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Abstract

We develop a model of strategic network formation in productive exchanges to analyze the
consequences of an understudied but consequential form of heterogeneity: differences between
actors in the form of their production functions. We also address how this interacts with
resource heterogeneity. Some actors (e.g. start-up firms) may exhibit accelerating returns
to investment in joint projects, while others (e.g. established firms) may face decelerating
returns. We show that if there is a direct relation between acceleration and resources, actors
form exchange networks segregated by type of production function. On the other hand, if there
is an inverse relation between acceleration and resources, networks emerge allowing all types
of actors to collaborate, especially high-resource decelerating actors with multiple low-resource

accelerating actors.
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1 Introduction

Collaboration is key to realize outcomes that are difficult to achieve alone. Examples of mutually
beneficial collaboration range from scientific co-authorships (Jackson and Wolinsky 1996), across
R&D joint ventures between firms (Goyal and Moraga-Gonzalez 2001), mutual help and advice in
organizations (Agneessens and Wittek 2012), to mutual support of students in higher education
(Toméas-Miquel et al. 2015). A key question therefore is under which conditions engaging in a
cooperative exchange with a specific partner becomes mutually beneficial. Two such conditions and
their interplay are the focus of the present study: actors’ resource endowments and the production
functions governing the relationship between their efforts and their outputs.

Resource endowments play a key role in how attractive actors are to potential exchange partners
(Blau 1964; Homans 1958; Cook and Emerson 1978; Molm 1994). Wealthier potential partners are
more appealing than poorer ones to form alliances with (Cook et al. 1983; Emerson 1962). Yet,
screening potential partners only for the size of their resource endowment neglects another key
source of productivity: their ability to put their resources to productive use. This ability is captured
by an actor’s production function, i.e. the relation between the output of a production process and
the inputs, such as physical resources or time investments (Robinson 1953). We focus on two
types of production functions. For actors with an “accelerating” production function, increasing
investments yield accelerating rates of return, whereas actors with a “decelerating” production
function generate decreasing returns with increasing investments.

We show that differences in production functions can temper or exacerbate the effects that
unequal resource endowments have on an actor’s attractiveness as an exchange partner. As a
consequence, differences in production functions are likely to affect the structures and outcomes
of exchange networks. Differences in production functions can arise from differences between ac-
tors in terms of skills, talents, or available technology (Collins 1990; Sellinger and Crease 2006).
For example, a startup with an innovative technology that is in its early stages of development
represents an actor with an accelerating production function, because further investments into it
yield increasingly fast progress. An example of an actor with a decelerating production function
would be a firm operating with a mature technology, for which investments into new technology
do not yield significant productivity gains. For example, in the realm of inter-firm cooperation,
consider Campbell Soup Co., which invested $125 million in January 2016 to finance food start-ups,
hoping that this would allow them to keep up with small companies increasingly dominating the

food trends in the United States.! Campbell has ample resources, and yet aimed for alliances with

L«Campbell Invests $125 Million in Project to Fund Food Startups”. The Wall Street Journal. February 17, 2016.
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smaller partners. Thanks to the smaller partners’ “start-up” production functions, collaborating
with them promised higher returns on investment than collaboration with another equally large
firm, or scaling up Campbell’s own business. Notably, in a case such as Campbell’s having large
available resources (i.e. being ‘big’) compensates for having a decelerating production function (i.e.
for being ‘slow’).

Similarly, in collaboration among scientists, a senior researcher may have broad expertise and
experience in a research field (i.e. they are ‘big’) which can be very important to develop the
research idea for a joint publication project with a junior colleague. But as the project progresses,
further investments of the senior researcher’s time may yield little additional benefit (i.e., he is
‘slow’), because carrying out and elaborating the research idea may require the more specialist
and up-to-date knowledge of new methods possessed by the more specialized junior colleague. The
contributions of the more specialized junior researcher, lacking broad experience (i.e. being ‘small’),
instead increase in value if he invests more time into this project (i.e. he is ‘fast’), because only
with sufficient time investment can he demonstrate the added value of the new method in which
he specializes.

Given that both available resources and actors’ production functions can be key to understand
productive exchange relationships, our work contributes to the understanding of how these two
central aspects of collaborative exchange combine. We formalize how different combinations of the
two factors shape the emergent network of exchange relationships. To give a preview of possible
results of such an analysis: for the realm of interfirm collaboration our analysis could for example
explain why larger firms with more resources choose investing in collaborations with smaller start-
ups with fewer resources but an accelerating production function. Our study can also highlight why
an environment in which start-ups have large amounts of resources may entail a network structure
in which each start-up individually develops their own project and chooses to not collaborate with
other start-ups. Finally, our analysis shows how big decelerators can play a beneficial social role
by freeing up the potential of small accelerators.

In the remainder, we first highlight our contribution to the existing literature and then outline
the model. Subsequently, we analyze the network structures emerging from the interactions of actors
with different resources and production functions in Nash equilibrium. We then move further to
analyze ‘pairwise stable’ Nash equilibria, a class of equilibria describing conditions under which
emergent exchange network structures are robust to unilateral and bilateral incentives to change
the existing patterns of exchange. We conclude with a discussion of the implications and limitations

of the study.



2 Background and Contribution

Our study draws on and contributes to two interrelated fields of research. First, its theoretical
point of departure is social exchange theory (Blau 1964; Homans 1958; Cook and Emerson 1978),
and in particular the theory on productive exchange (Molm 1994, 1997). Productive exchanges
are social interactions in which actors join their resources, aiming at outcomes greater than the
aggregation of what each could have gotten separately (for a survey see Cook and Cheshire 2013).
The productive exchange literature has singled out resource heterogeneity as a major antecedent
of exchange network structure: the larger an actor’s resource endowment, the more attractive this
actor becomes as an exchange partner (Cook and Whitmeyer 1992; Galeotti et al. 2006; Goyal and
Sumit 2006). Earlier research has modeled the resulting dynamics for example for social support
networks (Flache and Hegselmann 1999; Hegselmann 1998). In this model, resource rich actors
need little help but can give a lot of help to those in need, while resource poor actors need a lot
of help but have little to give. Resource rich actors seeking to optimize their exchange relations
prefer to exchange with other resource rich actors, thereby indirectly excluding resource poor actors
from their exchanges. For the latter, only other resource poor actors remain as exchange partners,
leaving resource poor actors with less favorable exchange (see also Flache 2001).

An implicit assumption behind these resource heterogeneity approaches is that everyone has
the same production function. Whereas in such cases resource rich actors may indeed be the most
attractive exchange partners, this may change once heterogeneity of exchange partners’ production
functions is taken into account. The effects of production functions have been studied in mathemat-
ical sociology before, especially in Marwell and Oliver’s work on critical mass in collective action
(Marwell et al. 1985; Marwell and Oliver 1993). In their work, however, the shape of a production
function is a property of the collective good, rather than a property of (potential) individual con-
tributors, as in our study. In our approach, both partners’ production functions jointly affect the
output of the productive exchange.

Second, we model the exchange network as a dynamic structure resulting from actors strate-
gically optimizing their investments across several competing collaborative exchange relations. By
doing so, we build on the literature on endogenous network formation (Jackson and Wolinsky 1996;
Snijders and Doreian 2010), investigating which structures (i.e., patterns of relations) emerge from
rational actors’ attempts to optimize their exchange relations (Buskens and van de Rijt 2008; Jack-
son and Wolinsky 1996; Jackson and Watts 2001; Braun and Gautschi 2006; Dogan and van Assen
2009; Dogan et al. 2011; Doreian 2006; Hummon 2000; Raub et al. 2014). Most of these models
treat actors as homogenous and disregard differences in attributes. For example, Buskens and

van de Rijt (2008)’s simulations showed that when all actors pursue structural holes (Burt 1992),



bi-partite networks emerge. Buechel and Buskens (2013) modeled, via simulations, the emergence
of different network structures when actors pursued closeness centrality, betweenness centrality or
both. An exception to the homogeneity assumption is a study by Anjos and Reagans (2013), who
modeled network emergence when actors pursued different levels of commitment strategies: weak,
moderate or strong. They show how actors’ differences in how to commit to their relations played
a key role in the partner selection and tie formation process.

We build on and extend research on productive exchange and endogenous network formation in
four ways. First, we consider effects of emergent (Snijders 2013; Raub et al. 2014) rather than static
network structures on inequality of exchange outcomes (Cook and Emerson 1978; Bienenstock and
Bonacich 1992; Molm and Cook 1995; Dijkstra and van Assen 2006). Second, we advance strategic
network formation models by conceptualizing actors’ investment in collaborative exchange relations
as a continuous rather than a dichotomous variable. This allows modeling how actors make deci-
sions about the allocation of their resources (e.g. time, effort or money) across a range of potentially
competing partners. Third, in contrast to some important work in the sociological exchange liter-
ature (cf. Willer 1999), we consider situations in which actors can simultaneously maintain more
than one exchange relationship, as is the case e.g. in co-authorship or R&D collaborations. Finally,
we assume actor heterogeneity in terms of both resource endowments and production functions

(e.g. expertise, skills, creativity, talent, or technology).

3 The Model

The model rests on two general assumptions. First, actors differ in their resource endowments and
can have an accelerating or a decelerating production function. Second, actors can form collabora-
tions with others, in pairs, by pooling resources with their partners. They can establish multiple
exchanges at a time, distributing their resources across partners. We elaborate on both assumptions

below, proceeding to the game theoretic analysis thereafter.

3.1 Heterogeneity in resources and in production functions

Whether or not entering into a productive exchange is mutually attractive for a pair of actors
depends on their resource endowments, their production functions, and the production functions
of possible alternative exchange partners. Following (Marwell and Oliver 1993, see also Marwell
et al. (1985)), we distinguish decelerating and accelerating production functions, which can be seen
as decomposition of a more general S-shaped structure of production processes (see Figure 1.a). In

contrast to their approach, our model specifies how the production functions of two collaborating



q(x) q(x) q(x)

(a) S-shaped curve (b) decelerating (c) accelerating

Figure 1. Production functions. The horizontal axis represents units of resources allocated by
an actor to a productive exchange and the vertical axis levels of outputs achieved with these

resources, given a fixed and strictly positive allocation by an exchange partner.

partners combine into one function for the return on investments of their joint project.

Decreasing marginal returns to own investments (decelerating). The decelerating case captures
actors for which each extra unit of resources allocated to a productive exchange relation will be
less valuable than the previous unit, keeping fixed the allocation of the exchange partner. That
is, the first units of resources invested in a project have the greatest impact and subsequent units
invested in the same project are less valuable (see Figure 1.b).

Increasing marginal returns to own investments (accelerating). The accelerating case captures
actors for which an extra unit of resources allocated to a productive exchange relation will be more
valuable than the previous unit, keeping fixed the allocation of the exchange partner. That is, the
first units of resources invested in a project have negligible impact, and only after a certain amount

of resources have been invested, the additional investments make a big difference (see Figure 1.c).

3.2 Strategic link formation

Our model represents an exchange network as a weighted graph. A link in this graph represents a
dyadic productive exchange. The weight of a link represents the output of the productive exchange
relation. The size of this output is determined by the partners’ allocations to the relation and
the combined effect of their production functions. We integrate two choices actors make: whom
they connect to and how much of their resources they allocate to each of their connections. These
choices are decided simultaneously by the pair of allocation decisions made by two (potential)
exchange partners. If at least one of them allocates no resource to the productive exchange with
the other, the exchange does not take place. If both allocate resources to the exchange, the output
of these allocations determines the link weights and the outcome of the productive exchange for
each partner. The total amount of resources an actor possesses puts a constraint on how much can
be invested in a single project.

Decision making about link formation and investments is modeled in terms of a one-shot non-



cooperative game. The set N = {1,...,n}, where |N| > 2, represents the actors, or players, in the
productive exchange network game, denoted by I'. Every player ¢ € N is ex-ante and exogenously
endowed with a fixed individual amount of resources €2; > 0, that can vary across players ¢, and
with an individual production function defined by parameter &; > 0.2

Prior to the start of the game, players are informed about the size of the set of players, which
is fixed throughout the analysis, and the endowments and production functions of all players. We
represent the network by the set of dyadic links, g, denoting joint projects between connected
players. A productive exchange between two players ¢ and j is denoted by ij € g, whereas ij ¢ ¢
indicates that there is no exchange. Resources not invested in productive exchange relations are
used by players in individual production, denoted by the self-link 7t € g. The set of partners a
player i has is N;(g) = {j : ij € g}, for all j € N. The cardinality of N;(g) is n; (the degree of node
i in the network), and is endogenously determined through the simultaneous choices of all players.

Each player can have more than one connection simultaneously and at most n. A player i
simultaneously chooses whom to exchange with and the amount of resources to allocate to each of
her projects, expressed by the vector of allocations x; = {z;1, ..., Zii, ..., Tin}, where Q; constrains
the size of total investments player ¢ can make. The allocation of resources by ¢ can be made to
two types of projects: individual, x;;, and joint with a partner j, x;;. We denote x(y,(,)) as the
vector of allocations made to i by i’s partners. When a player j does not wish to exchange with ¢
she simply allocates no resources to .

Payoffs in the game are determined by a Cobb-Douglas production function, u;(I"), which de-
pends on the allocation choices made by all players and the shapes of their individual production

functions, as follows:

n
w;i (03, 0—iy Tiy T, (g)) = PTg; + sz’j%; (1)
J#i
where ¢_; is the vector of parameters of the production functions of players other than ¢, and

p > 0 is a premium on individual production, weighting the relation between individual and joint

outputs.® Note how this production function captures the essential feature of productive exchange,

2Following the functions in Figure 1, players with §; < 1 are decelerating players, players with 6; = 1 are linear
players, and players with §; > 1 are accelerating players. We focus our analysis on accelerating and decelerating
players. However, proofs account for linear players as well.

3For two players 4 and j, if ;; > 0 and 2j; = 0, no link is formed between them and the resources invested by i
in the failed exchange are lost. However, the resources invested by a player in individual production are multiplied
by p. Coleman (1990), in his study of social exchange, assumes p = 1. In our case, by allowing for multiple values
of the premium on individual production we cover a wider set of productive scenarios. For details of the analysis see

the Appendix.



in which players cannot produce any value unless both partners to an exchange contribute.* We
assume that players’ payoffs are identical to the summed productiveness of their projects, u;(I").
Note that, in our setup, one and the same player can be part of multiple joint projects without
necessarily symmetrically distributing her resources between them (as in Jackson and Wolinsky
1996).

To facilitate the analysis of the relation between resources and production functions we partition
the set of players into three mutually exclusive and exhaustive subsets, which will prove useful for
illustrating the main findings of the paper. We denote as G = {i : sz > p} the set of players for
whom the maximal impact they can make to a project is greater than the premium on individual
production. Similarly, we denote by E = {i : in = p} those for whom the maximal impact is
equal to the premium, and by L = {i : Qf" < p} those for whom the maximal impact is lower than
the premium. The sets categorize players by their maximal impact, which not only depends on
available resources, §2;, but also on the shape of their production function, given by §;. This implies
that decelerators need more resources than accelerators to end up in the set G, for the latter have
higher 9;.

We call the collection of allocation vectors of all players (one for each player) an allocation

profile, and denote it by (z1,...,2,). When no player has incentives to unilaterally deviate from a
given allocation profile (z7,...,x}), this profile is a Nash equilibrium. Formally:
wi(0s, 0—iyyy o ) > ui (8,04, 2%, .., ak, . xk) Vol #£al, i€ N.

The Nash equilibrium requirement can be seen as a minimal condition for an exchange network
outcome to be consistent with the rational self-interest of the players involved. If the outcome is
not a Nash equilibrium, then at least some players could gain from reallocating their resources and

would do so.

4 Equilibrium

In this section, we describe the Nash equilibria for the one-shot network game with complete
information, NE(I'). We first define the set of strategies players have and discuss the 2-person
game. The 2-person game serves to explain which partners a player would prefer, given their
available resources and production functions, and illustrates the best response logic. Then we

extend the analysis to networks of size n > 2, and provide a characterization of the Nash equilibria.

“Note that players do not bargain or negotiate the exchange of resources but participate in reciprocal (and

contingent) acts of giving resources (Lawler 2001; Molm 1990, 1994).
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Figure 2. Dyadic interactions. Circles represent decelerators and triangles represent acceler-
ators. The color represents the set they belong to: white for players in L, gray for players in
E, and black for players in G. A loop around a node shows that a player invests resources on
his individual project, and a link between two nodes shows that both players invest resources

on a joint project.

This is the main goal of our study, to model the formation of weighted networks in a context of

resource and production heterogeneity.

4.1 Strategies and the 2-person game

A player in the network game I' chooses an allocation vector x;. He either invests only in his
individual project (z;; = C; Z;;Z zi; = 0), only in joint projects with others (z;; = 0; Z;L# Tij =
;), or in both individual and joint projects (x;; > 0; Z;;Z xi; > 0), where always x;; + Z?# Tij =
Q;. To facilitate illustration, we define three types of networks structures based on the players’
strategies: Figure 2 visualizes which of these exchange structures in a dyad are compatible with
best-response behavior according to Lemma 1 (see below). No Exchange (see Figures 2.b1l and
2.cl), Full Exchange (see Figures 2.b2 and 2.b3), and Hybrid Exchange (see Figures 2.al, 2.a2,
2.a3, 2.¢2, 2.c3). We refer to a No Ezchange network when all players use their entire endowment
in their individual projects. In Full Exchange networks, all players use their resources in joint
exchanges with others and none invest anything in their individual projects. Finally, in Hybrid
Ezchange networks both individual and joint projects occur.

Lemma 1 shows how a player i’s best response to j’s level of investment, x;;, depends on i’s

and j’s production functions. Note that the best response is expressed in terms of what player ¢



invests in his own individual project.’?

Lemma 1. Optimal allocation in a dyad: The optimal allocation in a dyadic interaction for

an accelerating player i(0; > 1), is:

o O e e 2)
Q, otherwise.
g 5 . L ‘
with indifference between the two responses when x]-; = p. The optimal allocation in a dyadic
interaction for a decelerating player i(6; < 1), is:

%j

1,1 % ,
v = L+ ()T T > 0 Va2 0 (3)

J

Proof. Lemma 1 presents the optimal allocations for the interaction between two players in the
productive exchange game I'. For this proof, we denote the set of resources a player i has as
Q), where 0 < ;. This means that we can generalize the proof for any proportion of resources
considered from the entire endowment €2;. This is a useful consideration for the extension of the
results to networks of any size n > 2. Consider the optimization problem below, where a player ¢
decides on the optimal way of allocating her resources between an individual and a joint project:
maxy, U = pr{ Q- xii)‘sixj-f
Note that the maximization is phrased in terms of the resources 7 keeps for herself. The First
Order Condition (FOC) implies:
6] —

Qui _ p8;z 0D 5,6 — 2:) 0 V% = o,

i
awll 2 Jt

and the Second Order Condition (SOC) implies:

0%u; di— A oYy 6.
oz = pdi(d; — 1)x2(2 2) 65 — 1)( — xii)(éz 2)%,; 2 0

so that:

u;, >0 if §; > 1: 7 internal maximum
u;, =0 if(si:l:u;:p—:c?g EO

u;-, <0 if §; < 1:internal maximum is feasible

®As shown in the proof of Lemma 1, this analysis can be made, with no loss of generality, for < Q; available

resources.



For the case of a player who has an accelerating production function (§; > 1) no interior
point can be a local maximum, thus neither a global one. Therefore, only the corner solution
(zi; = 0; 24 = §;) are candidates for a global solution. The payoff functions for each are w;(z;; =

Q) =wi = Q‘S ;5; and u;(z; =0) = pri, respectively. Thus, the best response (RB) is:

. 0;
zr =0 ifz’ >
BR: 1 Je ’0 (4)

. d;
* . J
xy = 1iji <

with indifference between the two possibilities if a:ji =p.

If a player has a linear production function (9; = 1) it follows immediately from the FOC that:

t =0 iff &) > p
BR =4 zf €[0,Q] iff x;kfj =p (5)
zh = iff ﬂf" <p

If a player is a decelerating production function (é; < 1) from the FOC we know that po; x =

].

where pa:,n?fl = (Q —xy)% 2 % so that Q; = xii[1+ (p)

>
8i(Q — wai)" ] 7,

jio
5

BR={ oy =i+ ()PP 102, ©)

To ascertain that Eq. 6 leads to a global BR we compare to the two corner solutions. Substi-

tuting Eq. 6, in w; yields:

. P Q 8 .0
ui(zy;) = L —; + [ - 11 55 ] Tji
14+(2) 1% 6i]5i 1+(3)T=% —5;
55 55, 55
1 J s L6% L5 5 %
8 | it TS 18715, 65 55 s 15, 1% 5 e .
u( *) B inl+Qil[(;)1 ‘Szzﬂ 2]6”%_? B Qiz(p_,'_pél 1zji i ) B Qizp(l_i_pzsz 1xji z)
P\ - % - 1 % - - %
1=5; 5. 5= 1=5; 5. 1=5; 15,
[L4(5) T %y )% [4+(5) 1%y "% [4+(5) %y )%
6.
i
1 L

Now, the question is when is u;(x};) > ui(xy = ). We say this condition is satisfied when:

(51' _1 ji —_ 51 0
PO L+ (5) 00 > Qi
L 1 1 1ij5 1ij5-
p L+ (5) e >y



which is always true. O

Lemma 1 formalizes how accelerating and decelerating players best respond to their partners
in a dyadic interaction. Accelerators, on the one hand, have all-or-nothing best responses. If their
partner is in E or G, accelerators will put their entire endowment in the exchange (see Figures
2.b2, 2.b3, 2.c2, 2.c3). Otherwise, accelerators will rather stay alone (see Figures 2.b1 and 2.cl).
That is, only if actors are in E or G they are attractive to an accelerator partner. Notice that
accelerators’ best responses to their partners’ choices are independent of their own resources.

On the other hand, players with a decelerating production function are better off not putting
all eggs in one basket. Their best responses are always fractions of their total resources (given
as the fraction of total resources retained, in Eq. 3). These facts imply that no matter whether
they are in G, E or L, a decelerating player can always best respond (see Figures 2.al, 2.a2, 2.a3,
2.cl, 2.¢2, 2.c3). The intersections of the best responses presented in Lemma 1 result in the Nash
equilibria of the 2-person game (which are not necessarily unique).

Let us briefly return to our earlier example of an R&D collaboration between a start-up firm
with a quickly advancing technology, and a partner with a more mature technology for whom
progress slows down with further investments. Lemma 1 shows that the start-up would require
from the mature partner a certain minimal investment before devoting any level of effort to the
joint project. The mature firm would not require such a minimum investment before investing
into the collaboration. On top of that, once the start-up has found that the partner guarantees
the minimum level of investment, his best choice is to invest all his resources in that project.
The mature firm, however is better off diversifying, because there is only so much this firm can
contribute to a single project before its marginal productivity falls below that of investing into
alternative projects. This example also demonstrates how heterogeneity in resources interacts with
heterogeneity in production functions. Only if a mature firm has enough resources to make an
investment that passes the minimal investment required by the start-up, exchange between them
is at all possible. Technically, exchange is precluded if the mature firm is a member of L (having
few resources relative to productivity).

Correspondingly, a senior researcher would not invest all his resources and attention into a
single research project, for he can gain more by devoting his generalist expertise to different papers.
However, the junior researcher, being a specialist, will be willing to invest all he has into a single
project, provided the senior researcher allocates enough resources to the project for them to work

together. However, if the senior researcher cannot guarantee a greater impact in resources than

11



what a junior researcher could acquire on his own, then the junior scientist would rather work on

a project alone than collaborate with the senior researcher.

4.2 Connectivity in the n-person network

The results of Lemma 1 generalize to n-person networks, because the optimization problem solved
in it can be applied to any part Q< ofis resources, ¢’s utility being additive across all projects
i is engaged in (see Eq. 1).

Lemma 2 below contains the results this approach yields for the conditions under which different
types of equilibria are obtained. First of all, note that the ‘No Exchange’ configuration is always a
Nash equilibrium, regardless of the players’ production function and resources (see the first bullet
of Lemma 2). Second, consider an accelerating player i (6; > 1). By Lemma 1, if there is no other
player j such that a:jjizp , player i will work alone. Note that this is by definition the case if all
other actors are members of L. If there is exactly one player j such that a:j-{zp, player ¢ allocates
all his resources to j. Note that this is possible because a project is assumed to be always big

enough to absorb all of a player’s resources. If there are two or more players j in £ or G, such
9j
jio
1 the maximum total utility. If the maximum allocation received by 4 is not unique, i picks one of

that xji ZP , player ¢ allocates all his resources to the player j with the highest x .7, since this yields
them. Thus, accelerating players have at most one joint project, and if they have such a project,
they allocate all their resources to it. These considerations lead to the second and third bullets of
Lemma 2.

Third, consider a decelerating player i (§; < 1), and suppose ¢ is involved in k joint projects.
If £ = 0 the fourth bullet of Lemma 2 is trivial. If £ > 0, since the utility function (equation (1))
of player ¢ is additive in the k projects, we can consider any of the k projects as an independent
2-person game, conditional on the k — 1 other projects. By Lemma 1, player ¢ will best respond
in any of the k projects according to equation (3). In particular, player ¢ will have a non-zero
self-allocation in any of the k projects. Hence, overall player ¢ has zj; > 0, which leads to the

fourth bullet in Lemma 2.

Lemma 2. Nash equilibria in n-person game: In the n-person game Nash equilibria are

allocation profiles such that there are:

e No FExchange configurations, for any composition of players’ production functions and re-

sources.

e No Exchange configurations if all players are accelerating and are in L.
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Figure 3. n-person networks. Circles represent decelerators and triangles represent accelera-
tors. The color represents the set they belong to: white for players in L, gray for players in
E, and black for players in G. A loop around a node shows that a player invests resources on
his individual project, and a link between two nodes shows that both players invest resources

on a joint project.

o Full exchange configurations formed by components of size 2 in which both players allocate all

their resources to the exchange, if all players are accelerating and are in FE or G.

e Hybrid Fxchange configurations, in which all players always create an individual project if all

players are decelerating, regardless of whether they are in L, E or G.

Lemma 2 characterizes network configurations in equilibrium, given the players’ production
functions and the allocations by their neighbors. Note how for expositional convenience the state-
ments in Lemma 2 concern only homogeneous networks in which all players have the same type
of production function. However, in the proof above it, we are concerned only with individual
best responses depending on the player’s production function, not on his partner’s. Hence, using
Lemmas 1 and 2 we can characterize the Nash equilibria for any network, whether homogeneous
or heterogeneous. The bottom line is that decelerating players create both individual and joint
projects in equilibrium, resulting in a hybrid exchange network. Accelerating players create but
a single (joint or sole) project, possibly resulting in a full exchange network composed of dyads if
their partners are in E or G, or of isolated nodes if their partners are in L.

Thus, we can study the way Nash equilibria depend on the distribution of production functions
and resources across players in the network. Since a Nash equilibrium is any combination of best
responses, it is clear there will be very many different equilibria in any given network. Examples
of these equilibria are illustrated in Figure 3.

If all players have a decelerating production function, there is a wide range of equilibrium config-
urations, from No Exchange to any Hybrid Exchange where all players perform an individual task

and they also perform up to joint tasks (see Figure 3.a). On the other hand, accelerating

players will either form No Exchange or Full Exchange networks where players only have one joint
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project and no individual. Thus, the network is composed of dyads (see Figure 3.b).5 If there is
more than one other player who would be both willing to invest into a project with the accelerating
player and has enough resources to meet the minimum investment, then the accelerating player
would prefer the partner who makes the biggest investment. For accelerating potential partners
this implies that the partner with the largest amount of resources is preferred, while for decelerating
partners, resources only affect their attractiveness if they have less resources to invest than their
optimal investment would require. In that case, they would invest only a fraction of the optimal
investment, the size of which depends on the amount of resources at their disposal. More generally,
when there is heterogeneity in production functions and resources, the resulting networks are a
combination of the homogeneous cases (see Figure 3.c).

In our example of R&D collaboration between firms with mature technology (i.e. decelerating
players) and start-up firms with quickly advancing technology (i.e. accelerating players), this would
mean that if all firms were mature, it would be optimal for them to diversify into various R&D
collaborations. If all firms were start-ups, they would either be working alone if the partners did
not have enough resources to exchange with them, or put all their efforts into a single collaboration
if they found a partner who can guarantee the necessary contribution.

More commonly, and as our initial example of Campbell Soup Co. and the food start-ups
suggests, if there is a single big decelerator and multiple small accelerators, the big decelerator
produces a large social surplus that would be forfeited if instead there was a big accelerator, or
no big actor at all. For instance, suppose all accelerators are in L. Absent the big decelerator
there would be no exchanges (i.e. no joint production and low payoffs), and social efficiency would
be negatively affected. However, the single big decelerator could free this potential and make it
flourish, by connecting to a number of the start-ups who would all invest all of their resources into
their projects with the big decelerator. This is what the empirical examples of mature firms and
start-ups suggests.

Similarly, junior scientists may in an early stage of their career not be able to find other junior
scientists to collaborate with, because all of them lack the experience and breadth of knowledge to
develop fruitful research problems for a joint project. However, as soon as an experienced senior
scientist invests some fraction of her time into collaboration with each of the juniors, all joint
projects could become sufficiently productive to justify the full efforts of the juniors working on
them.

In the following subsection, we provide a characterization of the Nash equilibria in terms of the

51f n is odd, there is one player who is excluded from exchanging with others and who will use her resources to

produce alone.
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shares of their resources players devote to each productive project.

4.3 Characterization of Nash equilibrium

To describe the set of Nash equilibria in terms of the resources players allocate, NE(T'), we

consider the general problem of optimizing the payoff function u;(I"), subject to the constraint
Tig + Y2 Tij = .

Proposition 1. Best Responses in I': For a productive exchange network game, the proportion
of resources a player i allocates to a project is equal to the proportional productivity of the given
project compared to her total productive output in equilibrium. Therefore, the best response of player

i to the given allocations xj; in terms of his allocation to his individual project, x3;, must satisfy

ZZ’
the condition:
x*éi
= e (7)
T + Zg;ﬁz .%' $

The best response of player i in terms of his allocation to a joint project with j, x

*

7j» must satisfy

the condition:

0j
ZL'*6 X

* iy i Q. (8)
5 %
i + Z];ézx CC

Proof. Proposition 1 presents the best response functions in the genera n-person productive ex-
change game. The proof is the solution to the optimization problem of the payoff function in

Equation 1:

maxg,, (0,05, T, N, (9)) = pa:“ + ZZL‘U T (9)
JFi

n
s.t. xy + inj <
i
The First Order Conditions (FOCs; Eq. 10 and Eq. 11) and the complementary slackness
condition (C.S.C; Eq. 12) imply:

0x;; Oi 5?1_1) —A=0,
p(sll'f; = )\ZL'“ (10)



0L (6:;—1)_3;
0j
i xwazﬂ = \zjj (11)
Maii + Y wiy — Q) =0 (12)
J#i

where L is the Lagrange function and A > 0 is the Lagrange multiplier. From Eq. 10 and Eq.
11 it follows that A = 0 implies z;; = 0 and x;;x;; = 0 for all pairs ¢ and j, yielding a total utility
equal to zero. Since any player ¢ can produce a strictly positive utility by working alone, this is
never a best reply. So, we must have A > 0 and according to Eq. 12 the constraint must be binding:
Tii + )ity Tij = .

Summing Equation 11 in j:

5 Z% 2 = (Q = i)\ (13)

Adding Equation 10 and 13:

pxu—i_zxz] ]z - (14)

Dividing Equation 10 by Equation 14, we obtain the best response of player ¢ to the allocations
of the other players, in terms of her allocation to an individual project, z7;:

d;

) p;;

p$zz+237£2 z] j’L

Dividing Equation 11 by Equation 14, we obtain the best response of player ¢ on her allocation

to a combined project with j, x

1‘6 1'6
Ti; = LI Qi (16)

&
p$u+Zg;éz z] ji

The best response functions in Proposition 1 show that in the optimum the proportion of

resources a player i invests in a productive project equals the proportional productivity of the
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given project compared to his total productive output. In other words, the greater the output of a
productive project, the more resources i allocates to such project.”
In the following section, we narrow the set of network configurations that emerge in equilibrium

down by imposing a dyadic rationality constraint. This will conclude our analysis.

4.4 Pairwise stable Nash equilibria

In the previous sections, we have used Nash equilibrium as the solution concept. However, in
social and economic settings such as the productive exchanges studied here, relations require mutual
agreement to be created and we want to take this dyadic nature of interactions into account. Because
players are assumed to behave rationally (i.e. they are utility maximizers), they can be expected
to bilaterally form relationships that are mutually beneficial and to unilaterally sever relationships
that are not. For instance, one would expect players to talk to each other and form a productive
exchange if it is in their mutual interest. Nash equilibrium, however, does not properly account
for this. Nash equilibrium only accounts for unilateral deviations, which allows equilibria that
are ‘unreasonable’, such as the No Fxchange network in our model. Whenever two players could
complete a productive exchange to the benefit of both, we would expect them to talk to each other
and create a joint project.

To realign models of strategic network formation with this ‘coalition behavior’ (e.g. Emerson
1972), Jackson and Wolinsky (1996) proposed pairwise stability as an alternative to the Nash
concept that captures mutual consent (see also Jackson and Watts 2001, 2002). A network is
pairwise stable if it meets the following two requirements: (i) no player can strictly improve his
utility by severing a relationship he has and (ii) for any link that does not exist, whenever one player
would strictly improve his utility by forming the link, the potential partner would not experience
a strict increase in utility. This concept leads to the notion of pairwise stable Nash equilibrium
(PNE), so that a network is PNE if it is Nash and pairwise stable.

PNE is related to a game theoretic solution concept widely used for social exchange: the core
(see Bienenstock and Bonacich 1992, 1993; Bonacich and Bienenstock 1995; Dijkstra 2009). Like the
core, PNE is based on two conceptions of rationality: individual and dyadic rationality (Rapoport
1970). Individual rationality is needed to ensure Nash equilibrium outcomes where no player will
choose an allocation profile that gives him a lower outcome than what he could maximally achieve,

given the allocation of the other players. Dyadic rationality is the same assumption with respect

"A unilateral deviation by a neighbor j, increasing her investment to a common project with i, gives incentives to
(E‘Si T px(.si xéj

to make an increasing unilateral deviation as well. Given x;; > 0 and s > 0, we get 71 = 5 and ﬁ = 5.
] oy K x. tax,
i3 L% ik Thi

Then, 2% < 0, ‘gz—i_<07andgz—ji20 VieNand j,ke€Ni(g):j#kj#i, and i # k.

gi — T —
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to pairs of players.

Note that PNE has been widely used in strategic network formation models, where links are
either present or not. However, in our productive exchanges, players decide how much of their
resources to devote to various collaborations, so that it is not only a matter of whether a connection
exists, but also what its weight is. Particularly, in our setting of weighted networks, we need to
adapt the notion of pairwise stability from a binary choice set to a continuous choice set, by
considering that changes are not restricted only to formation or deletion of links, but include also

variations in allocations even for links that have already been formed (see Definition 1 below).

Definition 1. PNE in productive exchange: A network is PNE if no player i would strictly
benefit by any reallocation of her resources in vector x;, and no pair of players i and j would both

strictly benefit by a reallocation in x; and x;.
Proposition 2 characterizes the PN E configurations in our model.

Proposition 2. Pairwise stable Nash equilibria: The set of PNE(T') is a subset of NE(T).
Under a homogeneous distribution of production functions (6; = 6;,V i € N). If all players have

accelerating production functions:

1. For players in L the unique PNE is No Exchange.

2. For players in E or G the unique PNFE is Full exchange, for which pairs are formed by
matching adjacent players, where players are ranked by their maximal impact, Qf", from

highest to lowest.

If all players have decelerating production functions:

3. there is no PNE, regardless of whether players are in L, E or G
And under a heterogeneous distribution of production functions. If there is heterogeneity in
production functions and resources are homogeneous

4. In any PNE network there is at most one exchange between an accelerating and a decelerating
player.
If there is heterogeneity in production functions and resources are such that accelerating play-
ers have strictly larger endowments than decelerating players

5. PNE configurations are as in (iv)

If there is heterogeneity in production functions and resources are such that accelerating play-

ers belong to L and decelerating players belong to E or G
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6. Any PNE configuration is a core-periphery structure in which decelerating players are linked

between them, as the core, and also act as hubs to which accelerating players link

Proof. We present the proof for each item in Proposition 2.

1. Given that in < p, Vie{EUL}, players respond by working alone, as shown in Lemma 2.
This is pairwise stable because no player strictly prefers creating a non-existing link to not

creating it, since pQ% > Q% Q%

2. Consider that sz > p, Vi€ G, let the cardinality of G be k. Rank and label all members
of G from 1 to k, such that Q<151 > Qgg > Qg?’ > > Qi’“jll > Qi’“. Let pairs of players
{1,2},{3,4},{5,6}, etc., engage in full exchange in network g. If k is uneven, player k is left
without a partner. All players outside K work alone. By Lemma 2 this is a Nash configuration.
To see that it is pairwise stable first observe that Nash equilibrium guarantees that no player
will individually want to reallocate resources. Second, consider non-existing links between
layers in K. Consider players 4, j,l, m such that in > Qj-j > Q?l > Qm and i,j € g and
l,m € g. Suppose ¢ proposes a ink to player [, by allocating xf; > Qf]{l, than player [ is better
off reciprocating ¢ and allocating x?j = Q?’. However, following the construction of network

g, 0% > Q?‘, which does not make i better off allocating any resources to player [. Notice

J
this is also true if player [ is the k** player and is working alone, because Qj-j > p. Moreover,

it is also true when considering a player n such that Qfln < p. Thus, network ¢ is PNE.®

3. Consider §; <1, Vie N, and Qj.j ; p. Let g be any network. Suppose that under g some
joint projects occur, and suppose g is a Nash equilibrium. Then by Lemma 2 we know that all
players 7 involved in a joint project have xj; > 0. By the proof of Proposition 1 we know that
the marginal utilities of all the projects any such i is involved in equal A > 0. Now consider

2y _ 5 o5 0—1_0;—1
o2 —(5]513317. T

1j € g. Taking the cross partial derivate we get > 0. Hence, a margina
increase in xj; gives i an incentive to strictly increase x;;. Since the same is true mutatis
mutandis for player j,7 and j can both strictly improve their utilities through a marginal

increase in x;; and x;;, respectively. Hence, g is not PNE.

Now suppose there are no joint projects in g. Then x; = §; for all 7, and this is a Nash
equilibrium. Now, propose a link between ¢ and j. The dyadic best response behavior for

players with decelerating production functions analyzed in Lemma 1 then shows that both ¢

8Note that since some players in K might have identical levels of production functions, g is not a unique network,
but a unique configuration. In other words, if two players have identical production functions they are interchangeable,

leading to two equivalent PN E networks.
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and j strictly improve their utilities by both allocating strictly positive amounts of resources

to their exchange. Hence, g is not PNE.

4. Suppose in the network g there are two joint projects between an accelerating player and a
decelerating player. By Lemma 2 the accelerating players allocate all their resources in their
single exchange. In particular, accelerating player i earns u;(g) < Q?inj < Qf’iQi’“, where j
is the decelerating player exchanging with ¢, and k is the other accelerating player. The same
is true for the other accelerating player k. hence, i and k can both strictly improve their

utilities by engaging in full exchange with each other and g is not PN E.
5. The same arguments give in the proof for item 4 hold in item 5.

6. Consider a heterogenous distribution of production functions and heterogeneity in resources,
such that accelerating players belong to L and decelerating players belong to £ or G. Then,
from the arguments in item 1 there are no exchanges between players with an accelerating
production function. Regarding players with decelerating production functions, suppose that
under g some joint projects occur, and suppose g is a Nash equilibrium. Then, by Lemma 2
we know that all players j involved in a joint project have x;j > 0. Following the arguments
in item 3 we know that a player j can form a link with a player ¢ : §; > 1. The matching
is such as in item 2 but instead of ranking ij (given that players were fully exchanging all
their endowments), we rank mji for all j : §; < 1, such that :cj;* is best response to in for
the highest sz the structure is one in which d; < 1 players are in the core and ; > 1 players
are linked, as in a star, to a decelerating player. Thus, resulting in a core-periphery structure
in which decelerating payers are linked between them, as in item 3, and each is linked to a

set of accelerating players, following the arguments in items 2 and 3.

O]

If a network is PNFE it is also a Nash equilibrium. Thus, it is straightforward that the set of
PNE(T) is a subset of NE(I'). Now we discuss the specific pattern of productive relations and
resource allocations that emerges when assuming that players will pursue, bilaterally, relationships
that if formed will benefit both parts (PNE).

Although there are various combinations of conditions for which different social outcomes may
emerge, we focus on two relevant cases that arise as PN E configurations: (i) segregation between
players by their production function, and (ii) core-periphery networks with decelerators as hubs.

A third outcome results from a combination of the two above-mentioned.
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Case 1. Segregation between players by their production function: Consider a setting in which
accelerators have more resources than decelerators, say accelerators are in E or G while decelerators
are in L.° In such a case of heterogeneity in resources and production functions, segregation by the
degree to which players’ production functions accelerate generally arises. Accelerators pair up with
other accelerators if they are in E or G, or work alone if all of them are in L. In fact, PNE
configurations are characterized by perfect assortativity in terms of the shape of the production
function: provided that not everyone is in L, the two players with the most accelerating production
functions fully exchange with each other, the next two players fully exchange with each other, etc.
The decelerators cannot compete against ‘richer’ accelerators and, thus, only collaborate between
them (see Figure 4.a).

Decelerating players have the intention and availability to collaborate with other decelerating
players as well as with accelerating players, but the accelerating players would only be interested
in joining efforts with other accelerating players, excluding decelerating players from their collabo-
rations. According to this logic, start-up firms with quickly advancing technologies would prefer to
have R& D collaborations with each other if they can choose between mature partners and start-ups,
when the accelerators are in G or E and the decelerators are in L. Generally, as long as decelerators
do not have more resources than accelerators (i.e. decelerators in G or E and accelerators in L), in
our model dyadic rationality considerations (such as embodied in PNE) lead to segregation between

players with different types of production functions.

Case 2. Core-periphery networks with decelerators as hubs: Consider a setting in which accelerators
have less resources than decelerators; they are in L or E, and decelerators are in G. In such a case,
decelerators with large amounts of resources, although with decelerating production functions, will
become more attractive partners for accelerators than other accelerators. Therefore, big decelerators
will link to various accelerators, and each accelerator will use all their resources to invest in their
productive exchange with the decelerator. Moreover, decelerators would also collaborate between
them, forming a core group of decelerators, each linked to one or more accelerators depending on
their available resources (see Figure 4.b). Note that absent the big decelerator much of the innovative
potential of the start-ups would lie dormant. It takes a big decelerator’s involvement to activate the

productivity of the decelerators, resulting in larger overall payoffs.

Going back to our example of how firms can decide on the R&D collaborations, this would mean

that if firms with mature technology have high levels of resources, they would be able to attract

9This case holds even when players are in the same set (L, E or G) as long as the maximal impact of the accelerators

is strictly greater than that of the decelerators.
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Figure 4. PNE networks. Circles represent decelerators and triangles represent accelerators.
The color represents the set they belong to: white for players in L, gray for players in E,
and black for players in G. A loop around a node shows that a player invests resources on his
individual project, and a link between two nodes shows that both players invest resources on

joint project.

and maintain relationships with start-ups. Moreover, the start-up firms would put all their efforts
in their exchange with the mature firm. However, given mature firms are better off diversifying,
they would invest in R&D collaborations with other mature firms as well as with other start-ups.
For instance, a mature firm such as Campbell Soup Co., with a large amounted wealth but little
capacity to create growth on its own, would seek to invest from its resources in various startups

that can guarantee greater returns to its investment.

5 Discussion and Conclusion

Our study enriches the insights into the structure of emergent exchange networks by pointing to
the importance of the interplay between resource heterogeneity and heterogeneity in production
functions. Four key findings stand out.

First, actors with accelerating production functions (e.g. start-ups) are better off following an
all-or-nothing strategy, whereas actors with decelerating production functions are better off diver-
sifying and not putting all eggs in one basket. Accelerators require a minimum level of investment
from their partner to establish an exchange, otherwise they will prefer to work alone. Therefore, the
combination of partners’ production functions and available resources must make enough impact
to motivate an accelerator to establish an exchange. Decelerators exchanging with accelerators need

large resource endowments to compensate for their slow production function.
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Second, the composition of the population affects the network structure that emerges. Segre-
gated networks (i.e. accelerators do not exchange with decelerators) emerge in populations where
decelerators are poor (sets L or E). Decelerators will establish collaborations with different partners
regardless of their own impact, but will only establish projects with accelerators if their maximal
impact is large enough to compensate with resources what they lack in acceleration (i.e., deceler-
ators are in G). Core-periphery networks (i.e. decelerators are hubs tied to several accelerators)
emerge in settings where decelerators are rich and accelerators have too small resources of their own
to impact a relationship with another accelerator (i.e. accelerators are in L or E). Such structures
reflect situations in which big firms, like Campbell Soup Co., benefit from the growth capacity of
small new firms, because the latter are willing to devote all their capacity into making the best out
of the joint project. Similarly, this exemplifies a key structure in scientific collaborations, where
experienced researchers collaborate with each other, but also benefit from collaboration with ju-
nior scholars because the latter are prepared to fully engage in the joint research project. Such
exchanges between senior researches with large ‘resource’ endowments (i.e. skill, experience) and
junior scientists with accelerating production functions but less experience also benefit scientific
production as a whole.

Third, our study delineates the conditions under which resource rich actors do not acquire a
central position in the emergent exchange network structure. Consider a well-endowed actor with
a decelerating production function. This actor could in principle serve as a hub in the network.
However, if there is a less well-endowed actor with an accelerating production function, whose
total impact is nonetheless larger, the resource-rich decelerator may end up exchanging only with
other decelerators (if any) and not with any accelerator. The result that resources can be inversely
related to exchange outcomes is a new possibility that previous work on heterogeneity in exchange
networks has overlooked (Friedkin 1992; Markovsky et al. 1988, 1993).

Finally, our study contributes to the literature on strategic link formation by extending the anal-
ysis to weighted networks, which allows incorporating variations in the intensity of the relationships
(e.g. involvement, use of resources, strength of ties).

We conclude with pointing out two opportunities for further research. First, whereas previous
work on productive exchange models group interactions with more than three actors (see Lawler
et al. 2000), we use game theory to model collaborations as dyadic interactions. Though dyadic col-
laborations are common, future research may benefit from extending the game theoretical analyses
to larger groups.

Second, empirical tests of our model constitute an important next step to advance our insights

into the impact of heterogeneity in production functions on emergent network structures. Labora-
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tory experiments offer powerful techniques to do so (for a survey of early works see Kosfeld 2014,
see also Falk and Kosfeld (2012); van Dolder D. and Buskens (2014)). Particularly, by studying
how experimental subjects interact, we can discover in more depth how certain network structures
are more likely to emerge than others (Corten and Buskens 2010), while controlling how the type
of production functions and resources are distributed.

Statement: There are no conflicts of interests and the authors have nothing to disclose.

References

Agneessens, F. and Wittek, R. (2012). Where do intra-organizational advice relations come from?

the role of informal status and social capital in social exchange. Social Networks, 34:333—-345.

Anjos, F. and Reagans, R. (2013). Commitment, learning and alliance performance: A formal
analysis using an agent-based network formation model. The Journal of Mathematical Sociology,

37:1-23.

Bienenstock, E. J. and Bonacich, P. (1992). The core as a solution to negatively connected exchange

networks. Social Networks, 14:231-243.

Bienenstock, E. J. and Bonacich, P. (1993). Game-theory models for exchange networks: experi-

mental results. Sociological Perspectives, 36:117-135.
Blau, P. (1964). Ezchange and power in social life. Willey, New York.

Bonacich, P. and Bienenstock, E. J. (1995). When rationality fails: Unstable exchange networks
with empty cores. Rationality and Society, 7:293-320.

Braun, N. and Gautschi, T. (2006). A nash bargaining model for simple exchange networks. Social
Networks, 28:1-23.

Buechel, B. and Buskens, V. (2013). The dynamics of closeness and betweeness. Journal of

Mathematical Sociology, 37:159-191.

Burt, R. (1992). Structural holes: The social structure of competition. Harvard University Press,

Cambridge.

Buskens, V. and van de Rijt, A. (2008). Dynamics of networks if everyone strives for structural

holes. American Journal of Sociology, 114:371-407.

24



Collins, H. (1990). Artificial Experts: Social Knowledge and Intelligent Machines. MIT Press,
Cambridge.

Cook, K. S. and Cheshire, C. (2013). Social exchange, power and inequality. In Wittek, R.,
Snijders, Tom, A., and Victor, N., editors, The handbook of rational choice social research.

Stanford University Press, Westport.

Cook, K. S. and Emerson, R. M. (1978). Power, equity and commitment in exchange networks.

American Sociological Review, 43:721-739.

Cook, K. S., Emerson, R. M., Gillmore, M. R., and Yamagishi, T. (1983). The distribution of
power in exchange networks: Theory and experimental results. American Journal of Sociology,

89:275-305.

Cook, K. S. and Whitmeyer, J. W. (1992). Two approaches to social structure: Exchange theory
and network analysis. Annual Review of Sociology. Vol, 18, 18:109-127.

Corten, R. and Buskens, V. (2010). Co-evolution of conventions and networks: An experimental

study. Social Networks, 32:4-15.

Dijkstra, J. (2009). Externalities in exchange networks: An adaptation of existing theories of

exchange networks. Rationality and Society, 21:395-427.

Dijkstra, J. and van Assen, M. A. (2006). Externalities in exchange networks: An exploration.

Sociological Theory and Methods, 21:279-294.

Dogan, G. and van Assen, M. A. (2009). Testing models of pure exchange. Journal of Mathematical
Sociology, 33:97-128.

Dogan, G., van Assen, M. A., van de Rijt, A., and Buskens, V. (2011). The stability of exchange
networks. Social Networks, 31:118-125.

Doreian, P. (2006). Actor network utilities and network evolution. Social Networks, 28:137-164.
Emerson, R. M. (1962). Power-dependence relations. American Sociological Review, 27:31-41.

Emerson, R. M. (1972). Exchange theory, part ii: Exchange relations and networks. In Berger,
J., Zelditch, M., and Anderson, B., editors, Sociological Theories in Progress. Vol, 2. Houghton
Mifflin, Boston.

Falk, A. and Kosfeld, M. (2012). It’s all about connections: Evidence on network formation. Review

of Network Economics, 11:Article 2.

25



Flache, A. (2001). Individual risk preferences and collective outcomes in the evolution of exchange

networks. Rationality and Society, 13:304-348.

Flache, A. and Hegselmann, R. (1999). Altruism vs. self-interest in social support. computer
simulations of social support networks in cellular worlds. In Thye, S. R., Lawler, E. J., Macy,
M. W., and Walker, H. A., editors, Advances in Group Processes. Vol, 16. Emerald Group
Publishing Limited, Bingley.

Friedkin, N. E. (1992). An expected value model of social power: Predictions for selected exchange

networks. Social Networks, 14:213-229.

Galeotti, A., Goyal, S., and Kamphorst, J. (2006). Network formation with heterogeneous players.
Games and Economic Behavior, 54:353-372.

Goyal, S. and Moraga-Gonzélez, J. L. (2001). R&D networks. RAND Journal of Economics,
32:686-707.

Goyal, S. and Sumit, J. (2006). Networks of collaboration in oligopoly. Games and Economic
Behavior, 54:353-372.

Hegselmann, R. (1998). Experimental ethics - a computer simulation of classes, cliques and soli-

darity. In Fehige, C. and Wessels, U., editors, Preferences. De Gruyter, Berlin.
Homans, G. (1958). Social behavior as exchange. American Journal of Sociology, 63:597—606.
Hummon, N. P. (2000). Utility and dynamic social networks. Social networks, 22:221-249.

Jackson, M. O. and Watts, A. (2001). The existence of pairwise stable networks. Seoul Journal of
Economics, 14:299-321.

Jackson, M. O. and Watts, A. (2002). On the formation of interaction networks in social coordi-

nation games. Games and Economic Behavior, 41:265-291.

Jackson, M. O. and Wolinsky, A. (1996). A strategic model of social and economic networks.
Journal of Economic Theory, 71:44-74.

Kosfeld, M. (2014). Economic networks in the laboratory: A survey. Review of Network Economics,

3:20-42.

Lawler, E. J. (2001). An affect theory of social exchange. American Journal of Sociology, 107:321—
352.

26



Lawler, E. J., Thye, S. R., and Yoon, J. (2000). Emotion and group cohesion in productive exchange.
American Journal of Sociology, 106:616—657.

Markovsky, B., Skvoretz, J., Wilier, D. E., Lovaglia, M. J., and Erger, J. (1993). The seeds of weak

power: An extension of network exchange theory. American Sociological Review, 58:197—-209.

Markovsky, B., Willer, D. E., and Patton, T. (1988). Power relations in exchange networks. Amer-
ican Sociological Review, 53:220-236.

Marwell, G. and Oliver, P. (1993). The critical mass in collective action: A micro-social theory.

Cambridge University Press, New York.

Marwell, G., Oliver, P., and Teixeira, R. (1985). A theory of the critical mass, i. interdependence,
group heterogeneity, and the production of collective goods. American Journal of Sociology,

91:522-556.

Molm, L. D. (1990). Structure, action, and outcomes: The dynamics of power in social exchange.

American Sociological Review, 55:427—447.

Molm, L. D. (1994). Is punishment effective? coercive strategies in social exchange. Social Psy-

chology Quarterly, 57:75-94.
Molm, L. D. (1997). Coercive power in social exchange. Cambridge University press, Cambridge.

Molm, L. D. and Cook, K. S. (1995). Social exchange and exchange networks. In Cook, K. S.,
Fine, G. A., and House, J. S., editors, Sociological Perspectives on Social Psychology. Allyn and

Bacon, Boston.

Rapoport, A. (1970). N-person game theory: Concepts and applications. Dover Publications Inc,
New York.

Raub, W., Frey, V., and Buskens, V. (2014). Strategic network formation, games on networks and
trust. Analyse & Kritik, 1:135-152.

Robinson, J. (1953). the production function and the theory of capital. Review of Economic Studies,
21:81-106.

Sellinger, E. and Crease, R. (2006). The Philosophy of Expertise. Columbia University Press, New
York.

Snijders, T. A. (2013). Network dynamics. In Wittek, R., Snijders, T. A., and Nee, V., editors,
The Handbook of Rational Choice Social Research. Stanford University Press, Westport.

27



Snijders, T. A. and Doreian, P. (2010). Introduction to the special issue on network dynamics.

Social Networks, 32:1-3.

Toméas-Miquel, J., Expésito-Langa, M., and Nicolau-Julid, D. (2015). The influence of relationship
networks on academic performance in higher education: A comparative study between students

of a creative and non-creative discipline. Higher Education, 71:307-322.

van Dolder D. and Buskens, V. (2014). Individual choices in dynamic networks: An experiment on

social preferences. Plos ONE, 9:€92276.

Willer, D. E. (1999). Network exchange theory. Praeger Press, Westport.

28



	Collaborative production networks
	Introduction
	Background and Contribution
	The Model
	Heterogeneity in resources and in production functions
	Strategic link formation

	Equilibrium
	Strategies and the 2-person game
	Connectivity in the n-person network
	Characterization of Nash equilibrium
	Pairwise stable Nash equilibria

	Discussion and Conclusion
	ADPC94C.tmp
	Manuel Muñoz-Herrera, Jacob Dijkstra, Andreas Flache, Rafael Wittek


