(a)={iel:0<d;(a)< D}
(a)={i€l:di(a)=0}

Similarly, the set of clubs can be partitioned into three parts. The first group, C1(a), consists

of clubs with productivity 7*; the second group, Cy(a), consists of clubs with positive pro-

10



ductivity less than 7*; and a third group, Cs(a), that consists of clubs with zero productivity.

Ci(a) ={ce C :m.(a)=7"}
Cy(a)={ceC:0<m(a)<n"}
Cs(a) ={ce C:m.(a) =0}

Let us say that a membership profile exhibits marginalization of individuals if some
individuals become members of D clubs while all other individuals are excluded from clubs
altogether. In other words, I1(a) U Iy(a) U I4(a) = I. Our initial remarks suggest that if
there are enough individuals around as compared to club capacity, then a stable membership
profile must exhibit this marginalization of individuals. Let us work through some examples
to develop a feel for the different issues at work in this model.

The first point to note is that integer constraints may come in the way of this marginal-
ization. This is easily seen in the following example: suppose that n =8, m =4, D = 3 and
S = 4. A membership profile in which five individuals exhaust their membership availability
while a sixth individual joins one club is stable. The following example shows that even in
the absence of integer constraints —i.e., even if m.S/D is an integer — the pure marginalization

property may fail to hold.

Example 2. Suppose that n > 12, m > 10, and D = S = 6. In this case, mS/D is an
integer. We show that there exists a stable club membership profile with individuals joining
some but less than D clubs. Consider the following membership profile. Let i, 7, and ¢, be
three individuals who join 4 clubs. For other individuals, let m — 2 of them, which we denote
with @1,...,%,—2, join D = 6 clubs and the rest of them join no clubs. Allocate iy, iy, ¢., 1, i2,
13 and 74 to four clubs ¢y, o, c3 and ¢4 in the way depicted in Figure 2. Also, let individuals
11 to 14 join any three other clubs and let individuals 5 to %,, s join any six other clubs. This
membership profile, with 3 individuals joining some but less than D clubs, is stable. To see
how, under this memberhip profile, all clubs are full and clubs other than ¢; to ¢4 reach the
highest productivity possible and would not want any deviations. For clubs ¢; to ¢4, they wish
to make deviations. For example, ¢; wants to admit ¢, instead of i,, 7, or i,. If 74 joins ¢, the
productivity of ¢; would raise by 2a and be higher than that of ¢y, ¢3 and ¢4 she is currently
in. With this logic, it seems that i, would want to quit co, c3 or ¢4 and join ¢;. However, note
that with the deviation, the degree of i, 7, or i, drops by 1, making the productivity of ¢,

cs and ¢4 drop by a. Although i4 leaves one of ¢g, ¢ and ¢y, she is still in two of them. The

11



aggregate productivity i4 enjoys from clubs drops by 2a, which cancels out the productivity
gain from c¢;. Hence, 74 has no incentive to make the deviation. Using the same logic, we can
show that ¢y, c3 and ¢4 cannot attract a higher-degree individual to replace i, i, or ¢, as well

and the membership profile is stable. 0

e

W@ @O
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Figure 2: Coordination problem.

This example draws attention to a coordination problem among individuals and clubs: note
that the m clubs and individuals ¢; to %,,—2, ¢, and 7, would be better off in the membership
profile where the clubs are exactly filled by those individuals so that all those individuals have
degree D.

The combination of integer constraints and coordination problems gives rise to a number of
complications that inform the characterization of stable membership profiles that is presented

below.

Proposition 1. Assume that h(x) = ax, where a« > 0. There exists a stable membership

profile. A membership profile a € A is stable if and only if

(1) for every individual i € I and club c € C, ifi is not a member of ¢, then either d;(a) = D

or sc(a) =8,

(i1) for every club ¢ with fewer than S members, every individual i, and every club ¢’ that i

12



joins, if 1 is not a member of ¢, then
me(a) + f(sc(a) + 1) — f(sc(a)) + a(D — 1) < me(a),

In addition, if a > 0, then

(i1i) for every individual i who joins fewer than D clubs, every club ¢ that i does not join,

every individual i in club ¢ must have with dy(a) > d;(a), and

() for every individual i who joins D clubs, every club ¢ that i does not join and every
individual i' that is a member of ¢, if d; < D, then

me(a) + a(D —dy(a)) — « Z i < wo(a), for all ¢ that i joins.
C//¢C/

The proof is presented in the Online Appendix. Let us briefly elaborate on the content of
the conditions so that we can appreciate some of the arguments that are involved. The four
conditions ensure that there is no profitable deviation for a pair of individual ¢ and a club ¢
in four different cases that together exhaust all possible situations.

Point (i) considers deviation where d; < D and s, < S. We require that there does not
exist such a pair as otherwise ¢ can join ¢ and both are better off. Point (i7) considers deviation
where d; = D and s. < S. We require that ¢ does not want to quit an existing club to join
c. The condition states that the productivity of ¢, taking into account the change resulting
from ¢’s joining, must not be greater than that of any club ¢’ that 7 is currently a member of.

In points (7) and (i7) we assume s. < S. So, they are not about ¢ replacing a low-degree
individual with a higher-degree one, but concern ¢ joining a higher-productivity club. Hence,
the two conditions are needed both when o = 0 and when o > 0. For the next two situations
we look at, s, = 5. They are only needed when o > 0.

Point (iii) considers deviation where d; < D and s. = S. We require that ¢ does not want
to replace an existing member with i. The requirements leads to the characterization that for
1, v with degree less than D, if d; > d;, then the set of clubs ¢ joins is a superset of clubs ¢’
joins.

Point (iv) considers deviation where d; = D and s. = S. Now, for ¢ to join ¢, i needs
to quit a club ¢’ and ¢ needs to expel a member i’. A profitable deviation does not exist if
either (1) d; < dy, so that the club has no replacement incentive, or (2) the individual has no

wish to switch clubs. Note, however, the condition for ¢ to not want to change does not only

13



require that the productivity of ¢, taking into account the change resulting from 4’s joining,
is not greater than that of ¢’, as in the case of (ii). There is an additional consideration that
i hopes ¢’s exiling of i does not hurt her utility (this is key to the stability of non-marginal
membership profile in Example 2). This is captured by the term a ), Lo Qier Qs

Equipped with this characterization, we can provide a fairly complete description of the
partition of individuals and clubs in a stable membership profile. This will allow us to answer
the question of whether or not stability implies marginalization of individuals and clubs. It
is helpful to define egalitarian and unequal membership profiles. A membership profile is
egalitarian if there is minimal difference in the degrees between individuals. As opposed to
an egalitarian membership profile, a membership profile marginalizes individuals if almost all
individuals join D clubs or no clubs at all. Similarly, a membership profile marginalizes clubs
if all clubs have either S members or 0 members. Define a measure of marginalization for

individuals as

Ii(a)| + |I2(a)| + |Is(a)| — mS/D
M, — 1) !;ES)I_ m|53/<D)| /D (5)
Observe that Mz € [0,1]; it takes on value 0 when the number of individuals who join
clubs is equal to mS/D and it is equal to 1 when the number of individuals who join clubs is
equal to the aggregate club capacity, mS.

Likewise we may define marginalization of clubs with the measure

_ [Gi(a)[ +[C5(a)| = nD/S
B nD —nD/S ' (6)

Me

Definition 3. A membership profile a € A is egalitarian if there is minimal difference between
the membership level of individuals: |d;(a) — d;(a)| < 1 for any pair ,j € 1.
A membership profile @ € A marginalizes individuals if M7 is close to 0.

A membership profile a € A is said to marginalize clubs if M, is close to 0.

Proposition 2. Assume that h(z) = ax, where a > 0. When a = 0, an egalitarian member-

ship profile is stable. When o > 0, for a stable a,
o ifnD >mS, then

mS  S(D+3 msS
25 5P < \(a)) < 0(a) U b@)] < 72 ana
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Therefore, Mz < ﬁ: every stable membership marginalizes individuals for large m.

o ifnD <mS, then

%_D< @) < ™2 and
D D
m—%—D§|C’3(a)|§m—%.

Therefore, M¢ < (s—%m every stable membership profile marginalizes clubs for large n.

The proof is presented in the Online Appendix.

In the absence of network externalities, it is fairly straightforward to see that an egalitarian
club profile is stable. Given nD > mJS, assign the m.S club slots to distinct individuals, this is
clearly stable as there is no advantage of having common membership in clubs (the difference
in degree between the maximally connected and minimally connected individual is 1). Given
nD < mS, assign the nD membership capacity across the nD /S clubs. Everyone has an equal
number of memberships equal to D.1°

Turning to the setting with positive externalities, let us comment on the expressions for
the bounds. Clearly, mS/D is the maximal number of individuals who can be a member of
D clubs each. So the upper bound on |[;(a) U Iy(a)] is fairly immediate. Let us comment on
the lower bound for |I1(a)|. To do this we derive an upper bound on |I3(a)| and |I3(a)|. To
derive a bound on the number of individuals in |/5(a)|, note that all of them must join a club
in Cy(a). The number of clubs in Cy(a) is limited by D because the member who has the
highest degree in the least productive club of Cy(a@) must join all clubs in Cy(a), otherwise,
she would deviate to join another Cy(a) club and the club is willing to take her. Therefore,
the number of available slots for I(a) individuals from Cs(a) clubs is (weakly) smaller than
(S — 1)D. In the proof we show that the number of I3(a) individuals who only join one
Csy(a) club is limited by S — 1: putting together these numbers we arrive at the bound of
S—1+[(S—1)D—(S-1)]/2=(S—1)(D+1)/2 for the number of individuals in Iy(a).
Turning to |I3(a)|, observe that for individuals in I3(a), if an individual i’s degree is greater
than or equal to the degree of another individual 7', then the set of clubs ¢ joins must be a

superset of the set of clubs ¢’ joins. Otherwise, ¢ can crowd out ¢" and join one more club.

10 Matters are slightly more complicated when nD/S is not an integer: in that case, let |[nD/S| clubs have

S members and one club have (nD) mod S members. The structure is stable and every individual has
degree D.
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Thus, for a club that hosts the individual with the lowest degree in I3(a), it must be the case
that it hosts all individuals in I3(a). Since a club can host at most S members, |I3(a)| < S.
The expression in the Proposition follow by noting that S(D +3)/2 > S+ (S —1)(D+1)/2.

We now turn to the marginalization results. Note that, when nD > mS, we can derive
an upper bound on |I3(a)|: this set is at most of size S. Fixing D and S, for large n our
measure Mz approximates 0: in other words, if nD > mJS, and n is large, then every stable
membership profile marginalizes individuals. Similarly, if nD < mJS, and m is large, then
every stable membership profile marginalizes clubs.

We next turn to welfare properties of membership profiles. We have shown that in the
presence of a connection externality, a stable membership profile always marginalizes individ-
uals or clubs. Are such membership profiles desirable? We show that the answer depends on
whether we look at clubs-efficiency or at the utilitarian optimum. In our study of utilitarian
optimum, we will make use of the following condition on the concavity of the utility function.

n—1

o) = 000) > (0= 1) (v (769) + 252 o (s5) ) 7)

Proposition 3. Suppose a > 0. Assume nD > mS and that mS/D is an integer.!!

o A membership profile is clubs-efficient if and only if mS/D individuals join D clubs and

the remaining individuals join no clubs (Mz =0).

o [fv"(-) > 0, then a membership profile is an utilitarian optimum if and only if it is
clubs-efficient. If v"(-) < 0 and satisfies condition (7), then in any utilitarian optimum
membership profile, either d;(a) <1 for alli € I ord;(a)>1 foralliel (Mz=1).

Assume nD < mS and that nD/S is an integer.

o If f"(-) > 0, then a membership profile is clubs-efficient if and only if nD/S clubs
admit S members and the remaining clubs admit no members (Mc =0). If f"() <0,
then a membership profile is clubs-efficient if and only if (nD) mod m clubs admit f%}

members and the remaining clubs admit L%J members (Mc =1).

o A membership profile is an utilitarian optimum if and only if nD/S clubs admit S

members and the remaining clubs admit no members (Mc = 0).12

L Tn the Online Appendix, we provide characterizations of clubs-efficient and utilitarian optimal membership

profiles without the integer condition.

12°If the integer condition (S divides nD) does not hold, then the utilitarian optimum characterization for
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The proof is presented in the Online Appendix.

Consider first the case where nD > m.S. Proposition 3 tells us that a membership profile
that maximizes the aggregate output of the clubs features a strong form of marginalization:
(modulo integer restrictions) club-efficient profile allocates exactly m.S/D individuals into
memberships, all other individuals join no clubs. This is because this marginalization ensures
maximal overlap of members between clubs.

Turning to the utilitarian optimum, if the utility of individuals rises at an increasing or
constant rate with the productivity of clubs they join, i.e., if v”(-) > 0, then the profile that is
utility-maximizing is the same as the profile that is productivity-maximizing. This is because
when v”(-) = 0, the aggregate utility of individuals is simply the number of individuals club can
admit, S, times the aggregate productivity of clubs, and when v”(-) > 0, utilitarian optimality
pushes toward marginalization of individuals, which coincides with the outcome generated by
clubs-efficiency. If; on the other hand, the marginal utility is decreasing, i.e., v”(:) < 0, then
that opens up a potential trade-off: although a concentration of memberships maximizes the
total output of clubs, it comes at the expense of entirely excluding n —m.S/D individuals from
memberships. If the utility function is sufficiently concave — the marginal utility is declining
sufficiently rapidly (a condition that is formalized in inequality condition (7), then the welfare
benefit from picking more members outweighs the loss to aggregate productivity. We present
an example that brings out the difference between clubs-efficiency and utilitarian optimum

when we move from a convex/linear to a concave utility function.

Example 3. Suppose n = 16, D = 4, m = 8 and S = 4. Figure 3a depicts a membership
profile that is clubs-efficient and utilitarian optimum when v(-) is linear. Notice that in this
membership profile, 8 individuals (i; to ig) exhaust their membership availability while the
other 8 individuals (ig to i16) join no clubs. To appreciate the role of concave v(-) is concave,
set

10z when = < 2f(4) + 8«,

10(2f(4) +8a) + 0.1 (x — 2f(4) — 8a)  when x > 2f(4) + 8a.

In this case, the clubs-efficient outcomes remains unchanged and is as in Figure 3a, while the
utilitarian optimal profile, which features all 16 individuals joining 2 clubs, is given in Figure
3b. O

when v”(-) > 0 and when v”/(-) < 0 could be different. When v”(-) > 0, there is one club that hosts
some but less than S members. When v”(-) < 0, the number of clubs that admit some but less than S
members ranges from 1 to .S — 1.
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Figure 3: Efficient membership profiles.
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Let us next take up the case where nD < mS. On club efficiency, note that there are
enough club capacity to cover the individuals, so every person will join D clubs: keeping
anyone out of clubs is clearly dominated for clubs. Moreover, as spillovers are linear, there
is a constant spillover irrespective of how the individuals are allocated across clubs. So the
issue of how to allocate individuals turns on the f function. If f is convex, then it is better
to allocate individuals to few clubs, i.e., nD/S clubs; if on the other hand, f is concave then
you allocate as evenly as possible across clubs, subject to integer constraints.

Regarding utilitarian optimum profiles, no matter what the f function, the optimal profile
entails marginalization of clubs. This is because to maximize the aggregate utility of indi-
viduals, it is clearly better to allocate more individuals to high-productivity clubs and fewer
individuals to low-productivity clubs. This taken in tandem with the assumption that the
productivity of a club rises with its size implies the marginalization of clubs.

When we compare Propositions 2 with 3, we see that there exists a tension between the
incentives toward marginalization (created by the increasing club productivity from member-
ship and from the strength of links with other clubs) and the demands of inclusiveness (created
by the concave utility function and concave club production function).

We conclude our study of the benchmark model with a brief remark on stable and efficient
membership profiles when spillovers across clubs are negative. This happens when a < 0
in the benchmark model. Observe that when spillovers are negative, a club would like to
only admit members who have no other memberships. So in a world with many individuals
relative to club capacity, i.e., n > mJS, any stable membership profile must involve exactly m.S
individuals filling the aggregate club capacity, i.e., every person joins at most one club and the
resulting club network is an empty network. However, when the number of individuals is small
the clubs face a trade-off: on the one hand, their productivity grows with membership (up to
their capacity size). On the other hand, expanding membership may necessitate bringing in
individuals who are already members of other clubs, and this lowers their productivity. We
can apply methods developed above to show that whatever the outcome of the tradeoff is,
a stable profile and an aggregate productivity maximizing profile both feature an egalitarian
membership profile, i.e., there does not exist two individuals ¢ and ¢ with |d;(a) —dy(a)| > 1.

The argument goes as follows: suppose there exist two individuals ¢ and ¢ where d;(a) >
d;(a) + 2. If so, then there exists a club ¢ which ¢’ joins but not i. Clearly, this club ¢ would
want to expel i and recruit 7. We show that 7 is also willing to join ¢. By joining an additional
club, the productivity of the clubs ¢ currently joins drops by «. Nevertheless, the productivity

of ¢, after ’s joining must be greater than d;(a)a, as otherwise, ¢ would not want to admit

19



1. There is therefore a profitable deviation for the club-individual pair ¢ and ¢. Turning to
maximizing the aggregate productivity of clubs, note that the same deviation also improves
the situation: it reduces the productivity of clubs ¢ joins by a and raises the productivity of

clubs ¢’ joins by at least «. The result then follows given that ¢’ is in more clubs than ¢ does.

4 Small worlds, fragmented cliques, and strength of ties

In this section, we examine the network of clubs and the strength of ties that support
this network.!® In our study of membership profiles so far, we have assumed that returns
were linear in link strength. We start by showing that in this case, a variety of club networks
are stable. In some prominent instances, however, the returns from link strength are likely
to be non-linear. For example, in case club links are used for information sharing then we
would expect marginal returns to decline with link strength. On the other hand, if links help
members coordinate activities of the clubs, then the marginal returns may be increasing in link
strength. With these observations in mind, we examine the implications of non-linear returns
from link strength. We show that if the marginal return from link strength is increasing, then
incentives of clubs and individuals push toward disconnected cliques of clubs with full strength
links. If, on the other hand, the marginal return from link strength is decreasing then the

club network entails larger components that are connected through weak links.

Example 4. Suppose that n > 15, m =6, D = 2 and S = 5. Figure 4 depicts two clubs-
efficiency and stable membership profiles when returns from links rise linearly. Note that the
two profiles lead to the same degree distribution of individuals (the first 15 individuals all
join two clubs while the others join no clubs) and the same aggregate link strength clubs have
(each club shares five membership overlaps with other clubs). However, the resulting club
networks take very different forms: one consists of three separate cliques where all links are
of strength 5 while the other is a complete network where all links are of strength 1. This
indicates that linear spillovers from links always lead to marginalization of individuals/clubs

but the resulting club networks can be very different.

13 A membership profile can be projected both into a network of clubs and a network of individuals. In

this section, we focus on the club network. Nevertheless, the individual network, since originated from
the same membership profiles as the club network, shares some important properties with the latter. For
example, there exists a strong link (link with strength greater than 1) in the club network if and only if
there exists a strong link in the individual network, and the club network is connected iff the individual
network is connected. Therefore, we can infer properties of the individual network with analysis on the
club network.
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Figure 4: Clubs-efficient and stable membership profiles.
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When h(+) is convex, there is a unique clubs-efficient membership profile which is depicted
in Figure 4a. We know that when h(-) is convex, the productivity of a club is maximized if
the number of membership overlaps it has with other clubs is maximized and concentrated
in as few clubs as possible. This can only be achieved when the club network takes the form
depicted in Figure 4a.

On the other hand, when h(-) is concave, Figure 4b depicts the unique club-efficient net-
work. When h(-) is concave, clubs want to maximize their membership overlaps with other
clubs and spread them as evenly as possible. In this example, for this to be the case, the club
network has to be complete with all links being weak.

Turning to stability, the structure depicted in Figure 4a is stable when h(-) is convex, since
all clubs have reached the highest productivity possible and have no incentives to deviate. It
is not stable when h(-) is concave: there is a profitable deviation for individual s and club ¢,
where c; exiles 7; to admit ig and ig leaves c3 to join ¢q.

Similarly, the structure depicted in Figure 4b is stable when h(-) is concave but not so
when h(-) is convex. Stability under a concave h(-) is obvious since all clubs have reached
the highest productivity possible; instability under a convex h(-) can be verified by again
considering the deviation by individual ig and club ¢; where ¢y exiles iy to admit 7 and g

leaves c3 to join c¢;. O

The above example shows that the curvature of the returns from links has a significant
influence on the structure of club networks. A convex h(:) function results in fragmented club
networks with strong links while a concave h(-) function leads to connected club networks with
weak links. Proposition 4 generalizes this example to cover a broader range of group size and
capacity configurations. Formally, we say a club network g = g(a) is clubs-efficient /utilitarian
optimum /stable if it is created with a clubs-efficient /utilitarian optimum/stable membership
profile a. Additionally, we define a k-clique as a subnetwork that has £ mutually linked clubs
and a k-regular network as a network where all clubs have k links. The complete network is

a special kind of regular network where all clubs are linked to each other (k =m — 1).
Proposition 4. Assume nD > mS, D =2, m is even, and 2 < S < m — 1.

o When h(-) is convez, the clubs-efficient club network consists of m/D separate 2-cliques
where all links are of strength S. This network is stable when h(+) is convex and unstable

when h(-) is concave.

o When h(-) is concave, the clubs-efficient club network is an S-regular network (a complete
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network when S = m — 1) where all links are of strength 1. This network is stable when

h(-) is concave and unstable when h(-) is conver.
Assume nD <mS, D =2, S dividesn, and 2 < S <2n/S — 1.

o When h(-) is convez, the utilitarian optimum club network consists of n/S separate 2-
cliques where all links are of strength S. This network is stable when h(-) is conver and

unstable when h(-) is concave.

o When h(-) is concave, the utilitarian optimum club network is an S-regular network (a
complete network when S = 2n/S — 1) where all links are of strength 1. This network

is stable when h(-) is concave and unstable when h(-) is convez.

The proof is presented in the Online Appendix.

As mentioned earlier, the club network and the individual network generated by a mem-
bership profile share some important properties. The club network mentioned in Proposition
4 can be mapped into individual networks. When A(-) is convex, our characterization involves
2-cliques with strength S links for the club network; the corresponding individual network
consists of S-cliques with strength 2 links. When A(-) is concave, our characterization fea-
tures a S-regular club network with strength 1 links; the corresponding individual network is

a D(S — 1)-regular network with strength 1 links.

5 Variation on the model: alliances among competing

firms

In Section 2 we showed that our model can be used to study the formation of research
alliances of monopolies. We now turn to the study of research alliances between competing
firms. The difference is that when firms compete in the same market they care not only about
their own costs but also the costs of other firms, which is influenced by their club (research
alliance) joining choices. In this section, we modify our model to address this complication
and show that our arguments can be extended to this setting and that our main results are
robust.

We assume that firms engage in Cournot competition and the demand of the market follows

a linear inverse demand function p = f— 3., ¢;- The cost of firm 7 under membership profile
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a, as in the monopoly case, is Yo — vV .cc @icTe(a). Given a project profile a, the Cournot

equilibrium output can be written as

(B =) +n Zcec aieme(@) — 7y Zi/;éi Zcec ayce(@)
n+1

, (8)

gi(a) =

and the Cournot profit of firm 4 is given by ¢;(a)?. In the language of our model, by treating

a firm as an individual, the utility of individual ¢, given membership profile a, is

ui(a) = v (Z a;.me(a), Z Z aixcwc(a)> = gi(a)’.

ceC i'#i ceC

From (8), we can see that the objective of a firm is rising in the productivity of research
alliances it joins and decreasing in the productivity of research alliances other firms join.
Nevertheless, note that the term a;.7.(a), which captures the aggregate productivity of clubs
i joins, is multiplied by yn, while the term ) . ay.7.(a), which is the aggregate productivity
of clubs other firms join, is multiplied only by ~. So, the incentive of a firm to maximize the
aggregate productivity of clubs it joins dominates other considerations. The structure of stable
membership profiles in this extended setup is thus analogous to those characterized for the
standard model.

To be more specific, let us first consider the case where the productivity of a research
alliance rises linearly with the strength of links it has with other alliances (h(x) = ax, where
a > 0). We partition firms (individuals) and research alliances (clubs) in a similar way as
done in Section 3, so that I1(a) is the set of firms that join D alliances and have the highest
profit among all firms, I5(a) is the set of firms that join D alliances but have lower profit than
those in I;(a), I3(a) is the set of firms that join some but not D alliances, I4(a) is the set of
firms that join no alliances, C}(a) is the set of alliances that reach the highest productivity
possible, Cy(a) is the set of alliances that have positive productivity that is lower than those
achieved by alliances in C}(a), and Cs(a) is the set of alliances with zero productivity. We

show that we arrive at the same marginalization results as characterization in Proposition 2.

Proposition 5. Assume that firms engage in Cournot competition and that h(x) = ax, where

a > 0. When a =0, an egalitarian membership profile is stable. When a > 0, for a stable a,
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o ifnD >mS, then

S S(D+3 S
nz) — ( 5 ) < |L(a)| < |i(a)U L(a)| < % and

mS mS

Therefore, Mz < ﬁ: every stable membership marginalizes firms for large m.
e ifnD < mS, then
D D
% - D < |Ci(a)] < % and
nD nD
- —_-D<|C <m— —.
m—"2 - D < |Cyla)] <m— "
Therefore, M¢ < ﬁ every stable membership profile marginalizes research alliances

for large n.

The proof is presented in the Online Appendix.

Turning to the effect of having increasing/decreasing marginal returns from links, we show
that, as in the standard model, increasing marginal returns leads to an R&D network that
consists of strongly linked fragmented cliques while decreasing marginal returns leads to a

weakly linked connected network.

Proposition 6. Let ©+ = min{m,nD/S} so that x equals m if nD > mS and nD/S if
nD < mS. Assume D =2, x is even, and 2 < S <z — 1.

e There exists a membership profile a where the resulting alliance network consists of
separate 2-cliques with strength S links and the resulting firm network consists of separate
S-cliques with strength 2 links. This membership profile is stable when h(-) is convex

and unstable when h(-) is concave.

o There exists a membership profile a where the resulting alliance network is an S-reqular
network (a complete network when S = x—1) with strength 1 links and the resulting firm
network is a D(S — 1)-reqular network with strength 1 links. This membership profile is

stable when h(-) is concave and unstable when h(-) is convez.

The proof is presented in the Online Appendix.
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6 Case Studies

In this section we present four case studies that map our theory onto empirical context of

defence alliances, inter-locking directorates, R&D alliances and editorial boards of directors.

Defence Alliances: In terms of the terminology of our model, we may think of a defence
alliance as a club and countries as individuals. This is a reasonable application for our model
as members of the defence alliances decide on whether to let in new countries (and they may
sometimes expel a member). A country can also choose to leave an alliance or to ask to join
a new alliance. Links between alliances generate negative spillovers: a defence alliance will
be very reluctant to admit a member from a competing defence alliance, as admitting such a
member may compromise the security of the entire alliance. The empirical evidence presented
here is taken from Jackson and Nei (2015).

Figures ba and 5b present the club network of strategic and defence alliances in the years
1960 and 2000. Observe that in 1960, the network of alliances exhibits clear fragmentation
along lines of geography and ideology. Indeed, there are few common members across the clubs
(other than the USA and Canada). Turning to 2000, the major change that happened is the
dissolution of the Warsaw Pact, but the club network remains fragmented. This fragmentation

of the network matches with the prediction of our model with negative spillovers across clubs.

Interlocking Directorates: It is widely recognized that the board-to-board ties serve as
a mechanism for the diffusion of corporate practices, strategies, and structures (Mizruchi
(1996)). We may consider boards as clubs and directors as individuals; links between clubs
raise productivity. In what follows, we discuss empirical studies on interlocking directorates
and explain how our model sheds light on the understandings of the empirical findings.
Consider first the degree distribution of board directors. Conyon and Muldoon (2006)
study the affiliations of board directors who hold positions in 1,733 firms in the United States
in 2003. They find that 80.37% of the directors sit only on one board, 13.02% of them sit on
two boards, and the remaining 6.61% of the directors sit on 8.6 boards on average. Thus most
directors hold only one or two positions, but there are a small fraction of directors who occupy
many positions. The authors show that similar patterns hold in Germany and the UK. This
inequality in degrees of directors is in line with the marginalization result (Proposition 2)
Consider next the structure of board networks. Mizruchi (1982) provides a historical anal-

ysis of the US board network among 167 firms at seven points from 1904 to 1974, finding that
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Lebanon, Libya, Morocco,

Organization of Amercian States

Argentina, Bolivia, Brazil, Chile,
Colombia, Costa Rica, Cuba,
Dominican Republic, Ecuador, EI
Salvador, Guatemala, Haiti,
Honduras, Mexico, Nicaragua,
Panama, Paraguay, Peru, United
States, Uruguay, and Venezuela

NATO

Warsaw Pact

Belgium, Canada, Denmark, France,
Greece, Iceland, Italy, Luxembourg,
the Netherlands, Norway, Portugal,
Turkey, United Kingdom, United
States, and West Germany

Soviet Union, Albania,
Bulgaria, Czechoslovakia,
East Germany, Hungary,

Poland, and Romania

French Equatorial
Africa

Congo, Chad, Central
African Republic, and

Arab League

Egypt, Iraq, Jordan,
CENTO

Saudi Arabia, Sudan,
Syrian Arab Republic,
Tunisia, and Yemen

Iran, Iraq, Pakistan,
Turkey, and United
Kingdom

Australia, France, New
Zealand, Pakistan,
Bangladesh, the Philippines,
Thailand, United Kingdom,
and United States

(a) Alliances in 1960

Organization of Amercian States

ECCAS

CSTO Antigua and Barbuda, Argentina, Bahamas,
Barbados, Belize, Bolivia, Brazil, Canada,
Chile, Colombia, Costa Rica, Cuba, Dominica,
Dominican Republic, Ecuador, El Salvador,
Grenada, Guatemala, Guyana, Haiti,
Honduras, Jamaica, Mexico, Nicaragua,
Panama, Paraguay, Peru, Saint Kitts and
Nevis, Saint Lucia, Saint Vincent and the
Grenadines, Suriname, Trinidad and Tobago,
United States, Uruguay, and Venezuela

Armenia, Azerbaijan,
Belarus, Georgia, Kazakhstan,
Kyrgyzstan, Russia,
Tajikistan, and Uzbekistan

Republic of the Congo ,
Democratic Republic of the
Congo , Equatorial Guinea,

and Rwanda

Arab League

NATO

Egypt, Algeria, Bahrain, Comoros,
Djibouti, Iraq, Jordan, Kuwait,
Lebanon, Libya, Mauritania, Morocco,
Oman, Qatar, Saudi Arabia, Somalia,
State of Palestine, Sudan, Syrian
Arab Republic, Tunisia, United Arab
Emirates, and Yemen

Belgium, Canada, Czech, Denmark,
France, Greece, Hungary, Iceland,
Italy, Luxembourg, the Netherlands,
Norway, Poland, Portugal, Spain,
Turkey, United Kingdom, United
States, and West Germany

ECOWAS

Benin, Burkina Faso, Cabo
Verde, Cote d'lvoire, The
Gambia, Ghana, Guinea,

Guinea-Bissau, Liberia, Mali,
Mauritania, Niger, Nigeria,
Senegal, Sierra Leone, and

Togo

(b) Alliances in 2000

Figure 5: Club network of defence alliances.
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almost all nodes were within distance 4. More recently, with the increased availability in data
and advancement in analyzing techniques, Davis et al. (2003) study the largest manufacturing
and service firms in the US over the period 1982 to 1999. They show that despite the major
changes in the nature of economic activities, the structure of the board network remained
relatively unchanged: the average geodesic distance between boards was 3.38, 3.46, and 3.46
in 1982, 1991 and 2001.

Turning finally to the strength of ties among boards: Battiston and Catanzaro (2004)
investigate the board networks of the Fortune 1000 firms in 1999 and show that they consist
mostly of weak links (the number of strength 1 links is about 10 times that the number of
stronger links) and that they have a small world feature (the largest connected component
includes 87% of all firms). Given that links between boards serve as information diffusion
channels, the marginal returns from board-to-board ties are likely to be decreasing. Propo-
sition 4 shows that in this case the club network is likely to be held together by weak links.

The empirical patterns are consistent with our theoretical analysis.

Heath Care Organizations: Willems and Jegers (2011) study the interlocking boards of
92 Belgian health-care organizations. One of their main findings is that the board network is
fragmented with strong links: the 92 organizations are divided into 23 components; 24 pairs
of organizations share exactly the same set of board members and the heaviest link in the
network is of strength 10.

Woo (2017) and Hansson et al. (2018) suggest that health care organizations often need to
collaborate with each other to treat multi-diseased and vulnerable patients. To achieve smooth
coordination, it is more efficient for organizations to have multiple shared directors with their
partners. In the language of our model, this suggests that marginal returns from links are
increasing in overlaps. In this case, the theory predicts that the resulting board network is
fragmented with strong links. This is consistent with the empirical finding of Willems and
Jegers (2011).

R&D Alliances: Research agreements among firms that involve technology development
and sharing have become increasingly common since the 1980’s (Hagedoorn (2002)). These
arrangements have profound effects on the firms and on the functioning of the markets they
operate in (Gulati (2007)). Here we very briefly summarize some of the empirical patterns on
collaboration.

First, there appears to exist a great disparity in the participation of alliances among firms.
Powell et al. (2005) and Konig et al. (2019) show that the distribution of the number of
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alliances a firm joins has a power-law degree distribution. In a similar vein, Rosenkopf and
Schilling (2007) and Kitsak et al. (2010) show that R&D networks have a core-periphery struc-
ture. This unequal degree distribution is consistent with our marginalization characterization.

Next, let us consider the network of clubs (where a club is an alliance). A number of
studies show that across most industries the network is connected (Owen-Smith and Powell,
2004; Roijakkers and Hagedoorn, 2006; Hanaki et al., 2010; Schilling and Phelps, 2007). Our
view is that there are positive spillovers from shared memberships but as these are generally
information sharing arrangements the marginal returns from strength of ties is falling. Propo-
sition 4 suggests that in this case the stable network will exhibit high connectivity. This is
consistent with the empirical evidence.

The empirical research also shows that the network of alliances is fragmented in the case of
chemical and petroleum refining. Our view is that this may be due to the relative importance
of information and competitive elements involved. If strategic and competitive elements are
dominant then our analysis of negative spillovers across clubs may be more relevant. Our
discussion of that setting suggests that the network will be fragmented. This may help explain

the pattern in these industries.

Boards of Editors of Journals: The editorial board of a journal along with its set of referees
shapes the research papers that are published in it. The collection of prestigious journals in a
discipline taken together therefore can have a profound influence on the directions of research
in that discipline. In economics, there has existed a concern for some time now that the
leading journals are dominated by members from a few economics departments based in the
United States. This concentration of editors has some to suggest that the discipline may be
a risk of becoming too conformist and losing its innovativeness. This question has become
more pressing over the last few decades as the profession has grown greatly and there has
been a massive increase in the number of journals: this has resulted in a massive increase in
the relative prestige of publishing in a few core journals. A leading economist has termed this
phenomenon ‘Topbites’ (see Serrano (2018) and ?) and in a recent paper the emphasis on
top few journals in the career prospects of economists has been referred to as the ‘Curse of
the top-5’ (Heckman and Moktan (2020)). We may view authors as individuals and boards of
journals as clubs. In this case study we draw on a recent paper by Ductor and Visser (2021)
to document some facts about editorships and the relationship between the boards of leading
journals and then relate them to our theoretical predictions.

Ductor and Visser (2021) study a set of 106 leading economics and finance journals over
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the period 1990-2011. They find that there were 79533 authors publishing in these journals
but that only 6069 became editors, i.e. only 7.63%. Moreover, within the set of editors, over
75% were editors of just one journal but over 1.6% of these editors were editors at 4 or more
journals. We recognize that the model assumes individuals are ex-ante homogenous while
economics authors clearly differ in their abilities and productivity and their suitability for
editorial roles. But, at a high level, these two facts are broadly consistent with the model’s
prediction on the marginalization of individuals (that can arise even if all individuals are
similar).

Turning next to the links between the boards of different journals, for concreteness let us
discuss the empirical situation in 2010. The network contains the 106 journals as nodes; a
link between two journals reflects common editors. An inspection of this network reveals a
number of interesting facts. The largest component contains 101 nodes, suggesting that it is
more or less connected. The network is sparse with roughly 11% of all possible links being
present. These links have uneven strength but the vast majority of the links are weak — over
82% have only one or two common editors. These facts suggest that the network is a small
world that is held together with mostly weakly ties.

To illustrate these patterns, we present the network of editorial boards of leading eco-
nomics journals from the year 2010 in Figure 6. The network covers 28 leading economics

journals.

We see that the network is connected and that most of the links are relatively
weak. Interestingly the network is held together through a hierarchical structure — the general
interest journals share common editors with field journals; there are relatively few ties among

the general interest journals and the field journals, respectively.

14 These journals are Journal of Health Economics (JHE), Review of Economics and Statistics (REStat), Re-

view of Economic Studies (REStud), Econometric Theory (ET), Journal of Monetary Economics (JME),
Quarterly Journal of Economics (QJE), Journal of Economic Literature (JEL), Journal of Business and
Economic Statistics (JBES), Econometrica (ECMA), Review of Financial Studies (RFS), RAND Journal
of Economics (RAND), Economic Journal (EJ), Journal of Environmental Economics and Management
(JEEM), Journal of Finance (JoF), Journal of Econometrics (JoE), Journal of International Economics
(JIE), European Economic Review (EER), World Bank Economic Review (WBER), International Eco-
nomic Review (IER), American Economic Review (AER), Journal of Human Resources (JHR), Journal
of Labor Economics (JLE), Journal of Political Economy (JPolE) Journal of Public Economics (JPubE),
Games and Economic Behavior (GEB), Journal of Economic Theory (JET), Journal of Economic Per-
spectives (JEP), Journal of Financial Economics (JFE).
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Figure 6: The editorial boards of economic journals 2010. Node size reflects number of editors;
link thickness indicates number of common editors. Courtesy of Lorenzo Ductor and Bauke
Visser
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7 Appendix: For Online Publication

Proofs

Proof of Proposition 1

We first take up the characterization — the sufficient and necessary conditions — for stability.
We then prove existence.

From the production function of clubs and the utility function of individuals, we know
that there cannot be any ¢« € I,c € C and a’ € A with a] < a; and o', = a_; such that
u;(@’) > u;(a), or a, < a. and a’ . = a_. such that n.(a’) > 7.(a). Hence, the deviations
we need to consider are joint deviation by ¢ and ¢ such that both of them are better off.
Such deviation can be divided into four types: individual ¢ joins club ¢ and nothing else is
changed; individual ¢ quits some clubs and joins club ¢; club ¢ dismisses some members and
admits individual 7; and individual 7 quits some clubs, club ¢ dismisses some members, and ¢
joins c¢. Notice that for the last three kinds of deviations, if quitting two or more clubs and
dropping two or more members is profitable, then quitting only one club and dropping only
one member is also profitable given our utility and productivity specification. So, we only
consider deviations with one quitting and (or) one dropping. We show that conditions (i)—(iii)
are necessary and sufficient for the four kinds of deviations not to be jointly profitable.

For the necessity of condition (i), suppose it does not hold and there exists an individual
i € I with d;(a) < D and a club ¢ € C with s.(a) < S, such that ¢ is not a member of ¢. But
then ¢ joining c is strictly improving for both parties, which contradicts stability of a.

We also show that if condition (i) holds, then there is no jointly profitable deviation for i
and ¢ where 7 joins ¢ and nothing else changes since such deviation is not feasible.

For the necessity of condition (ii), suppose, to the contrary, that there exists a club ¢ with
sc.(a) < S, an individual ¢ € I who is not a member of ¢, and a club ¢ € C' that i joins, such
that

me(a) > 1o (a) — f(sc(a) + 1) + f(se(a)) —a(D - 1). (9)

Notice that, by condition (i), d;(a) = D. Let a’ be a membership profile obtained from a
by i leaving ¢’ and joining ¢ and ¢ accepting i. First, it is obvious that m.(a’) > m.(a). The

difference in productivity of ¢ between a’ and a is equal to

71'c(a’/) - Wc(a) = f(sc(a') + 1) - f(sc<a’)) + a(D - 1)7 (10)

36



so the difference in utility of ¢ between a’ and a is equal to

ui(a’) —ui(a) =v(r.(a) + f(sc(la) + 1) — f(sc(a)) + a(D —1) + Z Qi e (@))

c'#e,
—o(re(a) + Y tero(a)), (11)
c'#e,d
which has the same sign as
me(a) — 7o (a) + f(sc(a) +1) — f(sc(a)) + (D — 1), (12)

which is positive since v is increasing. The deviation by individual 7 and club ¢ from a to a’
makes them both better off. A contradiction with stability of a.

We also show that if conditions (i) and (ii) hold, then there is no jointly profitable deviation
for ¢ and ¢ where 7 quits a club to join ¢ and nothing else changes. If there is such a deviation,
it must be that s.(a) < S. Since ¢ is not a member of ¢ so, by condition (i), d;(a) = D. Let
¢ be the club that ¢ leaves when joining ¢. Then, by (11) and (12) and condition (ii), utility
of 7 does not increase and so the deviation is not profitable to i.

For the necessity of condition (iii), suppose, to the contrary, that there exist individuals
i€l andi €I such D> d;(a) > dy(a) and a club ¢ € C such that ¢ is a member of and i
is not. Let a’ be a membership profile obtained from a by 7 joining ¢ and ¢ accepting i and

dropping i’. The difference in productivity of ¢ between a’ and a is equal to
m(a’) — m.(a) = a(d;(a) — dy(a) + 1), (13)

which is positive if and only if @ > 0. Also, since v is increasing, both individual ¢ and club ¢
and strictly benefit deviating from a to @’ when o > 0. A contradiction with stability of a.

We also show that if conditions (i) and (iii) hold, then there is no jointly profitable deviation
for ¢ and ¢ where ¢ drops a member to admit ¢ and nothing else changes. If there is such a
deviation, it must be that d;(a) < D. Then from condition (i), it mush be s.(a) = S. Let ¢’
be the individual that club ¢ drops. Then, by (13) and condition (iii), productivity of club ¢
does not increase and so the deviation is not profitable to c.

For the necessity of condition (iv), suppose that o« > 0 and suppose, to the contrary, that
there exists two individuals 7,7 € I with d;(a) = D and dy(a) < D, a club ¢ € C that has
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member i’ but not 7, and a club ¢’ that 7 joins, such that

me(a) > ms(a) —a (D —dy(a) — Z aicuai/cu> : (14)

C/l#c/

Let a’ be a membership profile obtained from a by ¢ joining ¢ and leaving ¢/, and ¢ accepting

1 and dropping i’. The difference in productivity of ¢ between a’ and a is equal to
m.(a’) — m.(a) = a(D — dy(a)), (15)

which is positive if and only if & > 0. The difference in utility of i between a’ and a is equal

to

ui(a’) = ui(a) =v(r(a) + D awme(a)) —v(re(a)+ > aiwme(a))

c'#e,d e
:U(ﬂ'c(a> + (0% (_D — di’ (a,)) — Z it Qjt ot —|— Z Qe Tt (a,))
' e
_’U<7Tcl(a,) + Z CLZ'C//’]TC//(CI,))7 (16)
e,

which has the same sign as

Wc(a) — ﬂc/(a) + (D — di/(a) - Z aic//ai/c//> s (17)

C//;écl

which is positive since v is increasing. The deviation by individual 7 and club ¢ from a to a’
makes them both better off. A contradiction with stability of a.

We also show that if conditions (i)—(iv) hold, then there is no jointly profitable deviation
for ¢+ and ¢ where 7 leaves a club, ¢ drops a member, and ¢ joins ¢. Suppose there is such a
deviation, if d;(a) < D or s.(a) < S, since the deviation is profitable with ¢ quitting a club
and ¢ dismissing a member, it is also profitable if i does not quit the club and ¢ does not
dismiss the member. We know conditions (i)—(iii) guarantee that there is no such mutually
beneficial deviation. So, here we consider the deviations of i and ¢ when d;(a) = D and
sc.(a) = S. In this case, by (16) and (17) and condition (iv), utility of ¢ does not increase and
so the deviation is not profitable to .

We finally turn to the existence of stable membership profile. We provide a proof by
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construction.

Suppose nD > mS. Let m’ < m and n’ < n be the largest integers such that m’S = n’'D.
Notice that since m > D and n > S so m’ > D and n’ > S. Construct a membership profile
a as follows. First, select n’ individuals and m’ clubs, let all selected individuals join D clubs
we select so that all m’ clubs have S members. This profile can be obtained by letting clubs
admit individuals in sequence: make each club admit S individuals that have the smallest
degree in its turn before moving to the next club. If n—n' > S| take S out of n —n' remaining
individuals and put each of them in each of m — m’ remaining clubs. Otherwise, put each of
n — n/ remaining individuals in each of m — m/’ clubs. It is easy to verify that this profile is
stable.

Suppose mS > nD: consider a membership profile @ where all individuals join D clubs,
and [22| clubs have S members, one club has (nD) mod S members, and the remaining
clubs have 0 members. This profile can be obtained by letting clubs admit individuals in
sequence. Make each club admit S individuals that has the smallest degree in its turn before
moving to the next club. Stop when all individuals have degree D. This profile is always
stable as it satisfies all four conditions in Proposition 1. Condition (i) is satisfied obviously.
Conditions (iv) and (iii) are automatically satisfied as no individual joins less than D clubs.
For condition (ii), if a club ¢ has less than S members, then either it is the one club with
(nD) mod S members or it has 0 members. In both cases, for an individual ¢ that is not in ¢
and for any club that 7 is in, ¢ must have more members than ¢ does and all members of ¢

join D clubs, making condition (ii) satisfied. |

Proof of Proposition 2

We first take up the egalitarian outcome result in the absence of network effects. When
a = 0, the membership profile generated with the following algorithm is stable. Let clubs
admit individuals sequentially. Fill a club with S individuals that currently have the lowest
degrees and then move to the next club. Stop until all clubs are full or all individuals have
joined D clubs. Since n > S, this algorithm is feasible. If the algorithm terminates when all
clubs have S members, then all clubs have productivity f(S) which is the highest productivity
a club can get. Hence the membership profile is stable. If the algorithm terminates when all
individuals are in D clubs, then there are |22 clubs that have productivity f(S), one club
that has productivity f((msS) mod D), and the rest clubs have productivity 0. The only
possible profitable deviation from one individual is to quit the club with productivity f((m.JS)
mod D) and join a club with productivity f(S), but no club with productivity f(S) want to
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deviate. Hence the membership profile is stable. Given the way we construct the membership
profile, we have |d;(a) — dy(a)| <1 for all i,i" € I.

When o > 0, we develop the conditions for the sizes of the different groups. For the
cardinality of I3(a), take any individual ¢ € I3(a) with minimal d;(a) and let ¢ € C be any
club that ¢ members. By condition (iii) of Proposition 1, all individuals in /3(a) are members
of ¢ and, by condition (i) of Proposition 1, s.(a) < S. Hence |/3(a)| < S.

For cardinality of Cy(a), suppose that Cy(a) # @, we will show that there exists an
individual 7 that is a member of all clubs in Cy(a). We consider the cases of I3(a) = @ and
I3(a) # @ separately. If I3(a) = @, then members of the clubs in Cy(a) are of degree D and,
for any ¢ € Cy(a), s.(a) < S (as ¢ does not achieve maximal productivity). Take any ¢’ €
Cy(a) with minimal productivity, 7~ (a), and any member i of /. Take any ¢ € Cy(a) \ {¢'}.
Since s.(a) < S and since 7.(a) > 7. (a) so, by condition (ii) of Proposition 1, 7 is a member
of c¢. Hence i is a member of all clubs in Cy(a). If I3(a) # @ then take any i € I3(a) with
maximal degree. Take any club ¢ € Cy(a). Since ¢ does not achieve the highest productivity
so either s.(a) < S or ¢ has a member in I3(a). In the first case, i is a member of ¢ by
condition (i) of Proposition 1. In the second case, i is a member of ¢ by condition (iii) of
Proposition 1. Hence i is a member of all clubs in Cy(a). By condition (i) of Proposition 1,
d;(a) < D. Hence |Cy(a)| < D.

For cardinality of I5(a), notice first that, by definition, every individual in I5(a) members
at least one club in Cy(a). Thus the aggregate membership of individuals in l5(a) in the
clubs in Cy(a) is at least = + 2(|/2(a)| — x), where z is the number of individuals from I5(a)
who member exactly one club from C(a). On the other hand, since |Cy(a)| < D and, for all
c € Cy(a), either s.(a) < S —1 or ¢ has a member in I3(a), so aggregate club capacity of the
clubs in Cy(a) for individuals in I5(a) is at most (S — 1)D. Hence

v+ 2(|L(a)] — 2) = 2| (a)| — x < (S - 1)D. (18)

The number of individuals in I5(a) who member exactly one club in Cy(a) is at most S — 1.
To see that, suppose that an individual ¢ € I3(a) members exactly one club ¢ € Cy(a). Let
c € Cy(a) \ {¢'} be another club in Cy(a). Since ¢ is not a member of ¢ so, by condition (ii)
of Proposition 1, m.(a) < 7 (a). Hence ¢ must achieve the highest productivity of all clubs
in C3(a) and must be unique such. Since all individuals in Cy(a) who member exactly one
club in Cy(a) must be members of the same club from Cy(a) and since, as we observed above,

this club can host at most S — 1 members from I(a), so there can be at most S — 1 such
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individuals. This shows that x < S—1 and from (18) it follows that |Iy(a)| < (S—1)(D+1)/2.

We now use these derivations on the size of the different groups to derive bounds on the
size of I1(a) and Ix(a) and I4(a).

We begin with the case nD > mS: Suppose that in a stable membership profile a, all clubs
are full, then we have |I1(a) U Ir(a)|D + >_,c 1. o) di(a) = mS, and hence |I1(a) U Ir(a)|D +
|I3(a)|D > mS. Since |I3(a)] < S,

|I(a) U Iy(a)| > %S - 5.
Suppose that in a stable membership profile a, not all clubs are full, then we know |I;(a)] =0
as otherwise there is a jointly profitable deviation for an individual in I;(a) and a club that

is not full where the individual joins the club. Therefore,

1(a) U ()] + [Iy(a)] = n > 77,
and so |[1(a) U Ir(a)| > 25 — S given |I3(a)| < S.

Now, since |1 (a)Ul(a)| > 22— S and |I;(a)| < w, we have |I;(a)| > %S—w.
For the upper bound of |I;(a)|, since aggregate club capacity is m.S, we must have |I;(a)|D <
mS, and so |I;(a)] < 22

Regarding the bounds for |I4(a)|. Since |I1(a) U Iy(a)| + |I3(a)| + |11(a)| = n, |I1(a) U
L(a)] < 25, and |I3(a)| < S, so [Li(a)| > n— 2 — S. Moreover, if |Iy(a)] > n — 2, then
[I1(a) ULz (a)|+ |I3(a)| < Z£. The club capacity is not exhausted and there must exist a club
c that is not full. There is a jointly profitable deviation for an individual 7 in I4(a) and club
¢ where 7 joins c¢. A contradiction.

Next consider the case when nD < mS: We first show the lower bound for |C}(a)] is
nD/S — D. Suppose that in a stable membership profile a, all individuals exhaust their
membership availability, then we have |C1(a)[S+ ) .cc,(a) Sc(@) = nD, and hence |C1(a)|S +
|Cw(a)|S >nD. Since |Ca(a)| < D, |Ci(a)] > “P—D. Suppose that in a a stable membership
profile @, not all individuals exhaust their membership availability, then we know |C3(a)| = 0
as otherwise there is a jointly profitable deviation for the individual who joins less than D

clubs and a club in C3(a) where the individual joins the club. Therefore,

[Ci(a)] +[Ca(a)] = m >
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and so |Cy(a)| > 22 — D given |Ca(a)| < D.

For the upper bound of |C(a)|, since aggregate membership availability is nD, we must
have |Ci(a)|S < nD, and so |Cy(a)| < 22

Regarding the bounds for |C3(a)|. Since |Ci(a)| + |Ca(a)| + |Cs(a)] = m, |Ci(a)] <
2D and |ex(a)] < D, so |Cs(a)] = m — 22 — D. Moreover, if |C3(a)] > m — %2, then
|Ci(a)] + |Ca(a)| < ®2. The aggregate membership availability is not exhausted and there
must exist an individual ¢ that joins less than D clubs. There is a jointly profitable deviation

for i and a club ¢ in C3(a) and club ¢ where i joins ¢. A contradiction. |

Proof of Proposition 3
We prove a more general characterization of efficient membership profiles, without the

parity conditions in Proposition 3.
Lemma 1. Suppose a > 0. Assume nD > mS.

o A membership profile is clubs-efficient if and only if there are L%SJ individuals that join
D clubs, one individual that joins (mS) mod D clubs, and the remaining individuals join

no clubs.

o [fv"(-) >0, then a membership profile is utilitarian optimum if and only if it is clubs-
efficient. If v"(-) < 0 and satisfies condition (7), then in any utilitarian optimum mem-
bership profile, either d;(a) <1 for alli € I ord;(a) > 1 for allie 1.

Assume nD < mS.

o If f"(-) > 0, then a membership profile is clubs-efficient if and only if L%J clubs admit
S members, one club that admits (nD) mod S members, and the remaining clubs admit
no members. If f"(-) =0, then a membership profile is clubs-efficient if and only if each
individual join D clubs. If f"(-) < 0, then a membership profile is clubs-efficient if and

only if (nD) mod m admit [“2] members and the remaining clubs admit | “2 | members.

o [fv'(-) >0, then a membership profile is utilitarian optimum if and only if L%J clubs
admit S members, one club that admits (nD) mod S members, and the remaining clubs
admit no members. If v"(-) < 0 and (nD) mod S = 0, then membership profile is
utilitarian optimum if and only if nD/S clubs admit S members and the remaining clubs
admit no members. If v"(-) < 0 and (nD) mod S > 0, then in any utilitarian optimum
membership profile, the number of clubs that admit some but less than S members is not

more than S — 1.
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For the case when nD > mD. First, given a membership profile a, the aggregate produc-

tivity of clubs is

S rla) = 3 fs@) +a 303 aildi(a) - 1)

ceC ceC ceC el

<mf(S)+a)  dia)(di(a) - 1),

el

where the equality is obtained only when s.(a) = S for all ¢ € C'. Now we solve the following

maximization problem:

maXZdi(a)(di(a) — 1) s.t. di(a) € {0,1,...,D} for all i € I and Zdi(a) < mS.

el el

Since g(z) = x(z — 1) is superadditive on the set of non-negative integers and this is strict
on positive integers, the solution to the maximization problem is a vector (df(a));e; such
that df(a) = D for all i € I' where I’ C I and |I'| = |%], df(a) = (mS) mod D for some
i =k € I\I' (in the case of (mS) mod D > 1) and df(a) = 0 for all i € I\(I' U {k}).

We now show that when nD > mS, there always exists a club membership structure where
there are | 29| individuals that join D clubs, one individual that joins (mS) mod D clubs,
and the remaining individuals join no clubs (which makes s.(a) = S for all ¢ € C), so that a
structure a € A is clubs-efficient if and only if it satisfies such a club joining pattern. Construct
a membership structure as follows. Consider |mS/D| individuals first, in a sequence. Make
each such ¢ join D clubs that have the smallest membership size at her turn before moving to
the next individual. If (mS) mod D > 1 so that there are clubs that do not have S members
at the end of the process, take one more individual and make him join those (m.S) mod D
clubs. Since |mS/D]|D + (mS) mod D = mS, the construction is valid and results in the
desired membership structure.

For utilitarian optimal structures, given a membership profile a, the aggregate utility of

> @) =) v aem(a)).

iel iel  ceC
We know that > - aicme(a) < D(f(S)+S(D —1)) forallie land ), ;> .o ticme(a) =
Y oeec Scla)me(a) < S . me(a), where the equality is obtained only when s.(a) = S for all

individuals is

c € C. Given that a clubs-efficient structure that maximizes ) .. 7.(a) features s.(a) = S

forallc € C, Y .., > .cc GicTe(a) is maximized if and only if @ is clubs-efficient. We also know
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that a clubs-efficient structure makes |22 | individuals have utility v(D(f(S) + S(D — 1)),
at most one individual have positive but less than v(D(f(S)+ S(D —1))) utility, and the rest
individuals have zero utility. Hence, when v”(-) > 0, the clubs-efficient membership profile is
the solution to the maximization profile of maxge 4 u;(@). We have shown that when v”(+) > 0,
a membership profile is utilitarian optimum if and only if it is clubs-efficient.

Turning to when v”(-) < 0 and satisfies

n—1

() = o0) > (= 1) (o (765) + 222ZD) — 105

we show that suppose in a club membership structure a € A, there exists two individuals
i,i" € I such that d;(a) > 1 and dy(a) = 0, then a cannot be utilitarian optimum. Suppose
such a structure a is utilitarian optimum. Note first that it must be s.(a) = S for all ¢ € C,
as otherwise making individual ¢’ join a club that is not full strictly raises aggregate welfare.
Let ¢ € C be a club where a;. = 1. Consider another club membership structure a’ where ¢

drops i and admits 7. The difference of aggregate utility between the two structures is

Y (uila’) = wi(@) = v(f(S)) = v(0) + ) _(ui(a) - wia)),
i€l i
since uy(a’) > v(f(S)) and uy(a) = v(0). Given that i’ replaces i in club ¢, the productivity
of club ¢ and clubs that ¢ members decreases:
me(a) = m(a’) = a(di(a) — 1), and
me(a) — s (a') = a for all ¢ # ¢ with a;v = 1.

So, the aggregate productivity drop is at most 2a(D — 1), which is obtained when d;(a) = D.

Since v"(+) < 0 and the minimal utility an individual obtains when he is in a club is v(f(.9)),

> (wila) —u(a)) <Y

i ii!

<=1 o () +

v (f(S) +> aielme(a) Wc(a’))> - v(f(S))]

ceC
2a(D —-1)S

n—1

) - utss)]
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Hence,

3 (wi(a) — ui(@)) > o(£(S)) — v(0) — (n— 1) [ (f(S) n M) —o(f(S))

iel

contradicting structure a being utilitarian optimum. This completes the proof.
For the case when nD < m.S, given a membership profile a, the aggregate productivity of

clubs is

S mela) = 3 flsela) + a3 auldi(a) - 1)

ceC ceC ceC i€l
<> f(sc(a))+anD(D - 1),
ceC

where the equality is obtained only when d;(a) = D for all ¢ € I. Now we look at the problem
of max ) . f(sc(a)),s.t. sc(a) € {0,1,...,S}forallce Cand ) . s.(a) < nD. When f(-)
is convex, the solution to the maximization problem is a vector (s%(a)).cc such that s¥(a) = S
for all ¢ € C" where C' C C and |C'] = |22], si(a) = (nD) mod S for some ¢ = k € C\C’
(in the case of (nD) mod S > 1) and s%(a) = 0 for all ¢ € C\(C"U{k}). When f(-) is linear,
the solution to the maximization problem is any (s’(a)).cc where s.(a) € {0,1,...,5} for
all c € C'and ) - s.(a) = nD. When f(-) is concave, the solution to the maximization
problem is a vector (s3(a))eccc such that si(a) = [22] for all ¢ € C" where ¢’ C C and
|C’| = (nD) mod m, and s}(a) = [*2] for all ¢ € C\C". This proves the characterization for
clubs-efficient membership profiles.

For utilitarian optimum membership profiles, given a membership profile a, we know the
aggregate utility of individuals is ) ;. ui(a) = >, ., v(D e ticme(a)) where Y - aieme(a) <
D(f(S)+S(D—1)) for all i € I and

D) aeme(a) = sd@)f(sc(@) + > se(a))  ail(di(a) — 1)

i€l ceC ceC ceC il
<Y se(@)f(se(@) + (D = 1)s.(a)’,
ceC

where the equality is obtained only when d;(a) = D for all i € I. Since g(z) = zf(x) +
a(D — 1)z? is superadditive on non-negative integers and strictly superadditive on positive
integers, for any oo > 0, D > 1, and strictly increasing f with f(0) =0, .., > .cc @icTe(@)

is maximized if and only if 22 ] clubs admit S members, one club that admits (nD) mod S
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members, and the remaining clubs admit no members. When v”(-) > 0, it is easy to see that
this membership profile is also the solution to the maximization problem of maxgec4 u;(a@). We
have shown that when v”(-) > 0, a membership profile is utilitarian optimum if and only if
[“2] clubs admit S members, one club that admits (nD) mod S members, and the remaining
clubs admit no members.

Turning to when v”(-) < 0, consider the utilitarian optimum structure where v”(-) > 0.

Under this structure, the utility of (nD) mod S individuals is
o[(D = 1)(f(S) + aS(D —1)) + f ((nD) mod S) + a ((nD) mod S) (D —1)],  (19)

while the utility of all other individuals is v[(D)(f(S) + aS(D — 1))]. If this structure is
utilitarian optimum, we have finished the proof. If the structure is not utilitarian optimum,
then (nD) mod S # 0 and in a utilitarian optimum club membership profile, the lowest
utility of an individual is greater than (19), implying that the smallest size of a club is
greater than (nD) mod S. Suppose the smallest club size is s.(a) = (nD) mod S + k where
ke {l,..,8 — (nD)mod S — 1}. For the structure to be utilitarian optimal, the number of
unfull clubs is at most k, where the bound k is reached when we reduce the club size of k
clubs by 1 to increase the size of the smallest club. So, the number of clubs with size greater
than 0 and lower than S is at most 1+ &k < S — (nD) mod S < 5 — 1.

[

Proof of Proposition 4

First, we consider when nD > m.S.

When h(+) is convex, for any membership profile a € A, the productivity of a club m.(a)
satisfies

me(@) < f(S) +h(S(D = 1)) = f(S) + h(S),

where the equality is obtained only when the club has one strength-S' link with another club.
For every club to reach this highest level of productivity, the club network consists of m/D
separate 2-cliques where all links are of strength S. We now show such a structure exists by
construction: Allocate the first S individuals to clubs ¢; and ¢y, the next S individuals to
clubs c3 and c4,..., and the %th group of S individuals (individuals 4,,5/2-g41 t0 ms/2) to clubs
Cm—1 and ¢,,.

Since all clubs have reached the highest productivity with the membership profile when

h(-) is convex, it is also stable when A(-) is convex. To show the profile is not stable when
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h(-) is concave, consider a deviation by club ¢; and individual igy; where ¢; exiles i1 to admit
1511 and 1541 leaves c3 to join ¢;. It is straight-forward to verify that the deviation benefits
both ¢; and igy1.

When A(-) is concave, for any membership profile a € A, the productivity of a club 7.(a)
satisfies

me(a) < f(S) +5(D = 1)h(1) = f(S) + 5 - h(1),

where the equality is obtained only when the club has S strength-1 links with other clubs. For
every club to reach this highest level of productivity, the club network is an S-regular network
where all links are of strength 1. We now show such a structure exists by construction with
the following algorithm: At each step, pick the club with the maximum number of empty
slots, fill the slots with different individuals, and then allocate each of those individuals to a
different club with the maximum number of empty slots. Stop when all clubs are full.

Since all clubs have reached the highest productivity with the membership profile when
h(-) is concave, it is also stable when A(-) is concave. Now we show the profile is not stable
when A(-) is convex. In this profile, for each club ¢, it must has at least 2 strength-1 links
with ¢ and ¢”. Let ¢; be the common member of ¢ and ¢ and i’ be the common member of ¢
and ¢”’. There must also exist an indiviual, call him i3, who is in ¢ and ¢” # ¢. Consider the
deviation by club ¢ and individual i3 where ¢ exiles i, to admit i3 and i3 leaves ¢”
This deviation benefits both ¢ and 3.

Turning to when nD < mS, let 7 be the highest productivity a club can obtain, note

to join c.

that for any membership profile a € A, the utility of an individual u;(a) satisfies
ui(a) < o(D-7"),

where the equality is obtained only when all clubs ¢ joins has productivity n*. For any
individual to reach this highest level of utility, the subnetwork of clubs that contains all non-
empty clubs must consist of n/S separate 2-cliques where all links are of strength S when
h(-) is convex and be an S-regular network (a complete network when S = 2n/S — 1) where
all links are of strength 1 when h(-) is concave. Such subnetworks can be constructed in the
same way we construct we construct the clubs-efficieny networks when nD > mS.

For the statements on stability, since all individuals have reached the highest level of utility,
they have no incentives to deviate. We consider the same deviations examined for the case

when nD > mS to show that the utilitarian optimum club network under a convex (concave)
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h(-) is unstable when h(-) is concave (convex).

Proof for Proposition 5

Let us use the terms ‘individuals’” and ‘clubs’ interchangeably.

When a = 0, we can always construct an egalitarian membership profile with the same
algorithm mentioned in the proof of Proposition 2. It is straight-forward to verify that this
membership profile is stable.

When a > 0, we first show that for a membership profile a to be stable, it must satisfy:

(i) for any pair of ¢ and ¢, if 7 is not in ¢, then either d;(a) = D or s.(a) = S,

(ii) for any two individuals 7 and ¢ with D > d;(a) > dy(a) > 0, i must join all clubs 7’
does,

(iii) for an individual ¢ with degree D, there cannot exist two clubs ¢, ¢ € Cy(a) where
me(a) > mo(a), s.(a) < S, and ¢ is in ¢ but not c,

(iv) for an individual i with degree D, if i joins one and only one club in Cy(a), ¢, then
(@) > m.(a) for all ¢ € Cy(a)\{c'}.

Suppose condition (i) is not satisfied, consider the deviation by i and ¢ where ¢ joins c.
With that deviation, the productivity of ¢ and all the clubs i is in increase; the production
costs of ¢ and all the firms in club ¢ and clubs that have ¢ decrease. The aggregate cost

reduction of firms other than 7 is not greater than
di(a)(S — Do+ (S = 1) (f(se(@) + 1) = f(sc(a)) + adi(a)),
while the cost reduction of 7 is not less than
di(a)a + f(sc(a) + 1) = f(sc(a)) + adi(a).

The utility of firm ¢ is

2

wia) = ((5 — %) + YN Y e GicTe(@) — Zi,# e ai/cﬂ-c(af))

n+1

Since n > S, the utility of ¢ rises as a result of the deviation. Both i and c are strictly better
off.
Suppose condition (ii) is not satisfied, let ¢ be a club that has ¢ but not ¢, consider a

deviation by i and ¢ where ¢ exiles 7 to admit 7. With the deviation, the productivity of ¢
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and all the clubs 7 joins increase; the costs of ¢ and all the firms in club ¢ and clubs that have

1 decrease. The aggregate cost reduction of firms other than ¢ is not greater than
di(a)(S — Do+ (S — a(di(a+1—ds(a))),
while the cost reduction of ¢ is not less than
di(a)a+ a(di(a+1—dy(a))).

Since n > S, the utility of ¢ rises as a result of the deviation. Both i and ¢ are strictly better
off.

Suppose condition (iii) does not hold, consider a deviation by i and ¢ where i quits ¢ to
join c. With the deviation, the output of ¢ increases; the costs of ¢ and all the firms in club ¢

decrease. The aggregate cost reduction of firms other than 7 is not greater than

(S = 1) (f(se(@) +1) = f(sc(@)) + (D = 1)),

while the cost reduction of 7 is not less than

f(sc(a) +1) = f(sc(a)) + (D = 1).

Since n > S, the utility of 7 rises as a result of the deviation. Both i and ¢ are strictly better
off.

Suppose condition (iv) does not hold. Since ¢ € Cy(a), either s.(a) < S or there exists
an ¢ € I3(a) who is in ¢. Condition (iii) shows that it cannot be s.(a) < S, so there exists
an ¢ € I3(a) who is in ¢. Consider a deviation by ¢ and ¢ where ¢ quits ¢, ¢ exiles ¢ and i
joins c. With the deviation, the productivity of ¢ increases; the costs of 7 and all the firms
tin club ¢ decrease. The aggregate cost reduction of firms other than ¢ is not greater than
(S — Da (D —dy(a)), while the cost reduction of i is not less than a (D — dy(a)). Since
n > S, the utility of ¢ rises as a result of the deviation. Both ¢ and ¢ are strictly better off.

We can then prove Proposition 5 in the same way we prove Proposition 2.

First, we show |I3(a)| < S. Take any i € I3(a) with the minimal degree and let ¢ € C'
be any club that ¢ joins. By condition (ii), all firms in I3(a) are in c¢. Since s.(a) < 5,
[Is(a)] < S.

Second, we show |Cy(a)] < D. We consider the cases of I3(a) = @ and I3(a) # @
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separately. If I3(a) = @, then all individuals who member clubs in Cy(a) are of degree D
and, for any ¢ € Cy(a), s.(a) < S (as ¢ does not achieve maximal productivity). Take any
¢ € Cy(a) with minimal productivity and any member i of ¢/. Take any ¢ € Cy(a) \ {¢'},
by condition (iii), ¢ is a member of c¢. Hence i is in all clubs in Cy(a). Since d;(a) < D,
|Co(a)| < D. If I3(a) # @, then take any i € I3(a) with maximal degree and any ¢ € Cy(a).
Since ¢ does not achieve maximal productivity, either s.(a) < S or ¢ has a member in I3(a).
In the first case, ¢ is in ¢ by condition (i). In the second case, ¢ is a member of ¢ by condition
(ii). Hence, i is a member of all clubs in Cs(a). Since d;(a) < D, |Cy(a)| < D.

Third, we show |I5(a)| < (S — 1)(D + 1)/2. Notice first that, by definition, every firm in
I)(a) joins at least one club in Cy(a). Thus, the aggregate membership of firms in l»(a) in
the clubs in Cy(a) is at least ©+2(|Iz(a)| — ), where x is the number of firms from /3(a) that
join exactly one club in Cy(a). On the other hand, since |Cy(a)| < D and, for all ¢ € Cy(a),
either s.(a) < S — 1 or ¢ has a member in I3(a), so aggregate club capacity of the clubs in
Cs(a) for firms in Ir(a) is at most (S — 1)D. Hence

x4 2(|x(a)| — ) =2|L(a)] —xz < (S —1)D.

The number of firms in Ir(a) that are in exactly one club in Cy(a) is at most S — 1. To see
that, suppose that an i € I;(a) joins exactly one ¢ € Cy(a). Let ¢ € Cy(a) \ {¢'} be another
club in Cy(a). Since 7 is not in ¢ so, by condition (iv), m.(a) < 7~ (a). Hence ¢ must achieve
the highest productivity of all clubs in Cy(a) and must be unique such. Since all individuals
in Cy(a) who member exactly one club in Cy(a) must be members of the same club from
Cs(a) and since, this club can host at most S — 1 members from Ir(a), © < S — 1. From the
equation above, it follows that |Ix(a)| < (S —1)(D +1)/2.
We then use these derivations on the size of the different groups to derive bounds on the
size of I1(a) and Ir(a) and I4(a).
|

Proof for Proposition 6

We first show by construction that there exists a membership profile a where the resulting
alliance network consists of separate 2-cliques with strength S links and the resulting firm
network consists of separate S-cliques with strength 2 links. Allocate the first S firms to clubs
¢ and ¢y, the next S firms to ¢z and ¢y, etc. Stop when all clubs are full (this happens when

x =m) or all firms join D = 2 clubs (this happens when x = nD/S5).
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When A(-) is convex, with this constructed membership profile, all clubs that have members
reach the highest productivity possible, which is f(S)+h(S(D—1)). Thus, clubs with members
have no incentive to deviate. For the clubs with no members, no firm is willing to quit its

club to join such a club, since then the production cost of the firm rises by
[F(S) +1(S) = F(1) = (D] + [A(S) = h(S = 1) = h(D)],
while the aggregate cost of other firms rise by
(S =Df(S) = f(S = 1)+ h(S) = (S = D] + (5 = D[A(S) = (S = 1) = h(1)].

With this deviation, given that n > S, f(1) < f(S —1) and h(1) < h(S — 1), the profit of the
firm drops. Therefore, the constructed membership profile is stable when A(:) is convex.

When h(-) is concave, consider a deviation by club ¢; and individual ig.; where ¢; exiles
11 to admit 75,1 and ig,1 quits c3 to join ¢;. It is straightforward to verify that the deviation
benefits both ¢; and ig,;. Therefore, the constructed membership profile is not stable when
h(-) is concave.

Now we show, by construction, that there exists a membership profile @ where the resulting
alliance network is an S-regular network with strength 1 links and the resulting firm network
is a D(S —1)-regular network with strength 1 links. Consider the following algorithm: at each
step, pick a club with the maximum number of empty slots, fill the slots with different firms,
and then allocate each of those firms to a different club with the maximum number of empty
slots. Stop when all the clubs are full or all the firms join D = 2 clubs.

When h(-) is concave, with this constructed membership profile, all clubs that have mem-
bers reach the highest productivity possible, which is f(S) + S(D — 1)h(1). Thus, clubs with
members have no incentive to deviate. For the clubs with no members, no firm is willing to

quit its club to join any of them, because then the production cost of the firm rises by
f(S) + Sh(1) = f(1) — (1),
while the aggregate costs of other firms rise by
(S =DIf(S) = f(S = 1) +5h(1) = (S = DA(1)].

With this deviation, given that n > S, f(1) < f(S —1) and h(1) < h(S — 1), the profit of the
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firm drops. Therefore, the constructed membership profile is stable when h(-) is concave.
When h(-) is convex, in the constructed profile, for each ¢, it must has at least 2 strength 1

links with ¢’ and ¢”. Let i; be the common member of ¢ and ¢’ and " be the common member

of ¢ and ¢’. There must also exist a firm, call it i3, that is in ¢’ and ¢” # ¢. Consider the

deviation by ¢ and i3 where ¢ exiles iy to admit i3 and i3 quits ¢’

to join c. This deviation
benefits both ¢ and i3. Therefore, the constructed membership profile is not stable when h(-)

1S convex. [ |
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