How Market Prices React to Information: Evidence from a Natural Experiment

Romain Gauriot and Lionel Page

Working Paper # 0058
October 2020
Abstract

We study the efficiency of market prices’ reaction to information shocks. We use a natural experiment setting on binary option markets: we compare the evolution of market prices in situations where the occurrence or not of information shocks depends on knife-edge situations and where shocks can be considered as good as random. We find that most of the time, prices react surprisingly efficiently to information shocks with no evidence of abnormal average returns. We nonetheless find evidence of under-reaction in specific situations where information shocks are large.
1 Introduction

The efficient market hypothesis (EMH) states that financial market prices quickly incorporate new information in an unbiased way. Assessing whether, and to what degree, markets are informationally efficient has been the object of intense theoretical and empirical research (Malkiel 2005, Lim and Brooks 2011).

We contribute to this literature with a clean identification of market prices’ reaction to information shocks using a natural experiment. We follow a long tradition in finance using the clean setting of binary option markets on a betting exchange to study market efficiency (Thaler and Ziemba 1988, Gabriel and Marsden 1990, Golec and Tamarkin 1991, Camerer 1998, Rhode and Strumpf 2004, Borochin and Golec 2016). In order to study prices’ reaction to information, we carefully select situations where the occurrence or not of an information shock depends on knife edge situations and where the occurrence of these shocks is credibly as good as random. We isolate such situations in markets on Association Football matches results: when a shot lands on a post. We follow Gauriot and Page (2019)’s identification strategy and compare the evolution of market prices after an information shock (a shot hits the post and goes in the goal) to their evolution in the counterfactual situations with no information shock (a shot hits the post and bounces off the goal). We find that, contrary to what is often found, market prices react surprisingly quickly and efficiently to the arrival of information: there is no evidence of average abnormal returns. Thanks to our large number of observations, this null result is quite precise. We nonetheless find that, when the information shocks are large, towards the end of the markets’ life, some significant under-reaction occurs, possibly due to traders’ budget constraints (Ottaviani and Sørensen 2015).

Identifying over- or under-reaction in archival market prices faces well-known difficulties (Fama 1991). We can list at least three identification challenges. First, we never observe the counterfactual evolution of market prices in the absence of information shock. The estimation of prices’ over/under reaction, therefore, relies on the definition of normal returns (which requires assumptions about market equilibrium). A statistical test rejecting efficiency may either reflect real inefficiencies in the market or, instead, incorrect assumptions underlying the definition of normal return (“joint hypothesis problem”). Previous studies on price reaction to information shocks have used as counterfactuals assets with no information shocks over the same period (Jiang and Zhu 2017) or with similar characteristics (Kapadia and Zekhnini 2019). A difficulty with this strategy is to identify markets which are similar enough to be considered counterfactual markets. Since information shocks do not hit markets randomly, it may be hard to eliminate all possible biases whereby markets hit by an information shock are characterised by slightly different returns than the set of markets used as counterfactuals.

Second, the exact timing of information shocks can be ambiguous. Information about firms’ profitability or government/central bank policies can potentially leak to some traders, before being publicly released (Jiang and Zhu 2017). When this information is made public, some of it may already be in the price.

Third, this timing is typically not random and it may be correlated with pre-existing pricing distortions. An extensive literature in behavioural finance has unveiled biases in prices which are time and context-dependent. Assets experiencing information shocks may already exhibit abnormal returns prior to the shock, as traders may react to the ex-ante probability of the occurrence of a shock (Kapadia and Zekhnini 2019). It is therefore difficult
to discriminate between biases which may pre-exist the arrival of information and biases which may emerge after the arrival of information.

One solution to these issues is to use experimental markets in the laboratory where all the information structure can be controlled (Plott and Sunder 1988, List 2004, Bossaerts et al. 2009, Page and Siemroth 2020). Laboratory experiments provide a useful complement to field studies. However, they also raise questions about their external validity given their small size and the relative lack of experience of standard experiment participants. A few experiments have used pools of participants with market experience to address part of these concerns (Drehmann, Oechssler, and Roeder 2005, Alevy, Haigh, and List 2007, Cipriani and Guarino 2009, List and Haigh 2010). This literature is fairly small, in part because the time of potential participants with financial market expertise is expensive (Al-Ubaydli and List 2017).

Betting markets offer an interesting alternative (Croxson and Reade 2014). Bets are binary options, with a well defined observable outcome, which makes it easier to estimate their fundamental value. These markets have traders with extensive experience, high liquidity and substantial trading volumes. They have, therefore, often been used to study market efficiency. A few papers have looked at the evolution of prices on betting markets with mixed results. For instance, Gil and Levitt (2012) and Choi and Hui (2014) pointed to possible mispricing in the form or under-reaction in some cases and over-reaction in others after the arrival of goals in football matches by looking at price drifts occurring after a goal. A difficulty of this approach is that prices should drift in non-trivial ways as time passes (as the uncertainty about the outcome of the match is progressively resolved). To avoid this issue, Croxson and Reade (2014) used a sample of 53 matches where a goal arrives just before half time. They found that prices do not drift after a goal before the half-time break, when no new information arrives on the market.

Our methodological approach blends a natural experiment and the use of a large dataset on betting market transaction prices. This empirical strategy addresses the three challenges we have described. First, we can match situations where an information shock occurs with counterfactual situations where no shock occurred. Second, the arrival of shocks is unambiguous and very precisely measured. Third, our matching removes the concerns about the non-random timing of information shocks. For these reasons, our approach provides a high level of confidence in the identification of possible mispricing.

Our finding that prices react quickly and most often efficiently to the arrival of information brings new insights to the large literature on financial markets efficiency. A large body of evidence points to anomalies in how financial market prices incorporate new information. Market efficiency implies that no systematically profitable trading strategy should exist. In contradiction to this requirement, a pattern of short-run momentum (under-reaction) and long-term reversal (over-reaction) has been found (Cooper, Gutierrez Jr, and Hameed 2004). In the short-run, under-reaction has been found in a wide range of situations: after announcements of unexpected earnings (Bernard and Thomas 1989), after stock splits (Ikenberry 2005). There is no significant difference between the timing of information shocks and counterfactual situations in our data. This aspect of our strategy is important. Previous research on such binary options markets has shown that different biases in prices are likely to happen at different moments in time, either because traders have time preferences (Page and Clemen 2013), or because the proportion of naive traders on the market vary (Brown, Reade, and Williams 2019).

One of the main explanations proposed for under-reaction is that investors are subject to limited attention and therefore do not process relevant information in a timely fashion (Peng and Xiong 2006, Hirshleifer, Lim, and Teoh 2009). This explanation implies that under-reaction should depend on the salience and complexity of the information (Ali and Hirshleifer 2019): one would expect it to be more prevalent in situations where information is harder to observe and more complex to interpret. In reverse, one may expect under-reaction to be smaller when information is easy to notice and to interpret. Our results add to recent evidence that under-reaction of market prices may be lower when information shocks are easily perceptible (Ben-Rephael, Da, and Israelsen 2017, Huang, Nekrasov, and Teoh 2018).

The information shocks on our markets have, in particular, two characteristics. They are salient: the information shocks we are looking at (goals) are noticeable and unambiguously important to determine the value of the asset. They are also transparent: the qualitative effect of the shocks on the value of the asset is clear (goals increases the winning chances of the scoring team and reduces those of the conceding team). Our results suggest that market prices may react efficiently to new information when these two conditions are present.

2 Data description

2.1 Betting exchange

Betting exchanges are financial platforms which replace the role of bookmakers. They allow bettors to bet against each other on current events. The bets are binary options which take a positive value if a specific event occurs and are worth nothing otherwise. Betfair is the largest betting exchange in the world with highly liquid markets. As of 2016 it had a total revenue of 620 million dollars, and more than 1.7 millions active customers. Betfair organises markets on a wide range of domains, including politics and current affairs. Sporting events constitute the bulk of Betfair’s markets. In our dataset, the average amount traded over per match is around $2.2m (£1.8m); in total, we observe trades totalling $17 billion (£14 billion). We obtained data on millisecond by millisecond trading for Betfair markets for matches of the five largest European leagues over the period from August 2006 to November 2014: England (N=1,811), France (N=1,401), Germany (N=1,251), Italy (N=1,554), Spain (N=1,686).2 Table 1 presents the breakdown of our observation per national leagues.3

On Betfair’s markets, the payout (“odds”) of the binary option (“bets”) are determined by the supply and demand to buy (“back”) or sell (“lay”) them. The transactions are done by continuous double auction. Backing a bet with a stake of $1 is buying a binary option which gives the bet’s odds in dollars in case of success. Let’s consider, for example, a market where the odds were at some point 1.66 to back the outcome “Team A wins the match”.4

2 We obtained the data from Fracsoft, a third party authorised by Betfair to sell its trading data.

3 Figure A.1, in Appendix, presents the location of the shots (landing on the post) in our dataset.

4 See Figure B.1 in Appendix for a screenshot of the interface traders faced on the Betfair website.
Table 1: Dataset description. Excluding post on own goal.

<table>
<thead>
<tr>
<th>Competition</th>
<th>Matches</th>
<th>Post-out</th>
<th>Post-in</th>
<th>Avg. Vol. per match (in £)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bundesliga</td>
<td>1,251</td>
<td>738</td>
<td>155</td>
<td>926,852</td>
</tr>
<tr>
<td>Ligue 1</td>
<td>1,401</td>
<td>649</td>
<td>150</td>
<td>426,233</td>
</tr>
<tr>
<td>Premier League</td>
<td>1,811</td>
<td>1,096</td>
<td>226</td>
<td>3,723,391</td>
</tr>
<tr>
<td>Serie A</td>
<td>1,554</td>
<td>818</td>
<td>222</td>
<td>1,188,707</td>
</tr>
<tr>
<td>Liga</td>
<td>1,686</td>
<td>905</td>
<td>217</td>
<td>2,082,364</td>
</tr>
<tr>
<td>Total</td>
<td>7,703</td>
<td>4,206</td>
<td>970</td>
<td>1,799,016</td>
</tr>
</tbody>
</table>

A trader buys the bet ("backs" the outcome) with $1, he will earn $1.66 if Team A wins and $0 otherwise. Therefore, he will make a profit of $1.66-$1=$0.66 if Team A wins and make a loss of $1 if it doesn’t win. The normalised price of a bet, to win $1 in case of success, is $p = \frac{1}{odds}$. This price is also the market-implied probability that the event underlying the bet will occur (Snowberg and Wolfers 2010) since the fundamental value of a binary option is its expected value.\(^5\) We use this implied probability p throughout our analyses as the price of the binary option.\(^6\)

As an illustrative example, consider the match between Nuremberg and Cologne on the 18th February 2012 in the Bundesliga. Nuremberg hit the post four times in this match. At the 28’ and 85’ minutes the ball went inside the goal, and at the 70’ and 90’ minutes the ball bounced away from the goal. Cologne also scored at the 66’ minutes (the ball did not hit the post then). Figure 2.1 illustrates how the market price reacts to a post-in (information shock) and to a post-out (counterfactual). It reacts strongly to the arrival of a goal, but it does not react to the situations where the ball bounced off the post.

2.2 Match data

We obtained from Opta, a company collecting sports in-play data, all the shots hitting the post over that period. Once merged with the Betfair data, we observe 5,176 shots hitting a post. Among these events, 4,206 shots bounced off the post, away from the goal line, 970 shots bounced in, leading to a goal. For geometrical reasons, more angles lead a shot to bounce out than in, hence the largest number of shots bouncing away from the goal.\(^7\)

In a previous paper (Gauriot and Page 2019), we have shown that, controlling for the shots’ locations, there is no significant difference in the characteristics of players and teams (attacking and defending) for shots getting in or out after hitting the post.\(^8\)

\(^5\)When ignoring time discounting, which we do here, since we look at prices observed only a few hours before the option’s payoff is determined.

\(^6\)It is the price of the Arrow-Debreu security which pays $1 if the event underlying the bet is successful. Each bet exchanged can be considered as being composed of these securities.

\(^7\)See Appendix A for further description of the dataset.

\(^8\)See Appendix C for balance tests on covariates across post-in and post-out situations.
3 Effect of a goal on market efficiency

3.1 Assessing the presence of abnormal returns prior to the information shock

We first assess whether prices are unbiased before the information shock. We can leverage here the fact that binary options have a definite value determined at the end of their (finite) life duration. The fundamental value of a binary option is its expected value. So, for a given price p, the frequency of positive outcomes should tend to be equal to p.

We define $outcome$, a dummy variable equal to 1 if the bet is successful (the event underlying the option happens). The return of a binary option is $r = outcome - p$. Well-calibrated prices require $E(r|p) = E(outcome|p) - p = 0$, that is, for a price p, the corresponding probability of success is indeed p. Following Page and Clemen (2013), we use both non-parametric and parametric (structural) approaches to estimate $E(r|p)$ using the empirical frequencies of $outcome$ for each p.

The calibration of market prices is related to weak-form efficiency. When binary options’ prices are well-calibrated, it is impossible to design profitable strategies purely on the basis of present prices. Calibration does not imply stronger forms of efficiency. It can, for instance, co-exist with an imperfect integration of all the available information.\(^9\)

We start by assessing the overall calibration of market prices, using all the observed prices in our dataset (not restricted to situations where a shot hits a post). Figure 3.1 shows the

\(^9\)Page and Siemroth (2017) provide an extended discussion of the relationship between calibration and aggregation of information on binary option markets.
non-parametric estimation of $\mathbb{E}(r|p)$, the returns conditional on prices, for the options “Home team wins the match”. We find that market prices are very well calibrated with returns being very close from zero.\(^\text{10}\) A careful look suggests the existence of a small deviation in the form of a “longshot bias”: the returns tend to be negative for prices below 50% and positive for prices above 50%.

Figure 3.1: Expected returns for all the prices we observe for the options “Home team wins the match”. Prices are divided in 100 bins ([0,0.01],[0.01,0.02],...,[0.99,1]). In each bin 10 observations are selected randomly to give equal weight to matches with different volume. The non-parametric estimation is a local linear regression with an Epanechnikov kernel and a bandwidth of 0.1. Confidence intervals obtained by percentile bootstrap, using 1,000 replications.

We complement this non-parametric estimation with a structural estimation of possible mispricings. Let’s consider the possibility for the price of the option to differ from the probability of the underlying event. We can write $p = f(\pi)$, with f not being necessarily the identity function. The return of a contract is then:

$$r = \text{outcome} - f(\pi)$$

To study possible mispricing patterns we use the flexible parametric function proposed by Lattimore, Baker, and Witte (1992):

$$p = f(\pi) = \frac{\delta \pi^\gamma}{\delta \pi^\gamma + (1 - \pi)^\gamma} \quad (3.1)$$

Prices are well calibrated for $\delta = \gamma = 1$ (f is then the identity function). This parametrization can accommodate a wide range of mispricings: overall positive abnormal returns ($\delta < 1$:

\(^{10}\)We find virtually the same result on the options “Away team wins the match”.

7
the price \(p \) is lower than the probability \(\pi \); overall negative abnormal returns \((\delta > 1\): the price \(p \) is higher than the probability \(\pi \)); longshot bias \((\gamma < 1)\).

By inverting \(f \) we get the events’ probability as a function of market prices: \(\pi = f^{-1}(p) \). The likelihood of observing the final outcomes of a set \(S \) of options is therefore:

\[
L = \prod_{i \in S} \left\{ f^{-1}(p_i) \right\}^{outcome_i} \left\{ 1 - f^{-1}(p_i) \right\}^{1-outcome_i}, \tag{3.2}
\]

Table 2 presents the result of the maximum likelihood estimation. We find an estimated \(\delta \) of precisely 1. The parameter \(\gamma \) is estimated to be 0.964 and is statistically different from 1 \((p = 0.018)\). There is, therefore, a small and significant longshot bias.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta)</td>
<td>1</td>
<td>[0.946,1.059]</td>
</tr>
<tr>
<td></td>
<td>(0.938)</td>
<td></td>
</tr>
<tr>
<td>(\gamma)</td>
<td>0.964*</td>
<td>[0.933,0.994]</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Maximum likelihood estimation of the function from LTW. All trade made on the home team. The standard errors are computed with 1,000 bootstraps samples and are clustered by match. In bracket p-value testing whether the estimate equal 1. 95% Confidence Interval in square bracket.

The longshot bias has been observed in a wide range of markets. In the case of binary option markets, it has been explained by traders’ risk attitudes (Ali 1977), budget constraints (Manski 2006), misperception of probabilities (Snowberg and Wolfers 2010), time discounting (Page and Clemen 2013), budget constraints and heterogenous priors (Ottaviani and Sørensen 2015).\(^{11}\) While we find evidence of a small deviation towards a longshot bias, the markets are remarkably well-calibrated. The highest possible abnormal return which can be achieved with this longshot bias is 1.09% (when buying at a price of 0.81). In comparison, using the same approach on binary option markets from a different betting exchange (Tradesport), Page and Clemen (2013) found a parameter \(\gamma \) substantially lower, 0.8, and the highest abnormal return was substantially larger, 4%.

3.2 Assessing the emergence of abnormal returns after an information shock

Having established the good overall calibration of the prices, we now look at the reaction of these prices to the arrival of new information. First, we check whether the calibration of market prices after a post differs between scoring situations (post-in) and non-scoring situations (post-out). We call “Team A”, the team hitting the post when trying to score.

\(^{11}\)See Ottaviani and Sørensen (2008) for an extended discussion of the main explanations of the longshot bias.
We select the market “Team A wins” from the markets “Home team wins” and “Away team wins”. We therefore look at how prices react on the markets for the team either scoring or nearly scoring.

(a) Post-out (b) Post-in (c) Returns after a goal: \(r \)

Figure 3.2: Market price reactions after a post following a shot by Team A. Returns for the market “Team A wins”: (a) after a post-out and (b) after a post-in; (c) Abnormal returns, \(\hat{\tau}_M \) estimated by kernel matching, when buying the asset “Team A wins” at different times after following a positive information shock.

Figure 3.2 displays the non-parametric estimates of the returns per price for the first transaction after a post-in (panel a) and after a post-out (panel b). Overall the market prices are well-calibrated after a post. This non-parametric approach pools all the observations in two groups (information shock vs no information shock) to compare them. This comparison could still be influenced by the fact that the whole sample of situations with a post-in may differ in some way from all the situations with a post-out. For instance, information shocks may tend to happen at times where the price calibration is slightly different from situations where no information shock occurs.

We use our precise data on shots’ locations to address this possible concern. We match shots taken from a very close position on the pitch, which ended having different outcomes (post-in or post-out). We then compare the returns of market prices after the post between these two situations. To do so, we implement a matching approach, using spatial (i.e. Euclidean) distances computed from the \((x,y)\) coordinates of the shots’ location on the pitch. This approach ensures that our study of the market reaction to information shocks relies on the comparison of very similar situations.

For each binary option \(i \) observed after a shot on a post, we define the dummy \(post_i \) which takes value 1 if the shot ended inside the goal and 0 otherwise. Our variable of interest is the return \(r_i \) from buying it after a post. We define: \(r_i(t) = outcome_i - p_i(t) \), where \(t \) is the period after the post was hit. If the option is successful it provides a positive return of \(1 - p_i(t) \). If it is unsuccessful, it provides a negative return of \(-p_i(t) \). We use kernel matching to build a synthetic counterfactual as a local weighted average of \(r_i \) for nearby shots with a different outcome. Our matching is quite precise, the weighted average distance between each observation and their counterfactuals is 54cm. We compute the p-values and confidence

\[12\text{See Appendix D for a description of how we identify the first trade after a post.}\]

\[13\text{Maximum likelihood estimations of equation 3.2 also find that parameters } \delta \text{ and } \gamma \text{ do not significantly deviate from 1 (detail in Appendix E).}\]
intervals by parametric bootstraps.14 Calling $\hat{r}_i(0)$ and $\hat{r}_i(1)$ the potential outcome values of r obtained from the observations and their synthetic counterfactuals, the matching estimator $\hat{\tau}_M$ quantifying the causal effect of interest, is defined as:

$$\hat{\tau}_M = \frac{1}{N} \sum_{i=1}^{N} (\hat{r}_i(1) - \hat{r}_i(0))$$

(3.3)

$\hat{r}_i(1) = \begin{cases} r_i & \text{if a goal is scored} \\ \hat{r}_i^{KR} & \text{if no goal is scored} \end{cases}$

$\hat{r}_i(0) = \begin{cases} \hat{r}_i^{KR} & \text{if a goal is scored} \\ r_i & \text{if no goal is scored} \end{cases}$

Where

$$\hat{r}_i^{KR} = \frac{\sum_{j \in M_i} K_h(x_i - x_j)K_h(y_i - y_j)r_j}{\sum_{j \in M_i} K_h(x_i - x_j)K_h(y_i - y_j)}$$

With M_i being the set of counterfactual observations matched to observation i and K_h an Epanechnikov kernel function with bandwidth $h = 0.64$ cm.15

We test the null hypothesis that the arrival of a goal does not induce abnormal returns for trades taking place just after the shot, $H_0 : \hat{\tau}_M = 0$. This hypothesis means that the information shock does not lead to a relative under-reaction ($\hat{\tau}_M > 0$), nor does it lead to a relative over-reaction ($\hat{\tau}_M < 0$).

Figure 3.2 (panel c) shows the evolution over time of the estimated effect. We find that market prices observed just after the shock re-adjust right away with the first trades following a post, without significant over/under-reaction. The estimate of $\hat{\tau}_M$ using the first price observed after the information shock is 1.12% ($p = 0.409$, N=5,176). Therefore, we cannot reject the null hypothesis that the changes in market prices following a goal accurately track the changes in the associated winning chances. This result is quite precise. The 95% confidence interval of $\hat{\tau}_M$ is $[-1.52\%, 3.11\%]$. Our analysis therefore gives fairly small bounds for market over/under-reaction. After this initial adjustment, the estimate of $\hat{\tau}_M$ closely approximates 0 over the following minutes.

4 Reaction to information across different market situations

We now leverage our large dataset to investigate whether this result can be generalised to many different market conditions.

14See Appendix F for details.

15This bandwidth is determined using the data-driven approach proposed by Huber, Lechner, and Steinmayr (2015) and implemented by Jann (2019): it is 1.5 the 90th quantile of the distribution between the matched treated and controls.
4.1 Different timings

We first look at how prices react after a post-in or -out, depending on the timing of the event in the match. Timing is important: An early goal leaves plenty of time for the outcome of the match to change; A late goal is more likely to determine the final outcome of the match. As a consequence, late goals induce in general larger information shocks.

(a) All bets, first half
(b) Post-out, first half
(c) Post-in, first half
(d) All bets, 2nd half
(e) Post-out, second half
(f) Post-in, second half
(g) All bets, last 15 min
(h) Post-out, last 15 min
(i) Post-in, last 15 min

Figure 4.1: Expected returns for all the prices observed (first column), for the first price observed after a post-in (second column), and for a post-out (third column) for the asset “Team A wins the match” where Team A is the team hitting the post.

Figure 4.1 reproduces figures 3.1 and 3.2 for different timings. The first and second rows show the expected returns during the first half (1-45 minutes), and the second half (46-90 minutes), respectively. Prices appear very well calibrated in the first half. A small but visible longshot bias appears in the second half. Given this pattern, we also split our estimation into shorter periods. The third row presents the result for the last 15 minutes (76-90 minutes) of the match. At the end of the match, the winning chances of the then favourite team

We include additional injury time in all analyses using the first half, second half and the last fifteen minutes of the match. See Figure G.1 in Appendix for the expected returns for all the 15 minutes periods.
tends to be underestimated. So buying at prices higher than 0.50 yields positive returns on average.

In each row, the second column shows the expected returns after a post without goal, and the third column shows the expected returns after a post with a goal. The confidence intervals are larger due to the smaller samples, but the pattern is the same in both cases than over all the observations. We observe a very good calibration in the first half. But, in the second half, the calibration seems a bit worse after a goal and the pattern is particularly pronounced in the last 15 minutes. At the very end of the match, large positive returns suggest an under-reaction of prices after an information shock.

These abnormal returns after a post-in are confirmed by our parametric estimates of equation 3.2. Table 3 presents these estimates. The prices after a post are mostly well-calibrated during the match. But they are poorly calibrated after a goal in the last 15 minutes of the match, with the coefficient $\delta = 0.521$ (significant at 0.1%), indicating under-reaction with prices being too low.

<table>
<thead>
<tr>
<th>First 45 min</th>
<th>Last 45 min</th>
<th>Last 15 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>post-out</td>
<td>post-in</td>
<td>post-out</td>
</tr>
<tr>
<td>δ</td>
<td>0.897*</td>
<td>1.02</td>
</tr>
<tr>
<td>(0.031)</td>
<td>(0.881)</td>
<td>(0.528)</td>
</tr>
<tr>
<td>[0.365]</td>
<td>[0.092]†</td>
<td>[0.079]†</td>
</tr>
<tr>
<td>γ</td>
<td>1.01</td>
<td>0.994</td>
</tr>
<tr>
<td>(0.820)</td>
<td>(0.956)</td>
<td>(0.999)</td>
</tr>
<tr>
<td>[0.926]</td>
<td>[0.629]</td>
<td>[0.286]</td>
</tr>
</tbody>
</table>

Table 3: Maximum likelihood estimation of the function (3.1). First price after a post for the market “Team A wins”. In bracket p-value testing whether the estimate equal 1. In square bracket p-value testing whether the estimate for the post in and out are equal. Std errors clustered by markets. † significance at the 10% level, * significance at the 5% level, ** significance at the 1% level.

4.2 Different timings and scorelines

Besides the timing of the goal, the scoreline at the time of the goal also matters. A goal occurring in a match with a close scoreline is more likely to change the outcome of the match (and therefore the value of the binary option) than a goal taking place when the scoring team is already winning. We therefore cross timings and scorelines to look at different situations of interest. In the following, we call “Team A” the team hitting the post when attempting to score. We define four categories of scorelines. First, when Team A trails by more than one goal, it would still be losing after a goal. Second, when Team A trails by one goal, a goal of the match.
would lead to a draw. Third, when the two teams are tied, a goal would lead Team A to get into a winning position. Finally, when Team A is already ahead, a goal would then just add to its existing winning advantage.

Figure 4.2 gives an overview of how prices react in each of these situations, by periods of 15 minutes. For completeness, we present the three types of markets: Team A (hitting the post) wins, Team B (defending) wins, draw. For clarity of exposition, we define abnormal returns such that positive estimates always indicate an under-reaction, and negative estimates always indicate an over-reaction. Specifically, we look at abnormal returns estimated by \(\tau_M \) when buying after a positive information shock (panels a, d, g, j, c, f) or selling after a negative information shock (panels b, e, h, k, i, l). The significance of abnormal returns is indicated with stars in the panel. As we look at subsamples (135 overall in this section) we follow Anderson (2008) and control for the False Discovery Rate by computing the sharpened q-value (Benjamini, Krieger, and Yekutieli 2006).\(^\text{17}\)

The pattern emerging from 4.2 is that, overall, market prices are most of the time adjusting quickly and accurately to the arrival of new information. However, there is a significant degree of under-reaction when the information shock is large: When a late goal is set to change the outcome of the match. The largest deviation is found when a goal moves the scoreline from a draw to a win in the last 15 minutes of the match. We then observe an under-reaction of 17% (\(p = 0.001, q = 0.039, N=296 \)). It is a substantial effect, and it is robust to controlling the False Discovery Rate. Further analysis shows that most of the effect reduces quickly, but an under-reaction still remains 5 minutes after the post.\(^\text{18}\)

\(^{17}\)For three of the 135 sub-samples, we only observe two posts, and we, therefore, cannot perform our estimation. We, thus, control the False Discovery Rate for 132 statistical tests. This sub-samples correspond to the three markets in the first 15 minutes of the match when Team A is trailing by at least two goals. See Appendix H for detailed results of the matching estimations depicted in Figure 4.2.

\(^{18}\)Figure I.3 in Appendix shows the evolution of this effect over time.
Team A hitting the post trailing by at least two goals

(a) Asset “Team A wins”
(b) Asset “Team B wins”
(c) Asset “Draw”

Team A hitting the post trailing by one goal

(d) Asset “Team A wins”
(e) Asset “Team B wins”
(f) Asset “Draw”

Scoreline is tied

(g) Asset “Team A wins”
(h) Asset “Team B wins”
(i) Asset “Draw”

Team A hitting the post leading by at least one goal

(j) Asset “Team A wins”
(k) Asset “Team B wins”
(l) Asset “Draw”

Figure 4.2: Estimate of abnormal returns after buying following positive news ($r = outcome - p$, panels a, d, g, j, c, f) or selling following negative news ($r = p - outcome$, panels b, e, h, k, i, l). Positive values indicate under-reaction. With counterfactuals, kernel matching estimator, matching on $x-y$ with Euclidean distance, standard error computed with 50,000 bootstraps. Significant at * 5% level, ** 1% level for the sharpened q-values.
5 Discussion

5.1 Using counterfactuals

Our use of a natural experiment to study the effect of information shocks on the efficiency of market prices allows us to eliminate possible confounds due to mispricings which may exist prior to the information shock. Such mispricings indeed exist in our setting: a small longshot bias is observed overall, with a more pronounced one being present towards the end of the match. This longshot bias lowers returns when prices are low (longshots are overpriced) and increases returns when prices are high (favourites are underpriced). If we were not using counterfactual situations to study abnormal returns, these biases could lead us to wrongly conclude that prices tend to over-react when prices are low (returns are biased downward) and to under-react when prices are high (returns are biased upward). It is what we find when estimating the effects presented in Figure 5.1 without counterfactuals. Most estimates move in the direction of the longshot bias, suggesting significant under-reaction in several situations (panels e, f, g, h, i, j, k, l).19 Most of these significant abnormal returns disappear when using our counterfactual approach. Part of the reason is that our matching estimates have slightly larger standard errors, but our matching approach also eliminates possible mispricings prior to the arrival of information.

The quality of our counterfactuals is key to eliminate such pre-existing biases. Our counterfactuals are situations where an information shock (goal) could have happened but did not. We find that there is no significant difference in terms of players and teams strength between goal-scoring situations and the counterfactuals. Given that the longshot bias is specific to the price levels, it is important that these counterfactuals are observed for the same price levels as the goal-scoring situations. We find that the distribution of prices is very similar for goal-scoring situations and their counterfactuals. We also check the robustness of our matching estimates by matching on different variables in addition to the spatial distances between shots: The price of the binary option at the time of the shots, or the timing of the shots, or the price of the binary option after the shots. The results using these alternate matching approaches are nearly identical to our main results.20

5.2 Possible mechanisms behind the under-reaction

While market prices seem to react quickly and efficiently most of the time, we find evidence of mispricing towards the end of the match when scoring a goal makes a big difference on the likely final outcome. Several theoretical models have been proposed to explain under-reaction as the result of investors’ psychological biases, in particular their limited attention (Hirshleifer et al. 2009). In the specific case of binary option markets, Ottaviani and Sørensen (2015) show that an under-reaction can also emerge naturally when rational traders do not share the same priors and when they have budget constraints.21 The fact that we do not

19 See Appendix J for detailed results of the estimations depicted in Figure 5.1.
20 Balancing tests and tests of price distribution prior to the information shocks are included in Appendix C. Robustness checks with different matching choices are included in Appendix K.
21 The assumption of a budget constraint is reasonable for two reasons. First, betting exchanges feature a large proportion of traders with limited budgets. Second, even wealthy traders should optimally follow some
Team A hitting the post trailing by at least two goals

(a) Asset “Team A wins” (b) Asset “Team B wins” (c) Asset “Draw”

Team A hitting the post trailing by one goal

(d) Asset “Team A wins” (e) Asset “Team B wins” (f) Asset “Draw”

Scoreline is tied

(g) Asset “Team A wins” (h) Asset “Team B wins” (i) Asset “Draw”

Team A hitting the post leading by at least one goal

(j) Asset “Team A wins” (k) Asset “Team B wins” (l) Asset “Draw”

Figure 5.1: Estimate of abnormal returns after buying following positive news ($r = \text{outcome} - p$, panels a, d, g, j, c, f) or selling following negative news ($r = p - \text{outcome}$, panels b, e, h, k, i, l). Positive values indicate under-reaction. Without controlling for counterfactuals, kernel matching estimator, matching on x-y with Euclidean distance, standard error computed with 50,000 bootstraps. Significant at * 5% level, ** 1% level for the sharpened q-values.
observe under-reaction for most of the markets’ lifespan suggests that these factors do not play a role substantial enough to distort prices. However, goals in the last minutes of matches may have larger effects on prices and on volumes. And these movements could be more likely to bind the traders’ budget constraints.

In terms of price, when a late goal happens in a match where the score is tied, the information shock is very large. It typically changes the value of the binary option “Team A wins” from a price close to $0 to a new price close to $1. Large information shocks require traders to be able to move the price in the direction of the shock with their trades. But, for any given budget a trader has, the number of bets this budget can buy decreases as the price of the bet increases.

Figure 5.2 plots the estimated under-reaction τ_M vs the effect of goals on volume and on prices. It shows that situations where goals are followed by high abnormal returns (under-reaction) are also characterised by large increases in prices and volume. A further look at the data shows that the largest movements in volume are for the goals happening in the last minutes of matches.

![Figure 5.2: Estimated abnormal returns (τ_M) compared to the effect of the goal on volume (left) and prices (right).](image)

In terms of volume, these late goals lead to a large quantity of options being traded. We observe that, when a goal allows Team A to move from a draw to a winning position in the last 15 min, the goal leads to, on average, £86,242 ($104,700) volume of transactions, compared to the average effect of a goal in the match of £17,419 ($21,100). Larger volumes mean that traders are buying a larger number of binary options. Furthermore, towards rules such as the Kelly-criterion and limit their exposure on a given market to only a small share of their overall wealth.

Formally, Ottaviani and Sørensen’s model is a one-period model with only one information shock and one trading period. This discussion of how their theoretical predictions relate to what happens at the end of matches should therefore be seen as suggestive.

See Appendix L for detailed analyses of the effect of information shocks on volumes as a function of their timing.

Note that “selling” an option is akin to buying the reverse option which also takes from the traders’ budget when they did not have the option to start with.
the end of the match, traders may already have used a large part of their budget. They may therefore be more likely to reach their budget constraint when trading after a large shock.

The pattern of under-reaction observed at the end of matches is therefore compatible with Ottaviani and Sørensen (2015)'s model whereby traders reach their budget constraints when information shocks are large.

6 Conclusion

A large body of literature in behavioural finance has suggested the existence of under-reaction in market prices following the arrival of new information. We investigate here whether such biases exist using a natural experiment. We compare knife-edge situations where information shocks occur with their counterfactuals where no such information shock occur. This comparison gives a high degree of confidence in the identification of possible mispricings.

We find evidence of under-reaction in specific contexts: towards the end of the markets' lives, in situations where the information shocks and the volume traded are large. This under-reaction may be due to the specific market structure of binary option markets, as predicted by Ottaviani and Sørensen (2015), not to traders' psychological biases.

Our main result is however that, most of the time, prices react surprisingly quickly and efficiently to information shocks: they move immediately to new levels which are not associated with abnormal returns. This result is significant for the literature on how financial prices react to information shocks. Compared to laboratory experiments, betting exchanges are likely to have much greater external validity. They are highly liquid, feature a large number of traders, and they attract expert traders who invest in quantitative techniques to take advantage of potential mispricings. At the same time, traders on betting exchanges are likely to be more prone to psychological biases than traders on traditional financial markets. Betting exchanges attract a large proportion of traders who are not financial experts. Some of them may even buy bets based on non-monetary preferences (e.g. team supported).

Furthermore, market prices react to events (changes in win/loss probabilities of football matches) which can induce large emotional reactions among traders. These reactions could motivate less than perfectly rational trades. The fact that we observe an efficient reaction of market prices most of the time is therefore noteworthy.

This result is interesting given the existing evidence pointing to the presence of under-reaction to information on financial markets. The cause of this under-reaction is often thought to be the limited attention of traders (Hirshleifer et al. 2009). In that regard, the information shocks on the markets we are studying have two relevant characteristics. First, they are salient. Traders are unlikely to miss out on the arrival of this information as they typically follow the events on which the markets are based. Second, the information shocks are also quite transparent. The interpretation of how a new informational shock should impact price is typically fairly clear, at least in terms of direction. It is reasonable to assume that these two characteristics may help market prices to react faster and better to the arrival of news. Relative to betting exchanges, traditional financial markets are populated by more sophisticated traders tracking mispricing opportunities. Our results suggest that, even when markets are characterised by high-frequency trading, prices may react efficiently to information shocks when information is salient and transparent enough.
References

Jann, Ben. 2019. “Kmatch: Stata module module for multivariate-distance and propensity-score matching, including entropy balancing, inverse probability weighting,(coarsened) exact matching, and regression adjustment.”

Online Appendix

A Data Description

Figure A.1: Graphical representation of the starting point of shots ending on the posts. In red the posts in and in blue the posts out.

B Betfair’s Interface

Figure B.1: Screenshot of the interface faced by traders face on the Betfair website.

Figure B.1 shows a screenshot of the interface traders faced on the Betfair website for the match West Ham vs Huddersfield. In this example, the best price available to back the outcome West Ham wins the match is $1.66. It means that if one backs this outcome (i.e. buys the bet) with $1 he/she will earn $1.66 if West Ham wins and $0 otherwise. Therefore,
he/she will make a profit of $1.66-$1−$0.66 if West Ham wins and make a loss of $1 if West Ham doesn’t win. At the price of $1.66 there is $3,971 which are available to be matched. This means that on the other side of the market, traders have proposed $3,971 to lay this outcome at $1.66.

C Balance tests

Table C.1 shows differences in covariates between the posts in and out. We used the same kernel matching estimator as in our main result, matching on the \((x,y)\) coordinates of where the shot was taken.\(^{25}\) There is no significant difference in any of the covariates.

<table>
<thead>
<tr>
<th></th>
<th>Diff</th>
<th>p-value</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex-ante probability from betting odds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prob team hitting post wins</td>
<td>0.006</td>
<td>0.625</td>
<td>5,176</td>
</tr>
<tr>
<td>Prob team conceding post wins</td>
<td>−0.005</td>
<td>0.666</td>
<td>5,176</td>
</tr>
<tr>
<td>Prob of a draw</td>
<td>−0.002</td>
<td>0.798</td>
<td>5,176</td>
</tr>
<tr>
<td>Player’s basic characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Player starting the match</td>
<td>−0.001</td>
<td>0.932</td>
<td>5,176</td>
</tr>
<tr>
<td>Forwards</td>
<td>−0.016</td>
<td>0.377</td>
<td>5,176</td>
</tr>
<tr>
<td>Midfielder</td>
<td>0.016</td>
<td>0.381</td>
<td>5,176</td>
</tr>
<tr>
<td>Defender</td>
<td>1.6∗10(^{-4})</td>
<td>0.990</td>
<td>5,176</td>
</tr>
<tr>
<td>Home team</td>
<td>−3.21∗10(^{-6})</td>
<td>1.000</td>
<td>5,176</td>
</tr>
<tr>
<td>Player’s performance since the start of the season</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of goal scored</td>
<td>0.011</td>
<td>0.945</td>
<td>5,023</td>
</tr>
<tr>
<td>Average rating</td>
<td>−0.001</td>
<td>0.151</td>
<td>1,949</td>
</tr>
<tr>
<td>Number of post inside</td>
<td>−0.023</td>
<td>0.616</td>
<td>5,023</td>
</tr>
<tr>
<td>Frequency of post inside</td>
<td>−0.003</td>
<td>0.875</td>
<td>2,071</td>
</tr>
<tr>
<td>Market values</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Player’s market value</td>
<td>144,014</td>
<td>0.799</td>
<td>5,158</td>
</tr>
<tr>
<td>Team’s average market value</td>
<td>58,969.36</td>
<td>0.843</td>
<td>5,176</td>
</tr>
<tr>
<td>Opponent team’s average mv</td>
<td>−156,749</td>
<td>0.412</td>
<td>5,176</td>
</tr>
<tr>
<td>Period in the match</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minute in the match</td>
<td>0.382</td>
<td>0.692</td>
<td>5,176</td>
</tr>
</tbody>
</table>

Table C.1: Tests of balance of covariates between matched observations. Kernel matching on \((x,y)\) coordinates. Standard errors computed with 1,000 bootstraps.

\(^{25}\)The standard error are computed by standard bootstrap (i.e. resampling with replacement).
distribution of prices just before posts in and posts out we perform a Kolmogorov-Smirnov
test on those two group of prices. Figure C.1 reports the results. In the three different
markets, we cannot reject the null hypothesis that there is no difference in the distributions
of prices before the posts.

Figure C.1: Kolmogorov-Smirnov test testing whether there is a difference in the distribution
of prices just before the post between the post-in and out. In red the post-in and in blue the
post-out. On the left the market “Team which hits the post wins the match”, in the middle
“Team which concedes the post wins the match”, on the left “Match ends as a draw”

We perform the same test with the timing of the goal. Figure C.2 shows a Kolmogorov-
Smirnov test testing whether there is a difference in the distribution of minutes in the match
at which the post occurs between the posts in and out. We do not find difference in the
timing of the goal.

Figure C.2: Kolmogorov-Smirnov test testing whether there is a difference in the distribution
of minutes in the match at which the post occurs between the posts in and out. In red the
post-in and in blue the post-out.

D Defining the first price after a post-in and a post-out

A key aspect of our analysis is to identify the price of the first transaction after a post
occurs. In the Betfair data, we have information about the market at regular intervals. We
sometimes have information multiple times per second, and sometimes there is a few second (e.g. 10 sec) between the updates. The timestamp of the update is to the nearest millisecond. In the Opta data, we have a timestamp of when the post occurs to the nearest second.

We merge the time at which the post occurs (from Opta) to the prices (in the Betfair data) using the timestamp to the second. The two timestamps from Opta and Betfair are synchronized.

On Betfair, when a goal occurs, trading is suspended for a certain period (on average during 62 seconds). During this period the entire betting books are cleared so any trading happening when the market re-opens cannot be for orders placed before the goal. In the Fracsoft data, we do not know when the market is suspended or open. We have much fewer market updates when the market is suspended.

For each update, we know the “Last price which has been matched”, as well as the “total volume, matched on this market up to that timestamp”, (in British pounds). We, therefore, know how much is traded between the different updates. However, we do not know at what time between two updates trade happens.

The Opta timestamp is recorded by a human and the start of the period at which Betfair is stopping trade is also recorded by a human. It is, therefore, possible that there is a few second of discrepancy between these two timestamps. By contrast, the timestamps of the market updates are recorded by a computer and are, therefore, exact.

We identify the first trade after the post-in and out as explained below.

D.1 First price after a post-in

Let’s define $t_{\text{post, Opta}}$ the timestamp of the post recorded by Opta (to the nearest second), $t_{\text{update, Betfair}}$ the timestamp of the updated prices in Betfair (to the nearest millisecond). We want to identify $t_{0, \text{Betfair}}$ which is the first Betfair market update, after a post-in occurred, in which a trade occurred.

- We define a period without trade or update a period in which there is either no market update or the ‘total volume matched on this market up to that timestamp’ does not increase. This definition is not necessary a period without trade. Indeed, it could just be that we do not have an update on the market during this period.

- We identify the longest period without trade or update which include at least one seconds $t_{\text{post, Opta}} \in [-3, 9]$. We denote this period blockodds.

- We look at the first trade at the end of blockodds. That is the first time the “total volume matched on this market up to that timestamp” increases since the beginning of this period.

- If the “Last price which has been matched” is different at the end of this period than at the beginning. We define this first trade as being the one just after the market opens.

- If the “Last price which has been matched” is not different at the end of this period than at the beginning. Then we look at the next trade, and we define the next trade as being when the market opens. Indeed if the “total volume matched on this market
up to that timestamp” increases at time \(t \) it could be for any trade between the update at time \(t \) and the previous update. So the first time the “total volume matched on this market up to that timestamp” increases, it could be for trade which happened before the market was suspended.

D.2 First price after a post-out

As we have seen above, after a goal, Betfair suspends the market. Therefore, for a post-in we look at the first trade after the market re-opens.

After a post-out, the market is not suspended. We define the first price after a post as being the first trade occurring 10 seconds after \(t_{post, opta} \). Importantly, our results are not sensitive to how we define the first price after a post-out. Specifically we find the same results if we define first price after a post as being the first trade occurring \(t \) second after \(t_{post, opta} \) for \(t \in \{-5, 1, ..., 15\} \).

D.3 Price when no trade occurs after the post

When there is not much uncertainty about the outcome of the match (e.g. \(p \) close to 0 or 1), there is sometimes no trade occurring after the post.

For instance, when the probability implied by the market is close to 1. If a team hits the post and the ball goes in, the team hitting the post is even more likely to win the match. In that case, there may not be any trader willing to lay the leading team. Therefore we may not observe any trade after the post and the market may not update. Similarly, when the probability implied by the market is close to 0, and the post does not change the likelihood that the team hitting the post wins the match then there may not be anyone willing to back the losing team, and the market may not update.

In our analysis, we included the posts for which no trade occurred after the post and used as the implied market price the last price matched before the post. All of our results are robust to excluding those posts.

E Detailed results of maximum likelihood estimations

Table 2 presents the estimates of parameters \(\delta \) and \(\gamma \) using maximum likelihood. Table E.1 shows that the parameters are not significantly different from 1 in either situation after a post. Table 3 shows that the parameters becomes significantly different from 1 after a post-in, in the last minutes of a match.
Table E.1: Maximum likelihood estimation of the function (3.1). First price after a post for the market “Team A wins”. In bracket p-value testing whether the estimate equal 1. In square bracket p-value testing whether the estimate for the post in and out are equal. Std errors clustered by markets and computed by 1,000 bootstraps.

<table>
<thead>
<tr>
<th></th>
<th>Post-out</th>
<th>Post-in</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>0.95</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>(0.245)</td>
<td>(0.405)</td>
</tr>
<tr>
<td>γ</td>
<td>1</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>(0.886)</td>
<td>(0.655)</td>
</tr>
</tbody>
</table>

F Parametric Bootstrap

In this Section, we describe the parametric bootstrap used to compute the p-values and confidence intervals of the matching estimates.

1. For each observation i:

 (a) Generate $outcome_i^* \sim Bernoulli(p_i)$.

 (b) Compute $r_i^* = outcome_i^* - p_i$.

2. Compute the matching estimate τ^* on the bootstrapped sample $(r_1^*, ..., r_N^*)$ with equation (3.3).

3. Repeat Step (1-2) B times. Denote τ_j^* matching estimate for the j^{th} bootstrapped sample.

4. Compute the matching estimate $\hat{\tau}$ on the original sample $(r_1, ..., r_N)$ with equation (3.3).

5. Compute the two-sides equal tail p-value as:

 $$pval = 2 \times \min \left(\frac{1}{B} \sum_{i=1}^{B} 1_{r_i^* \leq \hat{\tau}}, \frac{1}{B} \sum_{i=1}^{B} 1_{r_i^* > \hat{\tau}} \right)$$

 (Equation (4) of MacKinnon (2009))

6. Compute the 95% Confidence Interval as the 0.025 and 0.975 centile of the centered bootstrapped sample $(\tau_1^* - \hat{\tau}, ..., \tau_B^* - \hat{\tau})$.

 We use a large number of bootstrap samples, 50,000, to have a distribution of p-values as continuous as possible in order to compute the q-values to control for the False Discovery Rate.
Market calibration for different timings
Figure G.1: Expected returns for all the prices observed (first column), for the first price observed after a post-in (second column), and for a post-out (third column) for the asset “Team A wins the match” where Team A is the team hitting the post.
Kernel Matching on x-y with Euclidean Distance
<table>
<thead>
<tr>
<th>Asset</th>
<th>Team A wins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
</tr>
<tr>
<td>All situations</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>(0.409)</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
</tr>
<tr>
<td></td>
<td>5,176</td>
</tr>
<tr>
<td>Team A hitting the post trailing by at least two goals</td>
<td>−0.017</td>
</tr>
<tr>
<td></td>
<td>(0.513)</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
</tr>
<tr>
<td></td>
<td>383</td>
</tr>
<tr>
<td>Team A hitting the post trailing by one goal</td>
<td>−0.039</td>
</tr>
<tr>
<td></td>
<td>(0.261)</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
</tr>
<tr>
<td></td>
<td>880</td>
</tr>
<tr>
<td>Scoreline is tied</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>(0.351)</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
</tr>
<tr>
<td></td>
<td>2,364</td>
</tr>
<tr>
<td>Team A hitting the post leading by at least one goal</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>(0.603)</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
</tr>
<tr>
<td></td>
<td>1,549</td>
</tr>
</tbody>
</table>

Table H.1: Estimate of abnormal returns after buying asset “Team A wins” following positive news ($r = outcome - p$). Positive values indicate under-reaction. Kernel matching estimator, matching on $x-y$ with Euclidean distance. We only observe two posts for situations when Team A hits the post while trailing by at least two goals in the first 15 minutes. We, therefore, cannot perform our estimation in that case. p-values computed by 50,000 bootstraps in bracket (second line). Sharpened q-values in square brackets (third line). † significance at the 10% level, * significance at the 5% level, ** significance at the 1% level, *** significance at the 0.1% level.
Table H.2: Estimate of abnormal returns after buying asset “Team B wins” following positive news ($r = \text{outcome} - p$). Positive values indicate under-reaction. Kernel matching estimator, matching on x-y with Euclidean distance. We only observe two posts for situations when Team A hits the post while trailing by at least two goals in the first 15 minutes. We, therefore, cannot perform our estimation in that case. p-values computed by 50,000 bootstraps in bracket (second line). Sharpened q-values in square brackets (third line).

† significance at the 10% level, * significance at the 5% level, ** significance at the 1% level, *** significance at the 0.1% level.

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>0-45</th>
<th>46-90</th>
<th>1-15</th>
<th>16-30</th>
<th>31-45</th>
<th>46-60</th>
<th>61-75</th>
<th>76-90</th>
</tr>
</thead>
<tbody>
<tr>
<td>All situations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asset Team B wins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.012</td>
<td>-0.017</td>
<td>0.030</td>
<td>0.018</td>
<td>-0.064</td>
<td>-0.028</td>
<td>0.036</td>
<td>0.014</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td>(0.293)</td>
<td>(0.386)</td>
<td>(0.019)*</td>
<td>(0.663)</td>
<td>(0.052)†</td>
<td>(0.328)</td>
<td>(0.189)</td>
<td>(0.567)</td>
<td>(0.009)**</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.329]</td>
<td>[1.000]</td>
<td>[0.562]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.233]</td>
</tr>
<tr>
<td></td>
<td>5,176</td>
<td>2,325</td>
<td>2,851</td>
<td>662</td>
<td>778</td>
<td>885</td>
<td>852</td>
<td>899</td>
<td>1,100</td>
</tr>
<tr>
<td>Team A hitting the post trailing by at least two goal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.002</td>
<td>-0.033</td>
<td>0.005</td>
<td>.</td>
<td>-0.106</td>
<td>-0.010</td>
<td>0.069</td>
<td>-0.052</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(0.983)</td>
<td>(0.842)</td>
<td>(0.878)</td>
<td>(.)</td>
<td>(0.627)</td>
<td>(0.954)</td>
<td>(0.475)</td>
<td>(0.639)</td>
<td>(0.985)</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[.]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
</tr>
<tr>
<td></td>
<td>383</td>
<td>58</td>
<td>325</td>
<td>81</td>
<td>95</td>
<td>149</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Team A hitting the post trailing by one goal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.017</td>
<td>-0.184</td>
<td>0.058</td>
<td>-0.231</td>
<td>-0.161</td>
<td>-0.173</td>
<td>-0.053</td>
<td>0.037</td>
<td>0.151</td>
</tr>
<tr>
<td></td>
<td>(0.643)</td>
<td>(0.005)**</td>
<td>(0.198)</td>
<td>(0.205)</td>
<td>(0.141)</td>
<td>(0.069)†</td>
<td>(0.538)</td>
<td>(0.692)</td>
<td>(0.005)**</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
<td>[0.158]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.783]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.158]</td>
</tr>
<tr>
<td></td>
<td>880</td>
<td>312</td>
<td>568</td>
<td>31</td>
<td>121</td>
<td>160</td>
<td>162</td>
<td>173</td>
<td>233</td>
</tr>
<tr>
<td>Scoreline is tied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.022</td>
<td>0.007</td>
<td>0.033</td>
<td>0.041</td>
<td>-0.051</td>
<td>0.039</td>
<td>0.068</td>
<td>0.013</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>(0.233)</td>
<td>(0.813)</td>
<td>(0.163)</td>
<td>(0.384)</td>
<td>(0.266)</td>
<td>(0.369)</td>
<td>(0.154)</td>
<td>(0.787)</td>
<td>(0.527)</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
</tr>
<tr>
<td></td>
<td>2,364</td>
<td>1,463</td>
<td>901</td>
<td>576</td>
<td>475</td>
<td>412</td>
<td>307</td>
<td>298</td>
<td>296</td>
</tr>
<tr>
<td>Team A hitting the post leading by at least one goal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.002</td>
<td>-0.031</td>
<td>0.010</td>
<td>0.068</td>
<td>-0.031</td>
<td>-0.030</td>
<td>0.016</td>
<td>0.014</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>(0.885)</td>
<td>(0.171)</td>
<td>(0.227)</td>
<td>(0.471)</td>
<td>(0.401)</td>
<td>(0.293)</td>
<td>(0.468)</td>
<td>(0.375)</td>
<td>(0.509)</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
</tr>
<tr>
<td></td>
<td>1,549</td>
<td>492</td>
<td>1,057</td>
<td>53</td>
<td>165</td>
<td>274</td>
<td>302</td>
<td>333</td>
<td>422</td>
</tr>
<tr>
<td></td>
<td>Asset Draw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>0-45</td>
<td>46-90</td>
<td>1-15</td>
<td>16-30</td>
<td>31-45</td>
<td>46-60</td>
<td>61-75</td>
<td>76-90</td>
</tr>
<tr>
<td>All situations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>−0.004</td>
<td>−0.004</td>
<td>−0.001</td>
<td>−0.001</td>
<td>−0.033</td>
<td>0.004</td>
<td>−0.030</td>
<td>0.053</td>
<td>−0.022</td>
</tr>
<tr>
<td></td>
<td>(0.794)</td>
<td>(0.882)</td>
<td>(0.944)</td>
<td>(0.992)</td>
<td>(0.371)</td>
<td>(0.907)</td>
<td>(0.377)</td>
<td>(0.104)</td>
<td>(0.328)</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
</tr>
<tr>
<td></td>
<td>5,176</td>
<td>2,325</td>
<td>2,851</td>
<td>662</td>
<td>778</td>
<td>885</td>
<td>852</td>
<td>899</td>
<td>1,100</td>
</tr>
<tr>
<td>Team A hitting the post trailing by at least two goal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.010</td>
<td>0.029</td>
<td>0.011</td>
<td>−0.100</td>
<td>0.082</td>
<td>0.130</td>
<td>−0.069</td>
<td>−0.004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.790)</td>
<td>(0.755)</td>
<td>(0.779)</td>
<td>(.046)</td>
<td>(0.655)</td>
<td>(0.167)</td>
<td>(0.473)</td>
<td>(0.976)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
</tr>
<tr>
<td></td>
<td>383</td>
<td>58</td>
<td>325</td>
<td>.</td>
<td>17</td>
<td>39</td>
<td>81</td>
<td>95</td>
<td>149</td>
</tr>
<tr>
<td>Team A hitting the post trailing by one goal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.041</td>
<td>−0.133</td>
<td>0.120</td>
<td>−0.193</td>
<td>−0.035</td>
<td>−0.196</td>
<td>0.000</td>
<td>0.102</td>
<td>0.213</td>
</tr>
<tr>
<td></td>
<td>(0.313)</td>
<td>(0.035)*</td>
<td>(0.020)*</td>
<td>(0.282)</td>
<td>(0.747)</td>
<td>(0.034)*</td>
<td>(0.991)</td>
<td>(0.318)</td>
<td>(0.002)**</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.329]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.119]</td>
</tr>
<tr>
<td></td>
<td>880</td>
<td>312</td>
<td>568</td>
<td>31</td>
<td>121</td>
<td>160</td>
<td>162</td>
<td>173</td>
<td>233</td>
</tr>
<tr>
<td>Scoreline is tied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.014</td>
<td>−0.019</td>
<td>0.085</td>
<td>−0.019</td>
<td>0.020</td>
<td>−0.083</td>
<td>0.089</td>
<td>−0.070</td>
<td>0.232</td>
</tr>
<tr>
<td></td>
<td>(0.560)</td>
<td>(0.519)</td>
<td>(0.019)*</td>
<td>(0.688)</td>
<td>(0.708)</td>
<td>(0.148)</td>
<td>(0.153)</td>
<td>(0.313)</td>
<td>(< 0.001)**</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.329]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.001]**</td>
</tr>
<tr>
<td></td>
<td>2,364</td>
<td>1,463</td>
<td>901</td>
<td>576</td>
<td>475</td>
<td>412</td>
<td>307</td>
<td>298</td>
<td>296</td>
</tr>
<tr>
<td>Team A hitting the post leading by at least one goal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.012</td>
<td>0.029</td>
<td>0.005</td>
<td>0.013</td>
<td>0.045</td>
<td>0.021</td>
<td>0.068</td>
<td>−0.030</td>
<td>−0.009</td>
</tr>
<tr>
<td></td>
<td>(0.454)</td>
<td>(0.430)</td>
<td>(0.774)</td>
<td>(0.972)</td>
<td>(0.482)</td>
<td>(0.666)</td>
<td>(0.079)†</td>
<td>(0.407)</td>
<td>(0.633)</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.915]</td>
<td>[1.000]</td>
<td>[1.000]</td>
</tr>
<tr>
<td></td>
<td>1,549</td>
<td>492</td>
<td>1,057</td>
<td>53</td>
<td>165</td>
<td>274</td>
<td>302</td>
<td>333</td>
<td>422</td>
</tr>
</tbody>
</table>

Table H.3: Estimate of abnormal returns after buying asset “Draw” following positive news ($r = outcome - p$, first three lines) or selling following negative news ($r = outcome - p$, last two lines). Positive values indicate under-reaction. Kernel matching estimator, matching on x-y with Euclidean distance. We only observe two posts for situations when Team A hits the post while trailing by at least two goals in the first 15 min. We, therefore, cannot perform our estimation in that case. p-values computed by 50,000 bootstraps in bracket (second line). Sharpened q-values in square brackets (third line). † significance at the 10% level, * significance at the 5% level, ** significance at the 1% level, *** significance at the 0.1% level.
I Evolution of abnormal returns after a post-in

We present here the estimation of abnormal returns after a post-in. The CIs do not control for multiple testing. We indicate with a star the estimates which are significant when controlling for multiple testing. Figure I.1 shows our estimate $\hat{\tau}_M$ of the abnormal returns for different goal timings by periods of 15 minutes in the match. Figure I.2 shows our estimate of the abnormal returns over time the other fifteen-minute period of the match. Figure I.3 shows our estimate of the abnormal returns over time in the last fifteen minutes of the match when Team A scores and the scoreline is tied.

![Figure I.1: Estimate of abnormal returns after buying following positive news ($r = outcome - p$). Positive values indicate under-reaction. With counterfactuals, kernel matching estimator, matching on $x-y$ with Euclidean distance, standard error computed with 50,000 bootstraps.](image-url)
Figure I.2: Estimated returns after an information shock ("post-in"): $\hat{\tau}_M$ for the asset *team A wins*.

Figure I.3: Estimated returns after an information shock ("post-in"): τ_M for the asset *team A wins* in the last fifteen minutes of the match when the scoreline is tied.
Estimate of abnormal returns *without controlling for counterfactuals*
Table J.1: Estimate of abnormal returns after buying asset “Team A wins” following positive news ($r = \text{outcome} - p$) without controlling for counterfactuals. We only observe two posts for situations when Team A hits the post while trailing by at least two goals in the first 15 minutes. We, therefore, cannot perform our estimation in that case. p-values computed by 50,000 bootstraps in bracket (second line). Sharpened q-values in square brackets (third line). † significance at the 10% level, * significance at the 5% level, ** significance at the 1% level, *** significance at the 0.1% level.

<table>
<thead>
<tr>
<th>Asset</th>
<th>Team A wins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
</tr>
<tr>
<td>All situations</td>
<td></td>
</tr>
<tr>
<td>0.011</td>
<td>-0.003</td>
</tr>
<tr>
<td>(0.323)</td>
<td>(0.886)</td>
</tr>
<tr>
<td>[0.806]</td>
<td>[1.000]</td>
</tr>
<tr>
<td>970</td>
<td>426</td>
</tr>
<tr>
<td>Team A hitting the post trailing by at least two goals</td>
<td></td>
</tr>
<tr>
<td>-0.031</td>
<td>-0.083</td>
</tr>
<tr>
<td>(0.276)</td>
<td>(0.673)</td>
</tr>
<tr>
<td>[0.725]</td>
<td>[1.000]</td>
</tr>
<tr>
<td>75</td>
<td>12</td>
</tr>
<tr>
<td>Team A hitting the post trailing by one goal</td>
<td></td>
</tr>
<tr>
<td>-0.045</td>
<td>-0.040</td>
</tr>
<tr>
<td>(0.164)</td>
<td>(0.519)</td>
</tr>
<tr>
<td>[0.578]</td>
<td>[1.000]</td>
</tr>
<tr>
<td>164</td>
<td>61</td>
</tr>
<tr>
<td>Scoreline is tied</td>
<td></td>
</tr>
<tr>
<td>0.035</td>
<td>0.007</td>
</tr>
<tr>
<td>(0.082)†</td>
<td>(0.776)</td>
</tr>
<tr>
<td>[0.378]</td>
<td>[1.000]</td>
</tr>
<tr>
<td>423</td>
<td>253</td>
</tr>
<tr>
<td>Team A hitting the post leading by at least one goal</td>
<td></td>
</tr>
<tr>
<td>0.018</td>
<td>0.006</td>
</tr>
<tr>
<td>(0.154)</td>
<td>(0.764)</td>
</tr>
<tr>
<td>[0.563]</td>
<td>[1.000]</td>
</tr>
<tr>
<td>308</td>
<td>100</td>
</tr>
<tr>
<td>Asset Team B wins</td>
<td>All</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
</tr>
<tr>
<td>All situations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>(0.458)</td>
</tr>
<tr>
<td></td>
<td>[0.942]</td>
</tr>
<tr>
<td></td>
<td>970</td>
</tr>
<tr>
<td>Team A hitting the post trailing by at least two goals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>(0.725)</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
</tr>
<tr>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Team A hitting the post trailing by one goal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td>(0.941)</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
</tr>
<tr>
<td></td>
<td>164</td>
</tr>
<tr>
<td>Scoreline is tied</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>(0.248)</td>
</tr>
<tr>
<td></td>
<td>[0.677]</td>
</tr>
<tr>
<td></td>
<td>423</td>
</tr>
<tr>
<td>Team A hitting the post leading by at least one goal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(0.783)</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
</tr>
<tr>
<td></td>
<td>308</td>
</tr>
</tbody>
</table>

Table J.2: Estimate of abnormal returns after buying asset “Team B wins” following positive news ($r = outcome - p$) without controlling for counterfactuals. We only observe two posts for situations when Team A hits the post while trailing by at least two goals in the first 15 minutes. We, therefore, cannot perform our estimation in that case. p-values computed by 50,000 bootstraps in bracket (second line). Sharpened q-values in square brackets (third line). † significance at the 10% level, * significance at the 5% level, ** significance at the 1% level, *** significance at the 0.1% level.
Table J.3: Estimate of abnormal returns after buying asset “Draw” following positive news ($r = outcome - p$, first three lines) or selling following negative news ($r = outcome - p$, last two lines) without controlling for counterfactuals. We only observe two posts for situations when Team A hits the post while trailing by at least two goals in the first 15 minutes. We, therefore, cannot perform our estimation in that case. p-values computed by 50,000 bootstraps in bracket (second line). Sharpened q-values in square brackets (third line).

<table>
<thead>
<tr>
<th>All</th>
<th>0-45</th>
<th>46-90</th>
<th>1-15</th>
<th>16-30</th>
<th>31-45</th>
<th>46-60</th>
<th>61-75</th>
<th>76-90</th>
</tr>
</thead>
<tbody>
<tr>
<td>All situations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.009</td>
<td>-0.009</td>
<td>-0.008</td>
<td>-0.008</td>
<td>-0.033</td>
<td>0.013</td>
<td>-0.040</td>
<td>0.043</td>
<td>-0.023</td>
</tr>
<tr>
<td>(0.443)</td>
<td>(0.619)</td>
<td>(0.571)</td>
<td>(0.888)</td>
<td>(0.329)</td>
<td>(0.715)</td>
<td>(0.192)</td>
<td>(0.097)†</td>
<td>(0.306)</td>
</tr>
<tr>
<td>[0.942]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.813]</td>
<td>[1.000]</td>
<td>[0.640]</td>
<td>[0.401]</td>
<td>[0.773]</td>
</tr>
<tr>
<td>970</td>
<td>426</td>
<td>544</td>
<td>114</td>
<td>152</td>
<td>160</td>
<td>170</td>
<td>164</td>
<td>210</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Team A hitting the post trailing by at least two goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.036</td>
</tr>
<tr>
<td>(0.247)</td>
</tr>
<tr>
<td>[0.677]</td>
</tr>
<tr>
<td>75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Team A hitting the post trailing by one goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.063</td>
</tr>
<tr>
<td>(0.062)†</td>
</tr>
<tr>
<td>[0.298]</td>
</tr>
<tr>
<td>164</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scoreline is tied</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.032</td>
</tr>
<tr>
<td>(0.090)†</td>
</tr>
<tr>
<td>[0.383]</td>
</tr>
<tr>
<td>423</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Team A hitting the post leading by at least one goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.026</td>
</tr>
<tr>
<td>(0.029)**</td>
</tr>
<tr>
<td>[0.164]</td>
</tr>
<tr>
<td>308</td>
</tr>
</tbody>
</table>

† significance at the 10% level, * significance at the 5% level, ** significance at the 1% level, *** significance at the 0.1% level.
K Robustness checks on matching variables

K.1 Matching on price before post

Figure K.1, Table K.1, K.2 and K.3 reproduce the main results matching on the \((x,y)\) coordinates and the price just before the post and using the Mahanabolis distance.
Team A hitting the post trailing by at least two goals

(a) Asset “Team A wins” (b) Asset “Team B wins” (c) Asset “Draw”

Team A hitting the post trailing by one goal

(d) Asset “Team B wins” (e) Asset “Team B wins” (f) Asset “Draw”

Scoreline is tied

(g) Asset “Team A wins” (h) Asset “Team B wins” (i) Asset “Draw”

Team A hitting the post leading by at least one goal

(j) Asset “Team A wins” (k) Asset “Team B wins” (l) Asset “Draw”

Figure K.1: Estimate of abnormal returns after buying following positive news ($r = outcome - p$, panels a, d, g, j, c, f) or selling following negative news ($r = outcome - p$, panels b, e, h, k, i, l). Positive values indicate under-reaction. Kernel matching estimator, matching on x-y and price before the post with Mahalanobis distance, standard error computed with 50,000 bootstraps. Significant at * 5% level, ** 1% level for the sharpened q-values.
<table>
<thead>
<tr>
<th>Asset Team A wins</th>
<th>All</th>
<th>0-45</th>
<th>46-90</th>
<th>1-15</th>
<th>16-30</th>
<th>31-45</th>
<th>46-60</th>
<th>61-75</th>
<th>76-90</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>All situations</td>
<td>0.013</td>
<td>−0.010</td>
<td>0.029</td>
<td>0.016</td>
<td>−0.004</td>
<td>−0.044</td>
<td>0.070</td>
<td>−0.027</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td>(0.343)</td>
<td>(0.671)</td>
<td>(0.065)</td>
<td>(0.743)</td>
<td>(0.916)</td>
<td>(0.238)</td>
<td>(0.028)*</td>
<td>(0.408)</td>
<td>(0.027)**</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.763]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.373]</td>
<td>[1.000]</td>
<td>[0.373]</td>
</tr>
<tr>
<td></td>
<td>5.176</td>
<td>2,325</td>
<td>2,851</td>
<td>662</td>
<td>778</td>
<td>885</td>
<td>852</td>
<td>899</td>
<td>1,100</td>
</tr>
<tr>
<td>Team A hitting the post trailing by at least two goals</td>
<td>−0.007</td>
<td>−0.056</td>
<td>−0.002</td>
<td>.</td>
<td>−0.026</td>
<td>−0.049</td>
<td>−0.038</td>
<td>0.035</td>
<td>−0.004</td>
</tr>
<tr>
<td></td>
<td>(0.788)</td>
<td>(0.628)</td>
<td>(0.989)</td>
<td>(.</td>
<td>(0.548)</td>
<td>(0.755)</td>
<td>(0.633)</td>
<td>(0.356)</td>
<td>(0.230)</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[.</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
</tr>
<tr>
<td></td>
<td>383</td>
<td>58</td>
<td>325</td>
<td>.</td>
<td>17</td>
<td>39</td>
<td>81</td>
<td>95</td>
<td>149</td>
</tr>
<tr>
<td>Team A hitting the post trailing by one goal</td>
<td>−0.035</td>
<td>−0.075</td>
<td>−0.032</td>
<td>−0.137</td>
<td>−0.110</td>
<td>−0.027</td>
<td>−0.052</td>
<td>−0.032</td>
<td>−0.055</td>
</tr>
<tr>
<td></td>
<td>(0.311)</td>
<td>(0.235)</td>
<td>(0.416)</td>
<td>(0.436)</td>
<td>(0.277)</td>
<td>(0.797)</td>
<td>(0.543)</td>
<td>(0.728)</td>
<td>(0.197)</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
</tr>
<tr>
<td></td>
<td>880</td>
<td>312</td>
<td>568</td>
<td>31</td>
<td>121</td>
<td>160</td>
<td>162</td>
<td>173</td>
<td>233</td>
</tr>
<tr>
<td>Scoreline is tied</td>
<td>0.030</td>
<td>−0.005</td>
<td>0.084</td>
<td>0.026</td>
<td>0.010</td>
<td>−0.073</td>
<td>0.146</td>
<td>−0.089</td>
<td>0.162</td>
</tr>
<tr>
<td></td>
<td>(0.234)</td>
<td>(0.892)</td>
<td>(0.022)*</td>
<td>(0.627)</td>
<td>(0.866)</td>
<td>(0.236)</td>
<td>(0.019)*</td>
<td>(0.205)</td>
<td>(0.002)**</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.357]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.357]</td>
<td>[1.000]</td>
<td>[0.074]†</td>
</tr>
<tr>
<td></td>
<td>2,364</td>
<td>1,463</td>
<td>901</td>
<td>576</td>
<td>475</td>
<td>412</td>
<td>307</td>
<td>298</td>
<td>296</td>
</tr>
<tr>
<td>Team A hitting the post leading by at least one goal</td>
<td>0.013</td>
<td>0.011</td>
<td>0.019</td>
<td>0.035</td>
<td>0.023</td>
<td>−0.009</td>
<td>0.060</td>
<td>0.012</td>
<td>−0.006</td>
</tr>
<tr>
<td></td>
<td>(0.458)</td>
<td>(0.789)</td>
<td>(0.266)</td>
<td>(0.807)</td>
<td>(0.765)</td>
<td>(0.828)</td>
<td>(0.138)</td>
<td>(0.750)</td>
<td>(0.734)</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
</tr>
<tr>
<td></td>
<td>1,549</td>
<td>492</td>
<td>1,057</td>
<td>53</td>
<td>165</td>
<td>274</td>
<td>302</td>
<td>333</td>
<td>422</td>
</tr>
</tbody>
</table>

Table K.1: Estimate of abnormal returns after buying asset “Team A wins” following positive news \(r = \text{outcome} - p\). Positive values indicate under-reaction. Kernel matching estimator, matching on x-y and price before the post with Mahalanobis distance. We only observe two posts for situations when Team A hits the post while trailing by at least two goals in the first 15 minutes. We, therefore, cannot perform our estimation in that case. \(p\) values computed by 50,000 bootstraps in bracket (second line). Sharpened \(q\)-values in square brackets (third line). † significance at the 10% level, * significance at the 5% level, ** significance at the 1% level, *** significance at the 0.1% level.
Table K.2: Estimate of abnormal returns after buying asset “Team B wins” following positive news ($r = \text{outcome} - p$). Positive values indicate under-reaction. Kernel matching estimator, matching on x-y and price before the post with Mahalanobis distance. We only observe two posts for situations when Team A hits the post while trailing by at least two goals in the first 15 minutes. We, therefore, cannot perform our estimation in that case. p-values computed by 50,000 bootstraps in bracket (second line). Sharpened q-values in square brackets (third line). † significance at the 10% level, * significance at the 5% level, ** significance at the 1% level, *** significance at the 0.1% level.

<table>
<thead>
<tr>
<th>Asset</th>
<th>Team B wins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
</tr>
<tr>
<td>All situations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.007</td>
</tr>
<tr>
<td>(0.544)</td>
<td>(0.206)</td>
</tr>
<tr>
<td>[1.000]</td>
<td>[1.000]</td>
</tr>
<tr>
<td>5.176</td>
<td>2.325</td>
</tr>
<tr>
<td>Team A hitting the post trailing by at least two goals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>−0.006</td>
</tr>
<tr>
<td>(0.915)</td>
<td>(0.811)</td>
</tr>
<tr>
<td>[1.000]</td>
<td>[1.000]</td>
</tr>
<tr>
<td>383</td>
<td>58</td>
</tr>
<tr>
<td>Team A hitting the post trailing by one goal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>−0.035</td>
</tr>
<tr>
<td>(0.352)</td>
<td>(0.004)**</td>
</tr>
<tr>
<td>[1.000]</td>
<td>[0.122]</td>
</tr>
<tr>
<td>880</td>
<td>312</td>
</tr>
<tr>
<td>Scoreline is tied</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.026</td>
</tr>
<tr>
<td>(0.156)</td>
<td>(0.787)</td>
</tr>
<tr>
<td>[1.000]</td>
<td>[1.000]</td>
</tr>
<tr>
<td>2.364</td>
<td>1.463</td>
</tr>
<tr>
<td>Team A hitting the post leading by at least one goal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>−0.001</td>
</tr>
<tr>
<td>(0.910)</td>
<td>(0.371)</td>
</tr>
<tr>
<td>[1.000]</td>
<td>[1.000]</td>
</tr>
<tr>
<td>1.549</td>
<td>492</td>
</tr>
</tbody>
</table>
Table K.3: Estimate of abnormal returns after buying asset “Draw” following positive news \((r = \text{outcome} - p\), first three lines) or selling following negative news \((r = \text{outcome} - p\), last two lines). Positive values indicate under-reaction. Kernel matching estimator, matching on \(x-y\) and price before the post with Mahalanobis distance. We only observe two posts for situations when Team A hits the post while trailing by at least two goals in the first 15 minutes. We, therefore, cannot perform our estimation in that case. \(p\) values computed by 50,000 bootstraps in bracket (second line). Sharpened \(q\)-values in square brackets (third line). \(*\) significance at the 10% level, \(*\) significance at the 5% level, \(**\) significance at the 1% level, \(***\) significance at the 0.1% level.
K.2 Matching on price before post and minute of the post

Figure K.2, Table K.4, K.5 and K.6 reproduce the main results matching on the (x, y) coordinates, price just before the post and minute in the match at which the post occurred using the Mahanabolis distance.
Figure K.2: Estimate of abnormal returns after buying following positive news \((r = \text{outcome} - p) \), panels a, d, g, j, c, f) or selling following negative news \((r = \text{outcome} - p) \), panels b, e, h, k, i, l). Positive values indicate under-reaction. Kernel matching estimator, matching on \(x-y \) and price before the post with Mahalanobis distance, standard error computed with 50,000 bootstraps. Significant at * 5% level, ** 1% level for the sharpened q-values.
<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>0-45</th>
<th>46-90</th>
<th>1-15</th>
<th>16-30</th>
<th>31-45</th>
<th>46-60</th>
<th>61-75</th>
<th>76-90</th>
</tr>
</thead>
<tbody>
<tr>
<td>All situations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.011</td>
<td>-0.015</td>
<td>0.031</td>
<td>0.019</td>
<td>-0.010</td>
<td>-0.044</td>
<td>0.069</td>
<td>-0.028</td>
<td>0.038</td>
<td></td>
</tr>
<tr>
<td>(0.421)</td>
<td>(0.521)</td>
<td>(0.047)*</td>
<td>(0.685)</td>
<td>(0.792)</td>
<td>(0.246)</td>
<td>(0.032)*</td>
<td>(0.370)</td>
<td>(0.065)†</td>
<td></td>
</tr>
<tr>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.690]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.562]</td>
<td>[1.000]</td>
<td>[0.912]</td>
<td></td>
</tr>
<tr>
<td>5.176</td>
<td>2,325</td>
<td>2,851</td>
<td>662</td>
<td>778</td>
<td>885</td>
<td>852</td>
<td>899</td>
<td>1,100</td>
<td></td>
</tr>
<tr>
<td>Team A hitting the post trailing by at least two goals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.006</td>
<td>-0.045</td>
<td>0.001</td>
<td>.</td>
<td>-0.028</td>
<td>-0.060</td>
<td>-0.040</td>
<td>0.033</td>
<td>-0.003</td>
<td></td>
</tr>
<tr>
<td>(0.868)</td>
<td>(0.641)</td>
<td>(0.852)</td>
<td>(.</td>
<td>(0.548)</td>
<td>(0.421)</td>
<td>(0.608)</td>
<td>(0.390)</td>
<td>(0.230)</td>
<td></td>
</tr>
<tr>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[.</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td></td>
</tr>
<tr>
<td>383</td>
<td>58</td>
<td>325</td>
<td>.</td>
<td>17</td>
<td>39</td>
<td>81</td>
<td>95</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>Team A hitting the post trailing by one goal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.045</td>
<td>-0.056</td>
<td>-0.036</td>
<td>-0.137</td>
<td>-0.102</td>
<td>0.010</td>
<td>-0.045</td>
<td>-0.070</td>
<td>-0.066</td>
<td></td>
</tr>
<tr>
<td>(0.179)</td>
<td>(0.374)</td>
<td>(0.370)</td>
<td>(0.429)</td>
<td>(0.286)</td>
<td>(0.893)</td>
<td>(0.594)</td>
<td>(0.391)</td>
<td>(0.176)</td>
<td></td>
</tr>
<tr>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td></td>
</tr>
<tr>
<td>880</td>
<td>312</td>
<td>568</td>
<td>31</td>
<td>121</td>
<td>160</td>
<td>162</td>
<td>173</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>Scoreline is tied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.024</td>
<td>-0.011</td>
<td>0.073</td>
<td>0.027</td>
<td>-0.003</td>
<td>-0.076</td>
<td>0.154</td>
<td>-0.107</td>
<td>0.148</td>
<td></td>
</tr>
<tr>
<td>(0.329)</td>
<td>(0.741)</td>
<td>(0.040)*</td>
<td>(0.614)</td>
<td>(0.961)</td>
<td>(0.220)</td>
<td>(0.013)*</td>
<td>(0.133)</td>
<td>(0.005)**</td>
<td></td>
</tr>
<tr>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.688]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.225]</td>
<td>[1.000]</td>
<td>[0.145]</td>
<td></td>
</tr>
<tr>
<td>2,364</td>
<td>1,463</td>
<td>901</td>
<td>576</td>
<td>475</td>
<td>412</td>
<td>307</td>
<td>298</td>
<td>296</td>
<td></td>
</tr>
<tr>
<td>Team A hitting the post leading by at least one goal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.013</td>
<td>0.012</td>
<td>0.015</td>
<td>0.076</td>
<td>0.015</td>
<td>0.010</td>
<td>0.060</td>
<td>0.012</td>
<td>-0.008</td>
<td></td>
</tr>
<tr>
<td>(0.463)</td>
<td>(0.781)</td>
<td>(0.386)</td>
<td>(0.564)</td>
<td>(0.858)</td>
<td>(0.873)</td>
<td>(0.136)</td>
<td>(0.747)</td>
<td>(0.643)</td>
<td></td>
</tr>
<tr>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td></td>
</tr>
<tr>
<td>1,549</td>
<td>492</td>
<td>1,057</td>
<td>53</td>
<td>165</td>
<td>274</td>
<td>302</td>
<td>333</td>
<td>422</td>
<td></td>
</tr>
</tbody>
</table>

Table K.4: Estimate of abnormal returns after buying asset “Team A wins” following positive news (\(r = outcome - p \)). Positive values indicate under-reaction. Kernel matching estimator, matching on \(x-y \) and price before the post with Mahalanobis distance. We only observe two posts for situations when Team A hits the post while trailing by at least two goals in the first 15 minutes. We, therefore, cannot perform our estimation in that case. \(p \)-values computed by 50,000 bootstraps in bracket (second line). Sharpened \(q \)-values in square brackets (third line). † significance at the 10% level, * significance at the 5% level, ** significance at the 1% level, *** significance at the 0.1% level.
Asset Team B wins

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>0-45</th>
<th>46-90</th>
<th>1-15</th>
<th>16-30</th>
<th>31-45</th>
<th>46-60</th>
<th>61-75</th>
<th>76-90</th>
</tr>
</thead>
<tbody>
<tr>
<td>All situations</td>
<td>0.004</td>
<td>−0.028</td>
<td>0.030</td>
<td>0.021</td>
<td>−0.052</td>
<td>−0.029</td>
<td>0.027</td>
<td>0.015</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>(0.741)</td>
<td>(0.152)</td>
<td>(0.020)*</td>
<td>(0.618)</td>
<td>(0.126)</td>
<td>(0.329)</td>
<td>(0.285)</td>
<td>(0.580)</td>
<td>(0.002)**</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.320]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.106]</td>
</tr>
<tr>
<td></td>
<td>5.176</td>
<td>2,325</td>
<td>2,851</td>
<td>662</td>
<td>778</td>
<td>885</td>
<td>852</td>
<td>899</td>
<td>1,100</td>
</tr>
</tbody>
</table>

Team A hitting the post trailing by at least two goals

<table>
<thead>
<tr>
<th></th>
<th>−0.054</th>
<th>0.025</th>
<th>.</th>
<th>−0.045</th>
<th>−0.081</th>
<th>0.123</th>
<th>0.036</th>
<th>−0.011</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.902)</td>
<td>(0.694)</td>
<td>(0.559)</td>
<td>(.)</td>
<td>(0.876)</td>
<td>(0.693)</td>
<td>(0.223)</td>
<td>(0.666)</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[.]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
</tr>
<tr>
<td></td>
<td>383</td>
<td>58</td>
<td>325</td>
<td>17</td>
<td>39</td>
<td>81</td>
<td>95</td>
<td>149</td>
</tr>
</tbody>
</table>

Team A hitting the post trailing by one goal

<table>
<thead>
<tr>
<th></th>
<th>−0.027</th>
<th>−0.181</th>
<th>0.054</th>
<th>−0.273</th>
<th>−0.162</th>
<th>−0.176</th>
<th>−0.067</th>
<th>0.034</th>
<th>0.162</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.474)</td>
<td>(0.008)**</td>
<td>(0.231)</td>
<td>(0.155)</td>
<td>(0.135)</td>
<td>(0.073)†</td>
<td>(0.443)</td>
<td>(0.717)</td>
<td>(0.004)**</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
<td>[0.212]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.912]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.142]</td>
</tr>
<tr>
<td></td>
<td>880</td>
<td>312</td>
<td>568</td>
<td>31</td>
<td>121</td>
<td>160</td>
<td>162</td>
<td>173</td>
<td>233</td>
</tr>
</tbody>
</table>

Scoreline is tied

<table>
<thead>
<tr>
<th></th>
<th>0.016</th>
<th>0.004</th>
<th>0.029</th>
<th>0.026</th>
<th>−0.034</th>
<th>0.022</th>
<th>0.060</th>
<th>0.006</th>
<th>0.015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.365)</td>
<td>(0.879)</td>
<td>(0.195)</td>
<td>(0.573)</td>
<td>(0.452)</td>
<td>(0.637)</td>
<td>(0.174)</td>
<td>(0.925)</td>
<td>(0.554)</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
</tr>
<tr>
<td></td>
<td>2,364</td>
<td>1,463</td>
<td>901</td>
<td>576</td>
<td>475</td>
<td>412</td>
<td>307</td>
<td>298</td>
<td>296</td>
</tr>
</tbody>
</table>

Team A hitting the post leading by at least one goal

<table>
<thead>
<tr>
<th></th>
<th>−0.001</th>
<th>−0.026</th>
<th>0.011</th>
<th>0.077</th>
<th>−0.033</th>
<th>−0.028</th>
<th>0.013</th>
<th>0.016</th>
<th>0.006</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.850)</td>
<td>(0.234)</td>
<td>(0.142)</td>
<td>(0.324)</td>
<td>(0.382)</td>
<td>(0.293)</td>
<td>(0.489)</td>
<td>(0.235)</td>
<td>(0.314)</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
</tr>
<tr>
<td></td>
<td>1,549</td>
<td>492</td>
<td>1,057</td>
<td>53</td>
<td>165</td>
<td>274</td>
<td>302</td>
<td>333</td>
<td>422</td>
</tr>
</tbody>
</table>

Table K.5: Estimate of abnormal returns after buying asset “Team B wins” following positive news (r = outcome − p). Positive values indicate under-reaction. Kernel matching estimator, matching on x-y and price before the post with Mahalanobis distance. We only observe two posts for situations when Team A hits the post while trailing by at least two goals in the first 15 minutes. We, therefore, cannot perform our estimation in that case. pvalues computed by 50,000 bootstraps in bracket (second line). Sharpened q-values in square brackets (third line). † significance at the 10% level, * significance at the 5% level, ** significance at the 1% level, *** significance at the 0.1% level.
Asset Draw

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>0-45</th>
<th>46-90</th>
<th>1-15</th>
<th>16-30</th>
<th>31-45</th>
<th>46-60</th>
<th>61-75</th>
<th>76-90</th>
</tr>
</thead>
<tbody>
<tr>
<td>All situations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>-0.010</td>
<td>-0.010</td>
<td>-0.007</td>
<td>0.005</td>
<td>-0.037</td>
<td>0.017</td>
<td>-0.037</td>
<td>0.030</td>
<td>-0.002</td>
</tr>
<tr>
<td>t</td>
<td>0.471</td>
<td>0.670</td>
<td>0.700</td>
<td>0.900</td>
<td>0.325</td>
<td>0.623</td>
<td>0.264</td>
<td>0.382</td>
<td>0.940</td>
</tr>
<tr>
<td>df</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>r</td>
<td>5,176</td>
<td>2,325</td>
<td>2,851</td>
<td>662</td>
<td>778</td>
<td>885</td>
<td>852</td>
<td>899</td>
<td>1,100</td>
</tr>
</tbody>
</table>

Team A hitting the post trailing by at least two goal

<table>
<thead>
<tr>
<th></th>
<th>0.001</th>
<th>-0.008</th>
<th>0.016</th>
<th>-0.021</th>
<th>-0.016</th>
<th>0.156</th>
<th>-0.015</th>
<th>-0.008</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0.948</td>
<td>0.986</td>
<td>0.673</td>
<td>.</td>
<td>(0.947)</td>
<td>(0.933)</td>
<td>(0.115)</td>
<td>(0.927)</td>
</tr>
<tr>
<td>df</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
</tr>
<tr>
<td>r</td>
<td>383</td>
<td>58</td>
<td>325</td>
<td>.</td>
<td>17</td>
<td>39</td>
<td>81</td>
<td>95</td>
</tr>
</tbody>
</table>

Team A hitting the post trailing by one goal

<table>
<thead>
<tr>
<th></th>
<th>0.042</th>
<th>-0.127</th>
<th>0.130</th>
<th>-0.155</th>
<th>-0.051</th>
<th>-0.185</th>
<th>-0.015</th>
<th>0.137</th>
<th>0.305</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0.293</td>
<td>(0.051)†</td>
<td>(0.011)*</td>
<td>(0.412)</td>
<td>(0.628)</td>
<td>(0.047)*</td>
<td>(0.877)</td>
<td>(0.172)</td>
<td>(< 0.001)***</td>
</tr>
<tr>
<td>df</td>
<td>1.000</td>
<td>0.699</td>
<td>0.224</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.690]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.001]**</td>
</tr>
<tr>
<td>r</td>
<td>880</td>
<td>312</td>
<td>568</td>
<td>31</td>
<td>121</td>
<td>160</td>
<td>162</td>
<td>173</td>
<td>233</td>
</tr>
</tbody>
</table>

Scoreline is tied

<table>
<thead>
<tr>
<th></th>
<th>0.020</th>
<th>-0.021</th>
<th>0.090</th>
<th>-0.003</th>
<th>0.024</th>
<th>-0.106</th>
<th>0.079</th>
<th>-0.058</th>
<th>0.238</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0.381</td>
<td>0.481</td>
<td>0.012*</td>
<td>(0.922)</td>
<td>(0.648)</td>
<td>(0.070)†</td>
<td>(0.188)</td>
<td>(0.404)</td>
<td>(< 0.001)***</td>
</tr>
<tr>
<td>df</td>
<td>1.000</td>
<td>1.000</td>
<td>0.224</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.912]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.003]**</td>
</tr>
<tr>
<td>r</td>
<td>2,364</td>
<td>1,463</td>
<td>901</td>
<td>576</td>
<td>475</td>
<td>412</td>
<td>307</td>
<td>298</td>
<td>296</td>
</tr>
</tbody>
</table>

Team A hitting the post leading by at least one goal

<table>
<thead>
<tr>
<th></th>
<th>0.019</th>
<th>0.040</th>
<th>0.011</th>
<th>-0.008</th>
<th>0.046</th>
<th>0.042</th>
<th>0.049</th>
<th>0.005</th>
<th>-0.005</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0.213</td>
<td>0.247</td>
<td>0.541</td>
<td>(0.880)</td>
<td>(0.456)</td>
<td>(0.384)</td>
<td>(0.218)</td>
<td>(0.897)</td>
<td>(0.760)</td>
</tr>
<tr>
<td>df</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
</tr>
<tr>
<td>r</td>
<td>1,549</td>
<td>492</td>
<td>1,057</td>
<td>53</td>
<td>165</td>
<td>274</td>
<td>302</td>
<td>333</td>
<td>422</td>
</tr>
</tbody>
</table>

Table K.6: Estimate of abnormal returns after buying asset “Draw” following positive news ($r = outcome - p$, first three lines) or selling following negative news ($r = outcome - p$, last two lines). Positive values indicate under-reaction. Kernel matching estimator, matching on $x-y$ and price before the post with Mahalanobis distance. We only observe two posts for situations when Team A hits the post while trailing by at least two goals in the first 15 minutes. We, therefore, cannot perform our estimation in that case. pvalues computed by 50,000 bootstraps in bracket (second line). Sharpened q-values in square brackets (third line). † significance at the 10% level, * significance at the 5% level, ** significance at the 1% level, *** significance at the 0.1% level.
K.3 Matching on price after post and \((x,y)\) coordinates

This robustness check is unusual since we match on a variable (price) observed after the effect of the shock. This robustness check helps to show that the main effects are not driven by different mispricings happening for different level of prices after the shock. Figure K.3, Table K.7, K.8 and K.9 reproduce the main results matching on the \((x,y)\) coordinates, first price observed after the post using the Mahanabolis distance.
Team A hitting the post trailing by at least two goals

(a) Asset “Team A wins”
(b) Asset “Team B wins”
(c) Asset “Draw”

Team A hitting the post trailing by one goal

(d) Asset “Team B wins”
(e) Asset “Team B wins”
(f) Asset “Draw”

Scoreline is tied

(g) Asset “Team A wins”
(h) Asset “Team B wins”
(i) Asset “Draw”

Team A hitting the post leading by at least one goal

(j) Asset “Team A wins”
(k) Asset “Team B wins”
(l) Asset “Draw”

Figure K.3: Estimate of abnormal returns after buying following positive news ($r = \text{outcome} - p$, panels a, d, g, j, c, f) or selling following negative news ($r = \text{outcome} - p$, panels b, e, h, k, i, l). Positive values indicate under-reaction. Kernel matching estimator, matching on x-y and price after the post with Mahalanobis distance, standard error computed with 50,000 bootstraps. Significant at * 5% level, ** 1% level for the sharpened q-values.
Table K.7: Estimate of abnormal returns after buying asset “Team A wins” following positive news ($r = outcome - p$). Positive values indicate under-reaction. Kernel matching estimator, matching on $x-y$ and price after the post with Mahalanobis distance. We only observe two posts for situations when Team A hits the post while trailing by at least two goals in the first 15 minutes. We, therefore, cannot perform our estimation in that case. pvalues computed by 50,000 bootstraps in bracket (second line). Sharpened q-values in square brackets (third line). † significance at the 10% level, * significance at the 5% level, ** significance at the 1% level, *** significance at the 0.1% level.

<table>
<thead>
<tr>
<th>Asset</th>
<th>Team A wins</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>0-45</td>
<td>46-90</td>
<td>1-15</td>
<td>16-30</td>
<td>31-45</td>
<td>46-60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All situations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.009</td>
<td>-0.021</td>
<td>0.025</td>
<td>0.016</td>
<td>-0.013</td>
<td>-0.052</td>
<td>0.075</td>
</tr>
<tr>
<td></td>
<td>(0.547)</td>
<td>(0.416)</td>
<td>(0.128)</td>
<td>(0.748)</td>
<td>(0.773)</td>
<td>(0.224)</td>
<td>(0.032)*</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>[0.833]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.356]</td>
<td>[1.000]</td>
</tr>
<tr>
<td></td>
<td>5.176</td>
<td>2,325</td>
<td>2,851</td>
<td>662</td>
<td>778</td>
<td>885</td>
<td>852</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Team A hitting the post trailing by at least two goal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.002</td>
<td>-0.025</td>
<td>0.003</td>
<td>.</td>
<td>-0.004</td>
<td>-0.037</td>
<td>-0.021</td>
</tr>
<tr>
<td></td>
<td>(0.983)</td>
<td>(0.754)</td>
<td>(0.663)</td>
<td>(.)</td>
<td>(0.524)</td>
<td>(0.733)</td>
<td>(0.843)</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[.]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.920]</td>
</tr>
<tr>
<td></td>
<td>383</td>
<td>58</td>
<td>325</td>
<td>.</td>
<td>17</td>
<td>39</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Team A hitting the post trailing by one goal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.001</td>
<td>-0.080</td>
<td>0.020</td>
<td>-0.186</td>
<td>-0.146</td>
<td>-0.014</td>
<td>0.114</td>
</tr>
<tr>
<td></td>
<td>(0.938)</td>
<td>(0.178)</td>
<td>(0.497)</td>
<td>(0.232)</td>
<td>(0.108)</td>
<td>(0.912)</td>
<td>(0.170)</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>[0.920]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.730]</td>
<td>[1.000]</td>
<td>[0.920]</td>
</tr>
<tr>
<td></td>
<td>880</td>
<td>312</td>
<td>568</td>
<td>31</td>
<td>121</td>
<td>160</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scoreline is tied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.079</td>
<td>-0.001</td>
<td>0.288</td>
<td>0.014</td>
<td>0.036</td>
<td>-0.078</td>
<td>0.254</td>
</tr>
<tr>
<td></td>
<td>(0.024)*</td>
<td>(0.988)</td>
<td>(< 0.001)**</td>
<td>(0.798)</td>
<td>(0.573)</td>
<td>(0.327)</td>
<td>(0.003)**</td>
</tr>
<tr>
<td></td>
<td>[0.333]</td>
<td>[1.000]</td>
<td>[0.002]**</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.052]†</td>
</tr>
<tr>
<td></td>
<td>2,364</td>
<td>1,463</td>
<td>901</td>
<td>576</td>
<td>475</td>
<td>412</td>
<td>307</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Team A hitting the post leading by at least one goal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.029</td>
<td>0.022</td>
<td>0.043</td>
<td>0.071</td>
<td>-0.004</td>
<td>0.002</td>
<td>0.123</td>
</tr>
<tr>
<td></td>
<td>(0.212)</td>
<td>(0.650)</td>
<td>(0.098)†</td>
<td>(0.612)</td>
<td>(0.921)</td>
<td>(1.000)</td>
<td>(0.013)*</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.675]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.214]</td>
</tr>
<tr>
<td></td>
<td>1,549</td>
<td>492</td>
<td>1,057</td>
<td>53</td>
<td>165</td>
<td>274</td>
<td>302</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All situations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.009</td>
<td>-0.021</td>
<td>0.025</td>
<td>0.016</td>
<td>-0.013</td>
<td>-0.052</td>
<td>0.075</td>
</tr>
<tr>
<td></td>
<td>(0.547)</td>
<td>(0.416)</td>
<td>(0.128)</td>
<td>(0.748)</td>
<td>(0.773)</td>
<td>(0.224)</td>
<td>(0.032)*</td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>[0.833]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.356]</td>
<td>[1.000]</td>
</tr>
<tr>
<td></td>
<td>5.176</td>
<td>2,325</td>
<td>2,851</td>
<td>662</td>
<td>778</td>
<td>885</td>
<td>852</td>
</tr>
</tbody>
</table>

53
Table K.8: Estimate of abnormal returns after buying asset “Team B wins” following positive news ($r = outcome - p$). Positive values indicate under-reaction. Kernel matching estimator, matching on $x-y$ and price after the post with Mahalanobis distance. We only observe two posts for situations when Team A hits the post while trailing by at least two goals in the first 15 minutes. We, therefore, cannot perform our estimation in that case. p-values computed by 50,000 bootstraps in bracket (second line). Sharpened q-values in square brackets (third line). † significance at the 10% level, * significance at the 5% level, ** significance at the 1% level, *** significance at the 0.1% level.

<table>
<thead>
<tr>
<th>Asset</th>
<th>All</th>
<th>0-45</th>
<th>46-90</th>
<th>1-15</th>
<th>16-30</th>
<th>31-45</th>
<th>46-60</th>
<th>61-75</th>
<th>76-90</th>
</tr>
</thead>
<tbody>
<tr>
<td>All situations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.005</td>
<td>−0.035</td>
<td>0.033</td>
<td>0.013</td>
<td>−0.058</td>
<td>−0.051</td>
<td>0.037</td>
<td>0.014</td>
<td>0.045</td>
<td></td>
</tr>
<tr>
<td>(0.718)</td>
<td>(0.135)</td>
<td>(0.034)†</td>
<td>(0.780)</td>
<td>(0.136)</td>
<td>(0.142)</td>
<td>(0.226)</td>
<td>(0.605)</td>
<td>(0.034)†</td>
<td></td>
</tr>
<tr>
<td>[1.000]</td>
<td>[0.833]</td>
<td>[0.356]</td>
<td>[1.000]</td>
<td>[0.833]</td>
<td>[0.840]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.356]</td>
<td></td>
</tr>
<tr>
<td>5,176</td>
<td>2,325</td>
<td>2,851</td>
<td>662</td>
<td>778</td>
<td>885</td>
<td>852</td>
<td>899</td>
<td>1,100</td>
<td></td>
</tr>
<tr>
<td>Team A hitting the post trailing by at least two goals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−0.002</td>
<td>−0.119</td>
<td>0.025</td>
<td>.</td>
<td>−0.092</td>
<td>−0.116</td>
<td>0.161</td>
<td>0.078</td>
<td>−0.004</td>
<td></td>
</tr>
<tr>
<td>(0.999)</td>
<td>(0.318)</td>
<td>(0.425)</td>
<td>(.)</td>
<td>(0.756)</td>
<td>(0.430)</td>
<td>(0.125)</td>
<td>(0.367)</td>
<td>(0.956)</td>
<td></td>
</tr>
<tr>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[.]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.833]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td></td>
</tr>
<tr>
<td>383</td>
<td>58</td>
<td>325</td>
<td>.</td>
<td>17</td>
<td>39</td>
<td>81</td>
<td>95</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>Team A hitting the post trailing by one goal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−0.048</td>
<td>−0.214</td>
<td>0.128</td>
<td>−0.260</td>
<td>−0.193</td>
<td>−0.238</td>
<td>−0.061</td>
<td>0.074</td>
<td>0.296</td>
<td></td>
</tr>
<tr>
<td>(0.397)</td>
<td>(0.004)**</td>
<td>(0.088)†</td>
<td>(0.170)</td>
<td>(0.094)†</td>
<td>(0.025)*</td>
<td>(0.589)</td>
<td>(0.493)</td>
<td>(< 0.001)***</td>
<td></td>
</tr>
<tr>
<td>[1.000]</td>
<td>[0.64]†</td>
<td>[0.637]</td>
<td>[0.920]</td>
<td>[0.671]</td>
<td>[0.333]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.004]**</td>
<td></td>
</tr>
<tr>
<td>880</td>
<td>312</td>
<td>568</td>
<td>31</td>
<td>121</td>
<td>160</td>
<td>162</td>
<td>173</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>Scoreline is tied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.026</td>
<td>−0.005</td>
<td>0.063</td>
<td>0.025</td>
<td>−0.041</td>
<td>0.017</td>
<td>0.102</td>
<td>0.055</td>
<td>0.057</td>
<td></td>
</tr>
<tr>
<td>(0.313)</td>
<td>(0.869)</td>
<td>(0.058)†</td>
<td>(0.625)</td>
<td>(0.454)</td>
<td>(0.787)</td>
<td>(0.083)†</td>
<td>(0.316)</td>
<td>(0.202)</td>
<td></td>
</tr>
<tr>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.486]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.624]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td></td>
</tr>
<tr>
<td>2,364</td>
<td>1,463</td>
<td>901</td>
<td>576</td>
<td>475</td>
<td>412</td>
<td>307</td>
<td>298</td>
<td>296</td>
<td></td>
</tr>
<tr>
<td>Team A hitting the post leading by at least one goal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.002</td>
<td>−0.020</td>
<td>0.015</td>
<td>0.083</td>
<td>−0.050</td>
<td>−0.035</td>
<td>0.023</td>
<td>0.018</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>(0.939)</td>
<td>(0.491)</td>
<td>(0.079)†</td>
<td>(0.343)</td>
<td>(0.267)</td>
<td>(0.257)</td>
<td>(0.433)</td>
<td>(0.246)</td>
<td>(0.479)</td>
<td></td>
</tr>
<tr>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.619]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td></td>
</tr>
<tr>
<td>1,549</td>
<td>492</td>
<td>1,057</td>
<td>53</td>
<td>165</td>
<td>274</td>
<td>302</td>
<td>333</td>
<td>422</td>
<td></td>
</tr>
</tbody>
</table>
at the 10% level, 50,000 bootstraps in bracket (second line). Sharpened q-values in square brackets (third line).

goals in the first 15 minutes. We, therefore, cannot perform our estimation in that case. p-values computed by distance. We only observe two posts for situations when Team A hits the post while trailing by at least two

under-reaction. Kernel matching estimator, matching on x

Table K.9: All 0-45 46-90 1-15 16-30 31-45 46-60 61-75 76-90

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>0-45</th>
<th>46-90</th>
<th>1-15</th>
<th>16-30</th>
<th>31-45</th>
<th>46-60</th>
<th>61-75</th>
<th>76-90</th>
</tr>
</thead>
<tbody>
<tr>
<td>All situations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>−0.007</td>
<td>−0.017</td>
<td>−0.002</td>
<td>−0.001</td>
<td>−0.050</td>
<td>−0.001</td>
<td>−0.026</td>
<td>0.038</td>
<td>−0.016</td>
</tr>
<tr>
<td></td>
<td>(0.656)</td>
<td>(0.500)</td>
<td>(0.916)</td>
<td>(0.997)</td>
<td>(0.252)</td>
<td>(0.993)</td>
<td>(0.473)</td>
<td>(0.292)</td>
<td>(0.509)</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
</tr>
<tr>
<td></td>
<td>5,176</td>
<td>2,325</td>
<td>2,851</td>
<td>662</td>
<td>778</td>
<td>885</td>
<td>852</td>
<td>899</td>
<td>1,100</td>
</tr>
<tr>
<td>Team A hitting the post trailing by at least two goal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>−0.027</td>
<td>−0.017</td>
<td>.</td>
<td>−0.084</td>
<td>0.005</td>
<td>0.095</td>
<td>0.002</td>
<td>−0.012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.349)</td>
<td>(0.569)</td>
<td>(0.580)</td>
<td>(.)</td>
<td>(0.723)</td>
<td>(0.769)</td>
<td>(0.297)</td>
<td>(0.897)</td>
<td>(0.605)</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[.]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
</tr>
<tr>
<td></td>
<td>383</td>
<td>58</td>
<td>325</td>
<td>.</td>
<td>17</td>
<td>39</td>
<td>81</td>
<td>95</td>
<td>149</td>
</tr>
<tr>
<td>Team A hitting the post trailing by one goal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>−0.014</td>
<td>−0.113</td>
<td>0.130</td>
<td>−0.158</td>
<td>−0.014</td>
<td>−0.200</td>
<td>−0.009</td>
<td>0.068</td>
<td>0.408</td>
</tr>
<tr>
<td></td>
<td>(0.785)</td>
<td>(0.078)†</td>
<td>(0.061)†</td>
<td>(0.383)</td>
<td>(0.904)</td>
<td>(0.030)*</td>
<td>(0.954)</td>
<td>(0.568)</td>
<td>(< 0.001)***</td>
</tr>
<tr>
<td></td>
<td>[1.000]</td>
<td>[0.619]</td>
<td>[0.486]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.356]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.001]**</td>
</tr>
<tr>
<td></td>
<td>880</td>
<td>312</td>
<td>568</td>
<td>31</td>
<td>121</td>
<td>160</td>
<td>162</td>
<td>173</td>
<td>233</td>
</tr>
<tr>
<td>Scoreline is tied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.067</td>
<td>−0.001</td>
<td>0.231</td>
<td>−0.014</td>
<td>0.075</td>
<td>−0.102</td>
<td>0.150</td>
<td>0.136</td>
<td>0.461</td>
</tr>
<tr>
<td></td>
<td>(0.019)*</td>
<td>(0.964) (< 0.001)***</td>
<td>(0.790)</td>
<td>(0.237)</td>
<td>(0.182)</td>
<td>(0.039)*</td>
<td>(0.261)</td>
<td>(0.568)</td>
<td>(< 0.001)***</td>
</tr>
<tr>
<td></td>
<td>[0.297]</td>
<td>[1.000]</td>
<td>[0.001]**</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.920]</td>
<td>[0.377]</td>
<td>[1.000]</td>
<td>[0.001]**</td>
</tr>
<tr>
<td></td>
<td>2,364</td>
<td>1,463</td>
<td>901</td>
<td>576</td>
<td>475</td>
<td>412</td>
<td>307</td>
<td>298</td>
<td>296</td>
</tr>
<tr>
<td>Team A hitting the post leading by at least one goal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.045</td>
<td>0.062</td>
<td>0.039</td>
<td>−0.022</td>
<td>0.070</td>
<td>0.043</td>
<td>0.095</td>
<td>0.007</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>(0.043)*</td>
<td>(0.163)</td>
<td>(0.110)</td>
<td>(0.798)</td>
<td>(0.321)</td>
<td>(0.466)</td>
<td>(0.044)*</td>
<td>(0.921)</td>
<td>(0.720)</td>
</tr>
<tr>
<td></td>
<td>[0.386]</td>
<td>[0.920]</td>
<td>[0.730]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[1.000]</td>
<td>[0.386]</td>
<td>[1.000]</td>
<td>[1.000]</td>
</tr>
<tr>
<td></td>
<td>1,549</td>
<td>492</td>
<td>1,057</td>
<td>53</td>
<td>165</td>
<td>274</td>
<td>302</td>
<td>333</td>
<td>422</td>
</tr>
</tbody>
</table>

Table K.9: Estimate of abnormal returns after buying asset “Draw” following positive news ($r = outcome − p$, first three lines) or selling following negative news ($r = outcome − p$, last two lines). Positive values indicate under-reaction. Kernel matching estimator, matching on $x\!-\!y$ and price after the post with Mahalanobis distance. We only observe two posts for situations when Team A hits the post while trailing by at least two goals in the first 15 minutes. We, therefore, cannot perform our estimation in that case. p-values computed by 50,000 bootstraps in bracket (second line). Sharpened q-values in square brackets (third line). † significance at the 10% level, * significance at the 5% level, ** significance at the 1% level, *** significance at the 0.1% level.
Effect of scoring on the volume matched in the 60 seconds following a post (in £)

The following tables and figures show the effect of a post in on the volume matched (in £) in the 60 seconds following a post. Similarly, to Section C the standard error are computed by standard bootstrap (i.e. resampling with replacement).
Team A hitting the post trailing by at least two goals

(a) Asset "Team A wins"
(b) Asset "Team B wins"
(c) Asset "Draw"

Team A hitting the post trailing by one goal

(d) Asset "Team B wins"
(e) Asset "Team B wins"
(f) Asset "Draw"

Scoreline is tied

(g) Asset "Team A wins"
(h) Asset "Team B wins"
(i) Asset "Draw"

Team A hitting the post leading by at least one goal

(j) Asset "Team A wins"
(k) Asset "Team B wins"
(l) Asset "Draw"

Figure L.1: Estimate of volume matched (in 1,000 £) in the 60 seconds following a post. Kernel matching estimator, matching on $x-y$ with Euclidean distance. std errors computed by 1,000 bootstraps. * significance at the 5% level, ** significance at the 1% level, *** significance at the 0.1% level for sharpened q-values.
Table L.1: Estimate of volume matched (in £) in the 60 seconds following a post. Kernel matching estimator, matching on − with Euclidean distance. p-values computed by 1,000 bootstraps in bracket (second line). Sharpened q-values in square brackets (third line). † significance at the 10% level, * significance at the 5% level, ** significance at the 1% level, *** significance at the 0.1% level.
Table L.2: Estimate of volume matched (in £) in the 60 seconds following a post. Kernel matching estimator, matching on – with Euclidean distance. p-values computed by 1,000 bootstraps in bracket (second line). Sharpened q-values in square brackets (third line). † significance at the 10% level, * significance at the 5% level, ** significance at the 1% level, *** significance at the 0.1% level.

<table>
<thead>
<tr>
<th>Asset</th>
<th>Team B wins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
</tr>
<tr>
<td>All situations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5,174</td>
</tr>
<tr>
<td>Team A hitting the post trailing by at least two goal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,942</td>
</tr>
<tr>
<td>Team A hitting the post trailing by one goal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>−214</td>
</tr>
<tr>
<td>Scoreline is tied</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,549</td>
</tr>
</tbody>
</table>

| Team A hitting the post leading by at least one goal | | | | | | | | |
| | −181 | −854 | −65 | −3,956 | −641 | −460 | −3 | −128 | −8 |

<table>
<thead>
<tr>
<th>0-45</th>
<th>46-90</th>
<th>1-15</th>
<th>16-30</th>
<th>31-45</th>
<th>46-60</th>
<th>61-75</th>
<th>76-90</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.023)*</td>
<td>(0.658)</td>
<td>(0.086)†</td>
<td>(0.341)</td>
<td>(0.869)</td>
<td>(0.001)**</td>
<td>(0.544)</td>
<td>(0.634)</td>
</tr>
<tr>
<td>[0.027]*</td>
<td>[0.244]</td>
<td>[0.068]†</td>
<td>![0.167]</td>
<td>[0.295]</td>
<td>[0.002]**</td>
<td>[0.222]</td>
<td>[0.239]</td>
</tr>
<tr>
<td>5,174</td>
<td>2,323</td>
<td>2,851</td>
<td>662</td>
<td>778</td>
<td>883</td>
<td>852</td>
<td>899</td>
</tr>
</tbody>
</table>

Team A hitting the post trailing by at least two goal									
	4,693	−4,065	7,605	.	−1,873	−6,478	11,835	10,088	2,654
Team A hitting the post trailing by one goal									
	−4,942	−711	−7,281	−6,988	1,015	−1,548	−3,503	−3,253	−10,336
Scoreline is tied									
	−214	417	−953	1,859	280	−860	−819	−1,476	−545
Team A hitting the post leading by at least one goal									
	−181	−854	−65	−3,956	−641	−460	−3	−128	−8

<table>
<thead>
<tr>
<th>0-45</th>
<th>46-90</th>
<th>1-15</th>
<th>16-30</th>
<th>31-45</th>
<th>46-60</th>
<th>61-75</th>
<th>76-90</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.023)*</td>
<td>(0.658)</td>
<td>(0.086)†</td>
<td>(0.341)</td>
<td>(0.869)</td>
<td>(0.001)**</td>
<td>(0.544)</td>
<td>(0.634)</td>
</tr>
<tr>
<td>[0.027]*</td>
<td>[0.244]</td>
<td>[0.068]†</td>
<td>![0.167]</td>
<td>[0.295]</td>
<td>[0.002]**</td>
<td>[0.222]</td>
<td>[0.239]</td>
</tr>
<tr>
<td>5,174</td>
<td>2,323</td>
<td>2,851</td>
<td>662</td>
<td>778</td>
<td>883</td>
<td>852</td>
<td>899</td>
</tr>
</tbody>
</table>

Team A hitting the post trailing by at least two goal									
	4,693	−4,065	7,605	.	−1,873	−6,478	11,835	10,088	2,654
Team A hitting the post trailing by one goal									
	−4,942	−711	−7,281	−6,988	1,015	−1,548	−3,503	−3,253	−10,336
Scoreline is tied									
	−214	417	−953	1,859	280	−860	−819	−1,476	−545
Team A hitting the post leading by at least one goal									
	−181	−854	−65	−3,956	−641	−460	−3	−128	−8
Table L.3: Estimate of volume matched (in £) in the 60 seconds following a post. Kernel matching estimator, matching on – with Euclidean distance, pvalues computed by 1,000 bootstraps in bracket (second line). Sharpened q-values in square brackets (third line). † significance at the 10% level, * significance at the 5% level, ** significance at the 1% level, *** significance at the 0.1% level.

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>0-45</th>
<th>46-90</th>
<th>1-15</th>
<th>16-30</th>
<th>31-45</th>
<th>46-60</th>
<th>61-75</th>
<th>76-90</th>
</tr>
</thead>
<tbody>
<tr>
<td>All situations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,381</td>
<td>512</td>
<td>1,831</td>
<td>704</td>
<td>575</td>
<td>267</td>
<td>860</td>
<td>636</td>
<td>2,825</td>
<td></td>
</tr>
<tr>
<td>(< 0.001)***</td>
<td>(< 0.001)***</td>
<td>(0.104)</td>
<td>(< 0.001)***</td>
<td>(< 0.001)***</td>
<td>(< 0.001)***</td>
<td>(0.004)**</td>
<td>(0.014)</td>
<td>(0.062)†</td>
<td></td>
</tr>
<tr>
<td>[0.001]**</td>
<td>[0.001]**</td>
<td>[0.077]†</td>
<td>[0.001]**</td>
<td>[0.001]**</td>
<td>[0.001]**</td>
<td>[0.007]**</td>
<td>[0.077]†</td>
<td>[0.056]†</td>
<td></td>
</tr>
<tr>
<td>5,172</td>
<td>2,323</td>
<td>2,849</td>
<td>662</td>
<td>778</td>
<td>883</td>
<td>851</td>
<td>899</td>
<td>1,099</td>
<td></td>
</tr>
<tr>
<td>Team A hitting the post trailing by at least two goal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>605</td>
<td>−121</td>
<td>714</td>
<td>.</td>
<td>−200</td>
<td>62</td>
<td>1,520</td>
<td>540</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td>(< 0.001)***</td>
<td>(0.517)</td>
<td>(< 0.001)***</td>
<td>(.)</td>
<td>(0.190)</td>
<td>(0.807)</td>
<td>(0.019)*</td>
<td>(0.030)*</td>
<td>(0.076)†</td>
<td></td>
</tr>
<tr>
<td>[0.001]**</td>
<td>[0.211]</td>
<td>[0.001]**</td>
<td>[.]</td>
<td>[0.114]</td>
<td>[0.291]</td>
<td>[0.025]*</td>
<td>[0.033]*</td>
<td>[0.063]†</td>
<td></td>
</tr>
<tr>
<td>383</td>
<td>58</td>
<td>325</td>
<td>.</td>
<td>17</td>
<td>39</td>
<td>81</td>
<td>95</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>Team A hitting the post trailing by one goal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,744</td>
<td>826</td>
<td>18,693</td>
<td>1,351</td>
<td>888</td>
<td>531</td>
<td>2,739</td>
<td>7,467</td>
<td>33,146</td>
<td></td>
</tr>
<tr>
<td>(< 0.001)***</td>
<td>(0.003)**</td>
<td>(< 0.001)***</td>
<td>(0.097)†</td>
<td>(0.001)**</td>
<td>(0.001)**</td>
<td>(0.010)*</td>
<td>(0.003)**</td>
<td>(0.003)**</td>
<td></td>
</tr>
<tr>
<td>[0.001]**</td>
<td>[0.005]**</td>
<td>[0.001]**</td>
<td>[0.074]†</td>
<td>[0.002]**</td>
<td>[0.003]**</td>
<td>[0.015]*</td>
<td>[0.006]**</td>
<td>[0.006]**</td>
<td></td>
</tr>
<tr>
<td>880</td>
<td>312</td>
<td>568</td>
<td>31</td>
<td>121</td>
<td>160</td>
<td>162</td>
<td>173</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>Scoreline is tied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−897</td>
<td>686</td>
<td>−3,527</td>
<td>843</td>
<td>848</td>
<td>399</td>
<td>353</td>
<td>−1,857</td>
<td>−9,218</td>
<td></td>
</tr>
<tr>
<td>(< 0.001)***</td>
<td>(< 0.001)***</td>
<td>(< 0.001)***</td>
<td>(0.002)**</td>
<td>(< 0.001)***</td>
<td>(0.020)*</td>
<td>(0.078)†</td>
<td>(< 0.001)***</td>
<td>(< 0.001)***</td>
<td></td>
</tr>
<tr>
<td>[0.001]**</td>
<td>[0.001]**</td>
<td>[0.001]**</td>
<td>[0.004]**</td>
<td>[0.001]**</td>
<td>[0.025]*</td>
<td>[0.063]†</td>
<td>[0.001]**</td>
<td>[0.001]**</td>
<td></td>
</tr>
<tr>
<td>2,362</td>
<td>1,461</td>
<td>901</td>
<td>576</td>
<td>475</td>
<td>410</td>
<td>307</td>
<td>298</td>
<td>296</td>
<td></td>
</tr>
<tr>
<td>Team A hitting the post leading by at least one goal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−113</td>
<td>−88</td>
<td>−148</td>
<td>−275</td>
<td>142</td>
<td>−202</td>
<td>114</td>
<td>−212</td>
<td>−217</td>
<td></td>
</tr>
<tr>
<td>(0.011)*</td>
<td>(0.250)</td>
<td>(< 0.001)***</td>
<td>(0.235)</td>
<td>(0.303)</td>
<td>(0.155)</td>
<td>(0.341)</td>
<td>(0.029)*</td>
<td>(< 0.001)***</td>
<td></td>
</tr>
<tr>
<td>[0.015]**</td>
<td>[0.139]</td>
<td>[0.001]**</td>
<td>[0.131]</td>
<td>[0.155]</td>
<td>[0.100]</td>
<td>[0.167]</td>
<td>[0.033]*</td>
<td>[0.001]**</td>
<td></td>
</tr>
<tr>
<td>1,547</td>
<td>492</td>
<td>1,055</td>
<td>53</td>
<td>165</td>
<td>274</td>
<td>301</td>
<td>333</td>
<td>421</td>
<td></td>
</tr>
</tbody>
</table>